1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
use event_listener::{Event, EventListener};
use event_listener_strategy::{easy_wrapper, EventListenerFuture, Strategy};
use core::fmt;
use core::pin::Pin;
use core::task::Poll;
use crate::futures::Lock;
use crate::Mutex;
/// A counter to synchronize multiple tasks at the same time.
#[derive(Debug)]
pub struct Barrier {
n: usize,
state: Mutex<State>,
event: Event,
}
#[derive(Debug)]
struct State {
count: usize,
generation_id: u64,
}
impl Barrier {
/// Creates a barrier that can block the given number of tasks.
///
/// A barrier will block `n`-1 tasks which call [`wait()`] and then wake up all tasks
/// at once when the `n`th task calls [`wait()`].
///
/// [`wait()`]: `Barrier::wait()`
///
/// # Examples
///
/// ```
/// use async_lock::Barrier;
///
/// let barrier = Barrier::new(5);
/// ```
pub const fn new(n: usize) -> Barrier {
Barrier {
n,
state: Mutex::new(State {
count: 0,
generation_id: 0,
}),
event: Event::new(),
}
}
/// Blocks the current task until all tasks reach this point.
///
/// Barriers are reusable after all tasks have synchronized, and can be used continuously.
///
/// Returns a [`BarrierWaitResult`] indicating whether this task is the "leader", meaning the
/// last task to call this method.
///
/// # Examples
///
/// ```
/// use async_lock::Barrier;
/// use futures_lite::future;
/// use std::sync::Arc;
/// use std::thread;
///
/// let barrier = Arc::new(Barrier::new(5));
///
/// for _ in 0..5 {
/// let b = barrier.clone();
/// thread::spawn(move || {
/// future::block_on(async {
/// // The same messages will be printed together.
/// // There will NOT be interleaving of "before" and "after".
/// println!("before wait");
/// b.wait().await;
/// println!("after wait");
/// });
/// });
/// }
/// ```
pub fn wait(&self) -> BarrierWait<'_> {
BarrierWait::_new(BarrierWaitInner {
barrier: self,
lock: Some(self.state.lock()),
evl: EventListener::new(),
state: WaitState::Initial,
})
}
/// Blocks the current thread until all tasks reach this point.
///
/// Barriers are reusable after all tasks have synchronized, and can be used continuously.
///
/// Returns a [`BarrierWaitResult`] indicating whether this task is the "leader", meaning the
/// last task to call this method.
///
/// # Blocking
///
/// Rather than using asynchronous waiting, like the [`wait`][`Barrier::wait`] method,
/// this method will block the current thread until the wait is complete.
///
/// This method should not be used in an asynchronous context. It is intended to be
/// used in a way that a barrier can be used in both asynchronous and synchronous contexts.
/// Calling this method in an asynchronous context may result in a deadlock.
///
/// # Examples
///
/// ```
/// use async_lock::Barrier;
/// use futures_lite::future;
/// use std::sync::Arc;
/// use std::thread;
///
/// let barrier = Arc::new(Barrier::new(5));
///
/// for _ in 0..5 {
/// let b = barrier.clone();
/// thread::spawn(move || {
/// // The same messages will be printed together.
/// // There will NOT be interleaving of "before" and "after".
/// println!("before wait");
/// b.wait_blocking();
/// println!("after wait");
/// });
/// }
/// ```
#[cfg(all(feature = "std", not(target_family = "wasm")))]
pub fn wait_blocking(&self) -> BarrierWaitResult {
self.wait().wait()
}
}
easy_wrapper! {
/// The future returned by [`Barrier::wait()`].
pub struct BarrierWait<'a>(BarrierWaitInner<'a> => BarrierWaitResult);
#[cfg(all(feature = "std", not(target_family = "wasm")))]
pub(crate) wait();
}
pin_project_lite::pin_project! {
/// The future returned by [`Barrier::wait()`].
struct BarrierWaitInner<'a> {
// The barrier to wait on.
barrier: &'a Barrier,
// The ongoing mutex lock operation we are blocking on.
#[pin]
lock: Option<Lock<'a, State>>,
// An event listener for the `barrier.event` event.
#[pin]
evl: EventListener,
// The current state of the future.
state: WaitState,
}
}
impl fmt::Debug for BarrierWait<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("BarrierWait { .. }")
}
}
enum WaitState {
/// We are getting the original values of the state.
Initial,
/// We are waiting for the listener to complete.
Waiting { local_gen: u64 },
/// Waiting to re-acquire the lock to check the state again.
Reacquiring { local_gen: u64 },
}
impl EventListenerFuture for BarrierWaitInner<'_> {
type Output = BarrierWaitResult;
fn poll_with_strategy<'a, S: Strategy<'a>>(
self: Pin<&mut Self>,
strategy: &mut S,
cx: &mut S::Context,
) -> Poll<Self::Output> {
let mut this = self.project();
loop {
match this.state {
WaitState::Initial => {
// See if the lock is ready yet.
let mut state = ready!(this
.lock
.as_mut()
.as_pin_mut()
.unwrap()
.poll_with_strategy(strategy, cx));
this.lock.as_mut().set(None);
let local_gen = state.generation_id;
state.count += 1;
if state.count < this.barrier.n {
// We need to wait for the event.
this.evl.as_mut().listen(&this.barrier.event);
*this.state = WaitState::Waiting { local_gen };
} else {
// We are the last one.
state.count = 0;
state.generation_id = state.generation_id.wrapping_add(1);
this.barrier.event.notify(core::usize::MAX);
return Poll::Ready(BarrierWaitResult { is_leader: true });
}
}
WaitState::Waiting { local_gen } => {
ready!(strategy.poll(this.evl.as_mut(), cx));
// We are now re-acquiring the mutex.
this.lock.as_mut().set(Some(this.barrier.state.lock()));
*this.state = WaitState::Reacquiring {
local_gen: *local_gen,
};
}
WaitState::Reacquiring { local_gen } => {
// Acquire the local state again.
let state = ready!(this
.lock
.as_mut()
.as_pin_mut()
.unwrap()
.poll_with_strategy(strategy, cx));
this.lock.set(None);
if *local_gen == state.generation_id && state.count < this.barrier.n {
// We need to wait for the event again.
this.evl.as_mut().listen(&this.barrier.event);
*this.state = WaitState::Waiting {
local_gen: *local_gen,
};
} else {
// We are ready, but not the leader.
return Poll::Ready(BarrierWaitResult { is_leader: false });
}
}
}
}
}
}
/// Returned by [`Barrier::wait()`] when all tasks have called it.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::Barrier;
///
/// let barrier = Barrier::new(1);
/// let barrier_wait_result = barrier.wait().await;
/// # });
/// ```
#[derive(Debug, Clone)]
pub struct BarrierWaitResult {
is_leader: bool,
}
impl BarrierWaitResult {
/// Returns `true` if this task was the last to call to [`Barrier::wait()`].
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::Barrier;
/// use futures_lite::future;
///
/// let barrier = Barrier::new(2);
/// let (a, b) = future::zip(barrier.wait(), barrier.wait()).await;
/// assert_eq!(a.is_leader(), false);
/// assert_eq!(b.is_leader(), true);
/// # });
/// ```
pub fn is_leader(&self) -> bool {
self.is_leader
}
}