1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// Forked/repurposed from `font-rs` code: https://github.com/raphlinus/font-rs
// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Modifications copyright (C) 2020 Alex Butler
//
// Cubic bezier drawing adapted from stb_truetype: https://github.com/nothings/stb
#[cfg(all(feature = "libm", not(feature = "std")))]
use crate::nostd_float::FloatExt;
#[cfg(not(feature = "std"))]
use alloc::vec::Vec;

use crate::geometry::{lerp, Point};

type DrawLineFn = unsafe fn(&mut Rasterizer, Point, Point);

/// Coverage rasterizer for lines, quadratic & cubic beziers.
pub struct Rasterizer {
    width: usize,
    height: usize,
    a: Vec<f32>,
    draw_line_fn: DrawLineFn,
}

impl Rasterizer {
    /// Allocates a new rasterizer that can draw onto a `width` x `height` alpha grid.
    ///
    /// ```
    /// use ab_glyph_rasterizer::Rasterizer;
    /// let mut rasterizer = Rasterizer::new(14, 38);
    /// ```
    pub fn new(width: usize, height: usize) -> Self {
        Self {
            width,
            height,
            a: vec![0.0; width * height + 4],
            draw_line_fn: optimal_draw_line_fn(),
        }
    }

    /// Resets the rasterizer to an empty `width` x `height` alpha grid. This method behaves as if
    /// the Rasterizer were re-created, with the advantage of not allocating if the total number of
    /// pixels of the grid does not increase.
    ///
    /// ```
    /// # use ab_glyph_rasterizer::Rasterizer;
    /// # let mut rasterizer = Rasterizer::new(14, 38);
    /// rasterizer.reset(12, 24);
    /// assert_eq!(rasterizer.dimensions(), (12, 24));
    /// ```
    pub fn reset(&mut self, width: usize, height: usize) {
        self.width = width;
        self.height = height;
        self.a.truncate(0);
        self.a.resize(width * height + 4, 0.0);
    }

    /// Clears the rasterizer. This method behaves as if the Rasterizer were re-created with the same
    /// dimensions, but does not perform an allocation.
    ///
    /// ```
    /// # use ab_glyph_rasterizer::Rasterizer;
    /// # let mut rasterizer = Rasterizer::new(14, 38);
    /// rasterizer.clear();
    /// ```
    pub fn clear(&mut self) {
        for px in &mut self.a {
            *px = 0.0;
        }
    }

    /// Returns the dimensions the rasterizer was built to draw to.
    ///
    /// ```
    /// # use ab_glyph_rasterizer::*;
    /// let rasterizer = Rasterizer::new(9, 8);
    /// assert_eq!((9, 8), rasterizer.dimensions());
    /// ```
    pub fn dimensions(&self) -> (usize, usize) {
        (self.width, self.height)
    }

    /// Adds a straight line from `p0` to `p1` to the outline.
    ///
    /// ```
    /// # use ab_glyph_rasterizer::*;
    /// # let mut rasterizer = Rasterizer::new(9, 8);
    /// rasterizer.draw_line(point(0.0, 0.48), point(1.22, 0.48));
    /// ```
    pub fn draw_line(&mut self, p0: Point, p1: Point) {
        unsafe { (self.draw_line_fn)(self, p0, p1) }
    }

    #[inline(always)] // must inline for simd versions
    fn draw_line_scalar(&mut self, p0: Point, p1: Point) {
        if (p0.y - p1.y).abs() <= core::f32::EPSILON {
            return;
        }
        let (dir, p0, p1) = if p0.y < p1.y {
            (1.0, p0, p1)
        } else {
            (-1.0, p1, p0)
        };
        let dxdy = (p1.x - p0.x) / (p1.y - p0.y);
        let mut x = p0.x;
        let y0 = p0.y as usize; // note: implicit max of 0 because usize
        if p0.y < 0.0 {
            x -= p0.y * dxdy;
        }
        for y in y0..self.height.min(p1.y.ceil() as usize) {
            let linestart = y * self.width;
            let dy = ((y + 1) as f32).min(p1.y) - (y as f32).max(p0.y);
            let xnext = x + dxdy * dy;
            let d = dy * dir;
            let (x0, x1) = if x < xnext { (x, xnext) } else { (xnext, x) };
            let x0floor = x0.floor();
            let x0i = x0floor as i32;
            let x1ceil = x1.ceil();
            let x1i = x1ceil as i32;
            if x1i <= x0i + 1 {
                let xmf = 0.5 * (x + xnext) - x0floor;
                let linestart_x0i = linestart as isize + x0i as isize;
                if linestart_x0i < 0 {
                    continue; // oob index
                }
                self.a[linestart_x0i as usize] += d - d * xmf;
                self.a[linestart_x0i as usize + 1] += d * xmf;
            } else {
                let s = (x1 - x0).recip();
                let x0f = x0 - x0floor;
                let a0 = 0.5 * s * (1.0 - x0f) * (1.0 - x0f);
                let x1f = x1 - x1ceil + 1.0;
                let am = 0.5 * s * x1f * x1f;
                let linestart_x0i = linestart as isize + x0i as isize;
                if linestart_x0i < 0 {
                    continue; // oob index
                }
                self.a[linestart_x0i as usize] += d * a0;
                if x1i == x0i + 2 {
                    self.a[linestart_x0i as usize + 1] += d * (1.0 - a0 - am);
                } else {
                    let a1 = s * (1.5 - x0f);
                    self.a[linestart_x0i as usize + 1] += d * (a1 - a0);
                    for xi in x0i + 2..x1i - 1 {
                        self.a[linestart + xi as usize] += d * s;
                    }
                    let a2 = a1 + (x1i - x0i - 3) as f32 * s;
                    self.a[linestart + (x1i - 1) as usize] += d * (1.0 - a2 - am);
                }
                self.a[linestart + x1i as usize] += d * am;
            }
            x = xnext;
        }
    }

    /// Adds a quadratic Bézier curve from `p0` to `p2` to the outline using `p1` as the control.
    ///
    /// ```
    /// # use ab_glyph_rasterizer::*;
    /// # let mut rasterizer = Rasterizer::new(14, 38);
    /// rasterizer.draw_quad(point(6.2, 34.5), point(7.2, 34.5), point(9.2, 34.0));
    /// ```
    pub fn draw_quad(&mut self, p0: Point, p1: Point, p2: Point) {
        let devx = p0.x - 2.0 * p1.x + p2.x;
        let devy = p0.y - 2.0 * p1.y + p2.y;
        let devsq = devx * devx + devy * devy;
        if devsq < 0.333 {
            self.draw_line(p0, p2);
            return;
        }
        let tol = 3.0;
        let n = 1 + (tol * devsq).sqrt().sqrt().floor() as usize;
        let mut p = p0;
        let nrecip = (n as f32).recip();
        let mut t = 0.0;
        for _i in 0..n - 1 {
            t += nrecip;
            let pn = lerp(t, lerp(t, p0, p1), lerp(t, p1, p2));
            self.draw_line(p, pn);
            p = pn;
        }
        self.draw_line(p, p2);
    }

    /// Adds a cubic Bézier curve from `p0` to `p3` to the outline using `p1` as the control
    /// at the beginning of the curve and `p2` at the end of the curve.
    ///
    /// ```
    /// # use ab_glyph_rasterizer::*;
    /// # let mut rasterizer = Rasterizer::new(12, 20);
    /// rasterizer.draw_cubic(
    ///     point(10.3, 16.4),
    ///     point(8.6, 16.9),
    ///     point(7.7, 16.5),
    ///     point(8.2, 15.2),
    /// );
    /// ```
    pub fn draw_cubic(&mut self, p0: Point, p1: Point, p2: Point, p3: Point) {
        self.tesselate_cubic(p0, p1, p2, p3, 0);
    }

    // stb_truetype style cubic approximation by lines.
    fn tesselate_cubic(&mut self, p0: Point, p1: Point, p2: Point, p3: Point, n: u8) {
        // ...I'm not sure either ¯\_(ツ)_/¯
        const OBJSPACE_FLATNESS: f32 = 0.35;
        const OBJSPACE_FLATNESS_SQUARED: f32 = OBJSPACE_FLATNESS * OBJSPACE_FLATNESS;
        const MAX_RECURSION_DEPTH: u8 = 16;

        let longlen = p0.distance_to(p1) + p1.distance_to(p2) + p2.distance_to(p3);
        let shortlen = p0.distance_to(p3);
        let flatness_squared = longlen * longlen - shortlen * shortlen;

        if n < MAX_RECURSION_DEPTH && flatness_squared > OBJSPACE_FLATNESS_SQUARED {
            let p01 = lerp(0.5, p0, p1);
            let p12 = lerp(0.5, p1, p2);
            let p23 = lerp(0.5, p2, p3);

            let pa = lerp(0.5, p01, p12);
            let pb = lerp(0.5, p12, p23);

            let mp = lerp(0.5, pa, pb);

            self.tesselate_cubic(p0, p01, pa, mp, n + 1);
            self.tesselate_cubic(mp, pb, p23, p3, n + 1);
        } else {
            self.draw_line(p0, p3);
        }
    }

    /// Run a callback for each pixel `index` & `alpha`, with indices in `0..width * height`.
    ///
    /// An `alpha` coverage value of `0.0` means the pixel is not covered at all by the glyph,
    /// whereas a value of `1.0` (or greater) means the pixel is totally covered.
    ///
    /// ```
    /// # use ab_glyph_rasterizer::*;
    /// # let (width, height) = (1, 1);
    /// # let mut rasterizer = Rasterizer::new(width, height);
    /// let mut pixels = vec![0u8; width * height];
    /// rasterizer.for_each_pixel(|index, alpha| {
    ///     pixels[index] = (alpha * 255.0) as u8;
    /// });
    /// ```
    pub fn for_each_pixel<O: FnMut(usize, f32)>(&self, mut px_fn: O) {
        let mut acc = 0.0;
        self.a[..self.width * self.height]
            .iter()
            .enumerate()
            .for_each(|(idx, c)| {
                acc += c;
                px_fn(idx, acc.abs());
            });
    }

    /// Run a callback for each pixel x position, y position & alpha.
    ///
    /// Convenience wrapper for [`Rasterizer::for_each_pixel`].
    ///
    /// ```
    /// # use ab_glyph_rasterizer::*;
    /// # let mut rasterizer = Rasterizer::new(1, 1);
    /// # struct Img;
    /// # impl Img { fn set_pixel(&self, x: u32, y: u32, a: u8) {} }
    /// # let image = Img;
    /// rasterizer.for_each_pixel_2d(|x, y, alpha| {
    ///     image.set_pixel(x, y, (alpha * 255.0) as u8);
    /// });
    /// ```
    pub fn for_each_pixel_2d<O: FnMut(u32, u32, f32)>(&self, mut px_fn: O) {
        let width32 = self.width as u32;
        self.for_each_pixel(|idx, alpha| px_fn(idx as u32 % width32, idx as u32 / width32, alpha));
    }
}

/// ```
/// let rasterizer = ab_glyph_rasterizer::Rasterizer::new(3, 4);
/// assert_eq!(
///     &format!("{:?}", rasterizer),
///     "Rasterizer { width: 3, height: 4 }"
/// );
/// ```
impl core::fmt::Debug for Rasterizer {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("Rasterizer")
            .field("width", &self.width)
            .field("height", &self.height)
            .finish()
    }
}

#[cfg(all(feature = "std", any(target_arch = "x86", target_arch = "x86_64")))]
#[target_feature(enable = "avx2")]
unsafe fn draw_line_avx2(rast: &mut Rasterizer, p0: Point, p1: Point) {
    rast.draw_line_scalar(p0, p1)
}

#[cfg(all(feature = "std", any(target_arch = "x86", target_arch = "x86_64")))]
#[target_feature(enable = "sse4.2")]
unsafe fn draw_line_sse4_2(rast: &mut Rasterizer, p0: Point, p1: Point) {
    rast.draw_line_scalar(p0, p1)
}

/// Return most optimal `DrawLineFn` impl.
///
/// With feature `std` on x86/x86_64 will use one-time runtime detection
/// to pick the best SIMD impl. Otherwise uses a scalar version.
fn optimal_draw_line_fn() -> DrawLineFn {
    unsafe {
        // safe as write synchronised by Once::call_once or no-write
        static mut DRAW_LINE_FN: DrawLineFn = Rasterizer::draw_line_scalar;

        #[cfg(all(feature = "std", any(target_arch = "x86", target_arch = "x86_64")))]
        {
            static INIT: std::sync::Once = std::sync::Once::new();
            INIT.call_once(|| {
                // runtime detect optimal simd impls
                if is_x86_feature_detected!("avx2") {
                    DRAW_LINE_FN = draw_line_avx2
                } else if is_x86_feature_detected!("sse4.2") {
                    DRAW_LINE_FN = draw_line_sse4_2
                }
            });
        }

        DRAW_LINE_FN
    }
}