1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
// Forked/repurposed from `font-rs` code: https://github.com/raphlinus/font-rs
// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Modifications copyright (C) 2020 Alex Butler
//
// Cubic bezier drawing adapted from stb_truetype: https://github.com/nothings/stb
#[cfg(all(feature = "libm", not(feature = "std")))]
use crate::nostd_float::FloatExt;
#[cfg(not(feature = "std"))]
use alloc::vec::Vec;
use crate::geometry::{lerp, Point};
type DrawLineFn = unsafe fn(&mut Rasterizer, Point, Point);
/// Coverage rasterizer for lines, quadratic & cubic beziers.
pub struct Rasterizer {
width: usize,
height: usize,
a: Vec<f32>,
draw_line_fn: DrawLineFn,
}
impl Rasterizer {
/// Allocates a new rasterizer that can draw onto a `width` x `height` alpha grid.
///
/// ```
/// use ab_glyph_rasterizer::Rasterizer;
/// let mut rasterizer = Rasterizer::new(14, 38);
/// ```
pub fn new(width: usize, height: usize) -> Self {
Self {
width,
height,
a: vec![0.0; width * height + 4],
draw_line_fn: optimal_draw_line_fn(),
}
}
/// Resets the rasterizer to an empty `width` x `height` alpha grid. This method behaves as if
/// the Rasterizer were re-created, with the advantage of not allocating if the total number of
/// pixels of the grid does not increase.
///
/// ```
/// # use ab_glyph_rasterizer::Rasterizer;
/// # let mut rasterizer = Rasterizer::new(14, 38);
/// rasterizer.reset(12, 24);
/// assert_eq!(rasterizer.dimensions(), (12, 24));
/// ```
pub fn reset(&mut self, width: usize, height: usize) {
self.width = width;
self.height = height;
self.a.truncate(0);
self.a.resize(width * height + 4, 0.0);
}
/// Clears the rasterizer. This method behaves as if the Rasterizer were re-created with the same
/// dimensions, but does not perform an allocation.
///
/// ```
/// # use ab_glyph_rasterizer::Rasterizer;
/// # let mut rasterizer = Rasterizer::new(14, 38);
/// rasterizer.clear();
/// ```
pub fn clear(&mut self) {
for px in &mut self.a {
*px = 0.0;
}
}
/// Returns the dimensions the rasterizer was built to draw to.
///
/// ```
/// # use ab_glyph_rasterizer::*;
/// let rasterizer = Rasterizer::new(9, 8);
/// assert_eq!((9, 8), rasterizer.dimensions());
/// ```
pub fn dimensions(&self) -> (usize, usize) {
(self.width, self.height)
}
/// Adds a straight line from `p0` to `p1` to the outline.
///
/// ```
/// # use ab_glyph_rasterizer::*;
/// # let mut rasterizer = Rasterizer::new(9, 8);
/// rasterizer.draw_line(point(0.0, 0.48), point(1.22, 0.48));
/// ```
pub fn draw_line(&mut self, p0: Point, p1: Point) {
unsafe { (self.draw_line_fn)(self, p0, p1) }
}
#[inline(always)] // must inline for simd versions
fn draw_line_scalar(&mut self, p0: Point, p1: Point) {
if (p0.y - p1.y).abs() <= core::f32::EPSILON {
return;
}
let (dir, p0, p1) = if p0.y < p1.y {
(1.0, p0, p1)
} else {
(-1.0, p1, p0)
};
let dxdy = (p1.x - p0.x) / (p1.y - p0.y);
let mut x = p0.x;
let y0 = p0.y as usize; // note: implicit max of 0 because usize
if p0.y < 0.0 {
x -= p0.y * dxdy;
}
for y in y0..self.height.min(p1.y.ceil() as usize) {
let linestart = y * self.width;
let dy = ((y + 1) as f32).min(p1.y) - (y as f32).max(p0.y);
let xnext = x + dxdy * dy;
let d = dy * dir;
let (x0, x1) = if x < xnext { (x, xnext) } else { (xnext, x) };
let x0floor = x0.floor();
let x0i = x0floor as i32;
let x1ceil = x1.ceil();
let x1i = x1ceil as i32;
if x1i <= x0i + 1 {
let xmf = 0.5 * (x + xnext) - x0floor;
let linestart_x0i = linestart as isize + x0i as isize;
if linestart_x0i < 0 {
continue; // oob index
}
self.a[linestart_x0i as usize] += d - d * xmf;
self.a[linestart_x0i as usize + 1] += d * xmf;
} else {
let s = (x1 - x0).recip();
let x0f = x0 - x0floor;
let a0 = 0.5 * s * (1.0 - x0f) * (1.0 - x0f);
let x1f = x1 - x1ceil + 1.0;
let am = 0.5 * s * x1f * x1f;
let linestart_x0i = linestart as isize + x0i as isize;
if linestart_x0i < 0 {
continue; // oob index
}
self.a[linestart_x0i as usize] += d * a0;
if x1i == x0i + 2 {
self.a[linestart_x0i as usize + 1] += d * (1.0 - a0 - am);
} else {
let a1 = s * (1.5 - x0f);
self.a[linestart_x0i as usize + 1] += d * (a1 - a0);
for xi in x0i + 2..x1i - 1 {
self.a[linestart + xi as usize] += d * s;
}
let a2 = a1 + (x1i - x0i - 3) as f32 * s;
self.a[linestart + (x1i - 1) as usize] += d * (1.0 - a2 - am);
}
self.a[linestart + x1i as usize] += d * am;
}
x = xnext;
}
}
/// Adds a quadratic Bézier curve from `p0` to `p2` to the outline using `p1` as the control.
///
/// ```
/// # use ab_glyph_rasterizer::*;
/// # let mut rasterizer = Rasterizer::new(14, 38);
/// rasterizer.draw_quad(point(6.2, 34.5), point(7.2, 34.5), point(9.2, 34.0));
/// ```
pub fn draw_quad(&mut self, p0: Point, p1: Point, p2: Point) {
let devx = p0.x - 2.0 * p1.x + p2.x;
let devy = p0.y - 2.0 * p1.y + p2.y;
let devsq = devx * devx + devy * devy;
if devsq < 0.333 {
self.draw_line(p0, p2);
return;
}
let tol = 3.0;
let n = 1 + (tol * devsq).sqrt().sqrt().floor() as usize;
let mut p = p0;
let nrecip = (n as f32).recip();
let mut t = 0.0;
for _i in 0..n - 1 {
t += nrecip;
let pn = lerp(t, lerp(t, p0, p1), lerp(t, p1, p2));
self.draw_line(p, pn);
p = pn;
}
self.draw_line(p, p2);
}
/// Adds a cubic Bézier curve from `p0` to `p3` to the outline using `p1` as the control
/// at the beginning of the curve and `p2` at the end of the curve.
///
/// ```
/// # use ab_glyph_rasterizer::*;
/// # let mut rasterizer = Rasterizer::new(12, 20);
/// rasterizer.draw_cubic(
/// point(10.3, 16.4),
/// point(8.6, 16.9),
/// point(7.7, 16.5),
/// point(8.2, 15.2),
/// );
/// ```
pub fn draw_cubic(&mut self, p0: Point, p1: Point, p2: Point, p3: Point) {
self.tesselate_cubic(p0, p1, p2, p3, 0);
}
// stb_truetype style cubic approximation by lines.
fn tesselate_cubic(&mut self, p0: Point, p1: Point, p2: Point, p3: Point, n: u8) {
// ...I'm not sure either ¯\_(ツ)_/¯
const OBJSPACE_FLATNESS: f32 = 0.35;
const OBJSPACE_FLATNESS_SQUARED: f32 = OBJSPACE_FLATNESS * OBJSPACE_FLATNESS;
const MAX_RECURSION_DEPTH: u8 = 16;
let longlen = p0.distance_to(p1) + p1.distance_to(p2) + p2.distance_to(p3);
let shortlen = p0.distance_to(p3);
let flatness_squared = longlen * longlen - shortlen * shortlen;
if n < MAX_RECURSION_DEPTH && flatness_squared > OBJSPACE_FLATNESS_SQUARED {
let p01 = lerp(0.5, p0, p1);
let p12 = lerp(0.5, p1, p2);
let p23 = lerp(0.5, p2, p3);
let pa = lerp(0.5, p01, p12);
let pb = lerp(0.5, p12, p23);
let mp = lerp(0.5, pa, pb);
self.tesselate_cubic(p0, p01, pa, mp, n + 1);
self.tesselate_cubic(mp, pb, p23, p3, n + 1);
} else {
self.draw_line(p0, p3);
}
}
/// Run a callback for each pixel `index` & `alpha`, with indices in `0..width * height`.
///
/// An `alpha` coverage value of `0.0` means the pixel is not covered at all by the glyph,
/// whereas a value of `1.0` (or greater) means the pixel is totally covered.
///
/// ```
/// # use ab_glyph_rasterizer::*;
/// # let (width, height) = (1, 1);
/// # let mut rasterizer = Rasterizer::new(width, height);
/// let mut pixels = vec![0u8; width * height];
/// rasterizer.for_each_pixel(|index, alpha| {
/// pixels[index] = (alpha * 255.0) as u8;
/// });
/// ```
pub fn for_each_pixel<O: FnMut(usize, f32)>(&self, mut px_fn: O) {
let mut acc = 0.0;
self.a[..self.width * self.height]
.iter()
.enumerate()
.for_each(|(idx, c)| {
acc += c;
px_fn(idx, acc.abs());
});
}
/// Run a callback for each pixel x position, y position & alpha.
///
/// Convenience wrapper for [`Rasterizer::for_each_pixel`].
///
/// ```
/// # use ab_glyph_rasterizer::*;
/// # let mut rasterizer = Rasterizer::new(1, 1);
/// # struct Img;
/// # impl Img { fn set_pixel(&self, x: u32, y: u32, a: u8) {} }
/// # let image = Img;
/// rasterizer.for_each_pixel_2d(|x, y, alpha| {
/// image.set_pixel(x, y, (alpha * 255.0) as u8);
/// });
/// ```
pub fn for_each_pixel_2d<O: FnMut(u32, u32, f32)>(&self, mut px_fn: O) {
let width32 = self.width as u32;
self.for_each_pixel(|idx, alpha| px_fn(idx as u32 % width32, idx as u32 / width32, alpha));
}
}
/// ```
/// let rasterizer = ab_glyph_rasterizer::Rasterizer::new(3, 4);
/// assert_eq!(
/// &format!("{:?}", rasterizer),
/// "Rasterizer { width: 3, height: 4 }"
/// );
/// ```
impl core::fmt::Debug for Rasterizer {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("Rasterizer")
.field("width", &self.width)
.field("height", &self.height)
.finish()
}
}
#[cfg(all(feature = "std", any(target_arch = "x86", target_arch = "x86_64")))]
#[target_feature(enable = "avx2")]
unsafe fn draw_line_avx2(rast: &mut Rasterizer, p0: Point, p1: Point) {
rast.draw_line_scalar(p0, p1)
}
#[cfg(all(feature = "std", any(target_arch = "x86", target_arch = "x86_64")))]
#[target_feature(enable = "sse4.2")]
unsafe fn draw_line_sse4_2(rast: &mut Rasterizer, p0: Point, p1: Point) {
rast.draw_line_scalar(p0, p1)
}
/// Return most optimal `DrawLineFn` impl.
///
/// With feature `std` on x86/x86_64 will use one-time runtime detection
/// to pick the best SIMD impl. Otherwise uses a scalar version.
fn optimal_draw_line_fn() -> DrawLineFn {
unsafe {
// safe as write synchronised by Once::call_once or no-write
static mut DRAW_LINE_FN: DrawLineFn = Rasterizer::draw_line_scalar;
#[cfg(all(feature = "std", any(target_arch = "x86", target_arch = "x86_64")))]
{
static INIT: std::sync::Once = std::sync::Once::new();
INIT.call_once(|| {
// runtime detect optimal simd impls
if is_x86_feature_detected!("avx2") {
DRAW_LINE_FN = draw_line_avx2
} else if is_x86_feature_detected!("sse4.2") {
DRAW_LINE_FN = draw_line_sse4_2
}
});
}
DRAW_LINE_FN
}
}