1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
//! Animation for the game engine Bevy

mod animatable;
mod util;

use std::ops::{Add, Deref, Mul};
use std::time::Duration;

use bevy_app::{App, Plugin, PostUpdate};
use bevy_asset::{Asset, AssetApp, Assets, Handle};
use bevy_core::Name;
use bevy_ecs::prelude::*;
use bevy_hierarchy::{Children, Parent};
use bevy_math::{FloatExt, Quat, Vec3};
use bevy_reflect::Reflect;
use bevy_render::mesh::morph::MorphWeights;
use bevy_time::Time;
use bevy_transform::{prelude::Transform, TransformSystem};
use bevy_utils::{tracing::warn, HashMap};

#[allow(missing_docs)]
pub mod prelude {
    #[doc(hidden)]
    pub use crate::{
        animatable::*, AnimationClip, AnimationPlayer, AnimationPlugin, EntityPath, Interpolation,
        Keyframes, VariableCurve,
    };
}

/// List of keyframes for one of the attribute of a [`Transform`].
#[derive(Reflect, Clone, Debug)]
pub enum Keyframes {
    /// Keyframes for rotation.
    Rotation(Vec<Quat>),
    /// Keyframes for translation.
    Translation(Vec<Vec3>),
    /// Keyframes for scale.
    Scale(Vec<Vec3>),
    /// Keyframes for morph target weights.
    ///
    /// Note that in `.0`, each contiguous `target_count` values is a single
    /// keyframe representing the weight values at given keyframe.
    ///
    /// This follows the [glTF design].
    ///
    /// [glTF design]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#animations
    Weights(Vec<f32>),
}

impl Keyframes {
    /// Returns the number of keyframes.
    pub fn len(&self) -> usize {
        match self {
            Keyframes::Weights(vec) => vec.len(),
            Keyframes::Translation(vec) | Keyframes::Scale(vec) => vec.len(),
            Keyframes::Rotation(vec) => vec.len(),
        }
    }

    /// Returns true if the number of keyframes is zero.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }
}

/// Describes how an attribute of a [`Transform`] or [`MorphWeights`] should be animated.
///
/// `keyframe_timestamps` and `keyframes` should have the same length.
#[derive(Reflect, Clone, Debug)]
pub struct VariableCurve {
    /// Timestamp for each of the keyframes.
    pub keyframe_timestamps: Vec<f32>,
    /// List of the keyframes.
    ///
    /// The representation will depend on the interpolation type of this curve:
    ///
    /// - for `Interpolation::Step` and `Interpolation::Linear`, each keyframe is a single value
    /// - for `Interpolation::CubicSpline`, each keyframe is made of three values for `tangent_in`,
    /// `keyframe_value` and `tangent_out`
    pub keyframes: Keyframes,
    /// Interpolation method to use between keyframes.
    pub interpolation: Interpolation,
}

impl VariableCurve {
    /// Find the index of the keyframe at or before the current time.
    ///
    /// Returns [`None`] if the curve is finished or not yet started.
    /// To be more precise, this returns [`None`] if the frame is at or past the last keyframe:
    /// we cannot get the *next* keyframe to interpolate to in that case.
    pub fn find_current_keyframe(&self, seek_time: f32) -> Option<usize> {
        // An Ok(keyframe_index) result means an exact result was found by binary search
        // An Err result means the keyframe was not found, and the index is the keyframe
        // PERF: finding the current keyframe can be optimised
        let search_result = self
            .keyframe_timestamps
            .binary_search_by(|probe| probe.partial_cmp(&seek_time).unwrap());

        // Subtract one for zero indexing!
        let last_keyframe = self.keyframes.len() - 1;

        // We want to find the index of the keyframe before the current time
        // If the keyframe is past the second-to-last keyframe, the animation cannot be interpolated.
        let step_start = match search_result {
            // An exact match was found, and it is the last keyframe (or something has gone terribly wrong).
            // This means that the curve is finished.
            Ok(n) if n >= last_keyframe => return None,
            // An exact match was found, and it is not the last keyframe.
            Ok(i) => i,
            // No exact match was found, and the seek_time is before the start of the animation.
            // This occurs because the binary search returns the index of where we could insert a value
            // without disrupting the order of the vector.
            // If the value is less than the first element, the index will be 0.
            Err(0) => return None,
            // No exact match was found, and it was after the last keyframe.
            // The curve is finished.
            Err(n) if n > last_keyframe => return None,
            // No exact match was found, so return the previous keyframe to interpolate from.
            Err(i) => i - 1,
        };

        // Consumers need to be able to interpolate between the return keyframe and the next
        assert!(step_start < self.keyframe_timestamps.len());

        Some(step_start)
    }
}

/// Interpolation method to use between keyframes.
#[derive(Reflect, Clone, Debug)]
pub enum Interpolation {
    /// Linear interpolation between the two closest keyframes.
    Linear,
    /// Step interpolation, the value of the start keyframe is used.
    Step,
    /// Cubic spline interpolation. The value of the two closest keyframes is used, with the out
    /// tangent of the start keyframe and the in tangent of the end keyframe.
    CubicSpline,
}

/// Path to an entity, with [`Name`]s. Each entity in a path must have a name.
#[derive(Reflect, Clone, Debug, Hash, PartialEq, Eq, Default)]
pub struct EntityPath {
    /// Parts of the path
    pub parts: Vec<Name>,
}

/// A list of [`VariableCurve`], and the [`EntityPath`] to which they apply.
#[derive(Asset, Reflect, Clone, Debug, Default)]
pub struct AnimationClip {
    curves: Vec<Vec<VariableCurve>>,
    paths: HashMap<EntityPath, usize>,
    duration: f32,
}

impl AnimationClip {
    #[inline]
    /// [`VariableCurve`]s for each bone. Indexed by the bone ID.
    pub fn curves(&self) -> &Vec<Vec<VariableCurve>> {
        &self.curves
    }

    /// Gets the curves for a bone.
    ///
    /// Returns `None` if the bone is invalid.
    #[inline]
    pub fn get_curves(&self, bone_id: usize) -> Option<&'_ Vec<VariableCurve>> {
        self.curves.get(bone_id)
    }

    /// Gets the curves by it's [`EntityPath`].
    ///
    /// Returns `None` if the bone is invalid.
    #[inline]
    pub fn get_curves_by_path(&self, path: &EntityPath) -> Option<&'_ Vec<VariableCurve>> {
        self.paths.get(path).and_then(|id| self.curves.get(*id))
    }

    /// Duration of the clip, represented in seconds
    #[inline]
    pub fn duration(&self) -> f32 {
        self.duration
    }

    /// Add a [`VariableCurve`] to an [`EntityPath`].
    pub fn add_curve_to_path(&mut self, path: EntityPath, curve: VariableCurve) {
        // Update the duration of the animation by this curve duration if it's longer
        self.duration = self
            .duration
            .max(*curve.keyframe_timestamps.last().unwrap_or(&0.0));
        if let Some(bone_id) = self.paths.get(&path) {
            self.curves[*bone_id].push(curve);
        } else {
            let idx = self.curves.len();
            self.curves.push(vec![curve]);
            self.paths.insert(path, idx);
        }
    }

    /// Whether this animation clip can run on entity with given [`Name`].
    pub fn compatible_with(&self, name: &Name) -> bool {
        self.paths.keys().any(|path| &path.parts[0] == name)
    }
}

/// Repetition behavior of an animation.
#[derive(Reflect, Debug, PartialEq, Eq, Copy, Clone, Default)]
pub enum RepeatAnimation {
    /// The animation will finish after running once.
    #[default]
    Never,
    /// The animation will finish after running "n" times.
    Count(u32),
    /// The animation will never finish.
    Forever,
}

#[derive(Debug, Reflect)]
struct PlayingAnimation {
    repeat: RepeatAnimation,
    speed: f32,
    /// Total time the animation has been played.
    ///
    /// Note: Time does not increase when the animation is paused or after it has completed.
    elapsed: f32,
    /// The timestamp inside of the animation clip.
    ///
    /// Note: This will always be in the range [0.0, animation clip duration]
    seek_time: f32,
    animation_clip: Handle<AnimationClip>,
    path_cache: Vec<Vec<Option<Entity>>>,
    /// Number of times the animation has completed.
    /// If the animation is playing in reverse, this increments when the animation passes the start.
    completions: u32,
}

impl Default for PlayingAnimation {
    fn default() -> Self {
        Self {
            repeat: RepeatAnimation::default(),
            speed: 1.0,
            elapsed: 0.0,
            seek_time: 0.0,
            animation_clip: Default::default(),
            path_cache: Vec::new(),
            completions: 0,
        }
    }
}

impl PlayingAnimation {
    /// Check if the animation has finished, based on its repetition behavior and the number of times it has repeated.
    ///
    /// Note: An animation with `RepeatAnimation::Forever` will never finish.
    #[inline]
    pub fn is_finished(&self) -> bool {
        match self.repeat {
            RepeatAnimation::Forever => false,
            RepeatAnimation::Never => self.completions >= 1,
            RepeatAnimation::Count(n) => self.completions >= n,
        }
    }

    /// Update the animation given the delta time and the duration of the clip being played.
    #[inline]
    fn update(&mut self, delta: f32, clip_duration: f32) {
        if self.is_finished() {
            return;
        }

        self.elapsed += delta;
        self.seek_time += delta * self.speed;

        let over_time = self.speed > 0.0 && self.seek_time >= clip_duration;
        let under_time = self.speed < 0.0 && self.seek_time < 0.0;

        if over_time || under_time {
            self.completions += 1;

            if self.is_finished() {
                return;
            }
        }
        if self.seek_time >= clip_duration {
            self.seek_time %= clip_duration;
        }
        // Note: assumes delta is never lower than -clip_duration
        if self.seek_time < 0.0 {
            self.seek_time += clip_duration;
        }
    }

    /// Reset back to the initial state as if no time has elapsed.
    fn replay(&mut self) {
        self.completions = 0;
        self.elapsed = 0.0;
        self.seek_time = 0.0;
    }
}

/// An animation that is being faded out as part of a transition
struct AnimationTransition {
    /// The current weight. Starts at 1.0 and goes to 0.0 during the fade-out.
    current_weight: f32,
    /// How much to decrease `current_weight` per second
    weight_decline_per_sec: f32,
    /// The animation that is being faded out
    animation: PlayingAnimation,
}

/// Animation controls
#[derive(Component, Default, Reflect)]
#[reflect(Component)]
pub struct AnimationPlayer {
    paused: bool,

    animation: PlayingAnimation,

    // List of previous animations we're currently transitioning away from.
    // Usually this is empty, when transitioning between animations, there is
    // one entry. When another animation transition happens while a transition
    // is still ongoing, then there can be more than one entry.
    // Once a transition is finished, it will be automatically removed from the list
    #[reflect(ignore)]
    transitions: Vec<AnimationTransition>,
}

impl AnimationPlayer {
    /// Start playing an animation, resetting state of the player.
    /// This will use a linear blending between the previous and the new animation to make a smooth transition.
    pub fn start(&mut self, handle: Handle<AnimationClip>) -> &mut Self {
        self.animation = PlayingAnimation {
            animation_clip: handle,
            ..Default::default()
        };

        // We want a hard transition.
        // In case any previous transitions are still playing, stop them
        self.transitions.clear();

        self
    }

    /// Start playing an animation, resetting state of the player.
    /// This will use a linear blending between the previous and the new animation to make a smooth transition.
    pub fn start_with_transition(
        &mut self,
        handle: Handle<AnimationClip>,
        transition_duration: Duration,
    ) -> &mut Self {
        let mut animation = PlayingAnimation {
            animation_clip: handle,
            ..Default::default()
        };
        std::mem::swap(&mut animation, &mut self.animation);

        // Add the current transition. If other transitions are still ongoing,
        // this will keep those transitions running and cause a transition between
        // the output of that previous transition to the new animation.
        self.transitions.push(AnimationTransition {
            current_weight: 1.0,
            weight_decline_per_sec: 1.0 / transition_duration.as_secs_f32(),
            animation,
        });

        self
    }

    /// Start playing an animation, resetting state of the player, unless the requested animation is already playing.
    pub fn play(&mut self, handle: Handle<AnimationClip>) -> &mut Self {
        if !self.is_playing_clip(&handle) || self.is_paused() {
            self.start(handle);
        }
        self
    }

    /// Start playing an animation, resetting state of the player, unless the requested animation is already playing.
    /// This will use a linear blending between the previous and the new animation to make a smooth transition
    pub fn play_with_transition(
        &mut self,
        handle: Handle<AnimationClip>,
        transition_duration: Duration,
    ) -> &mut Self {
        if !self.is_playing_clip(&handle) || self.is_paused() {
            self.start_with_transition(handle, transition_duration);
        }
        self
    }

    /// Handle to the animation clip being played.
    pub fn animation_clip(&self) -> &Handle<AnimationClip> {
        &self.animation.animation_clip
    }

    /// Check if the given animation clip is being played.
    pub fn is_playing_clip(&self, handle: &Handle<AnimationClip>) -> bool {
        self.animation_clip() == handle
    }

    /// Check if the playing animation has finished, according to the repetition behavior.
    pub fn is_finished(&self) -> bool {
        self.animation.is_finished()
    }

    /// Sets repeat to [`RepeatAnimation::Forever`].
    ///
    /// See also [`Self::set_repeat`].
    pub fn repeat(&mut self) -> &mut Self {
        self.animation.repeat = RepeatAnimation::Forever;
        self
    }

    /// Set the repetition behaviour of the animation.
    pub fn set_repeat(&mut self, repeat: RepeatAnimation) -> &mut Self {
        self.animation.repeat = repeat;
        self
    }

    /// Repetition behavior of the animation.
    pub fn repeat_mode(&self) -> RepeatAnimation {
        self.animation.repeat
    }

    /// Number of times the animation has completed.
    pub fn completions(&self) -> u32 {
        self.animation.completions
    }

    /// Check if the animation is playing in reverse.
    pub fn is_playback_reversed(&self) -> bool {
        self.animation.speed < 0.0
    }

    /// Pause the animation
    pub fn pause(&mut self) {
        self.paused = true;
    }

    /// Unpause the animation
    pub fn resume(&mut self) {
        self.paused = false;
    }

    /// Is the animation paused
    pub fn is_paused(&self) -> bool {
        self.paused
    }

    /// Speed of the animation playback
    pub fn speed(&self) -> f32 {
        self.animation.speed
    }

    /// Set the speed of the animation playback
    pub fn set_speed(&mut self, speed: f32) -> &mut Self {
        self.animation.speed = speed;
        self
    }

    /// Time elapsed playing the animation
    pub fn elapsed(&self) -> f32 {
        self.animation.elapsed
    }

    /// Seek time inside of the animation. Always within the range [0.0, clip duration].
    pub fn seek_time(&self) -> f32 {
        self.animation.seek_time
    }

    /// Seek to a specific time in the animation.
    pub fn seek_to(&mut self, seek_time: f32) -> &mut Self {
        self.animation.seek_time = seek_time;
        self
    }

    /// Reset the animation to its initial state, as if no time has elapsed.
    pub fn replay(&mut self) {
        self.animation.replay();
    }
}

fn entity_from_path(
    root: Entity,
    path: &EntityPath,
    children: &Query<&Children>,
    names: &Query<&Name>,
    path_cache: &mut Vec<Option<Entity>>,
) -> Option<Entity> {
    // PERF: finding the target entity can be optimised
    let mut current_entity = root;
    path_cache.resize(path.parts.len(), None);

    let mut parts = path.parts.iter().enumerate();

    // check the first name is the root node which we already have
    let (_, root_name) = parts.next()?;
    if names.get(current_entity) != Ok(root_name) {
        return None;
    }

    for (idx, part) in parts {
        let mut found = false;
        let children = children.get(current_entity).ok()?;
        if let Some(cached) = path_cache[idx] {
            if children.contains(&cached) {
                if let Ok(name) = names.get(cached) {
                    if name == part {
                        current_entity = cached;
                        found = true;
                    }
                }
            }
        }
        if !found {
            for child in children.deref() {
                if let Ok(name) = names.get(*child) {
                    if name == part {
                        // Found a children with the right name, continue to the next part
                        current_entity = *child;
                        path_cache[idx] = Some(*child);
                        found = true;
                        break;
                    }
                }
            }
        }
        if !found {
            warn!("Entity not found for path {:?} on part {:?}", path, part);
            return None;
        }
    }
    Some(current_entity)
}

/// Verify that there are no ancestors of a given entity that have an [`AnimationPlayer`].
fn verify_no_ancestor_player(
    player_parent: Option<&Parent>,
    parents: &Query<(Has<AnimationPlayer>, Option<&Parent>)>,
) -> bool {
    let Some(mut current) = player_parent.map(Parent::get) else {
        return true;
    };
    loop {
        let Ok((has_player, parent)) = parents.get(current) else {
            return true;
        };
        if has_player {
            return false;
        }
        if let Some(parent) = parent {
            current = parent.get();
        } else {
            return true;
        }
    }
}

/// System that will play all animations, using any entity with a [`AnimationPlayer`]
/// and a [`Handle<AnimationClip>`] as an animation root
#[allow(clippy::too_many_arguments)]
pub fn animation_player(
    time: Res<Time>,
    animations: Res<Assets<AnimationClip>>,
    children: Query<&Children>,
    names: Query<&Name>,
    transforms: Query<&mut Transform>,
    morphs: Query<&mut MorphWeights>,
    parents: Query<(Has<AnimationPlayer>, Option<&Parent>)>,
    mut animation_players: Query<(Entity, Option<&Parent>, &mut AnimationPlayer)>,
) {
    animation_players
        .par_iter_mut()
        .for_each(|(root, maybe_parent, mut player)| {
            update_transitions(&mut player, &time);
            run_animation_player(
                root,
                player,
                &time,
                &animations,
                &names,
                &transforms,
                &morphs,
                maybe_parent,
                &parents,
                &children,
            );
        });
}

#[allow(clippy::too_many_arguments)]
fn run_animation_player(
    root: Entity,
    mut player: Mut<AnimationPlayer>,
    time: &Time,
    animations: &Assets<AnimationClip>,
    names: &Query<&Name>,
    transforms: &Query<&mut Transform>,
    morphs: &Query<&mut MorphWeights>,
    maybe_parent: Option<&Parent>,
    parents: &Query<(Has<AnimationPlayer>, Option<&Parent>)>,
    children: &Query<&Children>,
) {
    let paused = player.paused;
    // Continue if paused unless the `AnimationPlayer` was changed
    // This allow the animation to still be updated if the player.elapsed field was manually updated in pause
    if paused && !player.is_changed() {
        return;
    }

    // Apply the main animation
    apply_animation(
        1.0,
        &mut player.animation,
        paused,
        root,
        time,
        animations,
        names,
        transforms,
        morphs,
        maybe_parent,
        parents,
        children,
    );

    // Apply any potential fade-out transitions from previous animations
    for AnimationTransition {
        current_weight,
        animation,
        ..
    } in &mut player.transitions
    {
        apply_animation(
            *current_weight,
            animation,
            paused,
            root,
            time,
            animations,
            names,
            transforms,
            morphs,
            maybe_parent,
            parents,
            children,
        );
    }
}

/// Update `weights` based on weights in `keyframe` with a linear interpolation
/// on `key_lerp`.
fn lerp_morph_weights(weights: &mut [f32], keyframe: impl Iterator<Item = f32>, key_lerp: f32) {
    let zipped = weights.iter_mut().zip(keyframe);
    for (morph_weight, keyframe) in zipped {
        *morph_weight = morph_weight.lerp(keyframe, key_lerp);
    }
}

/// Extract a keyframe from a list of keyframes by index.
///
/// # Panics
///
/// When `key_index * target_count` is larger than `keyframes`
///
/// This happens when `keyframes` is not formatted as described in
/// [`Keyframes::Weights`]. A possible cause is [`AnimationClip`] not being
/// meant to be used for the [`MorphWeights`] of the entity it's being applied to.
fn get_keyframe(target_count: usize, keyframes: &[f32], key_index: usize) -> &[f32] {
    let start = target_count * key_index;
    let end = target_count * (key_index + 1);
    &keyframes[start..end]
}

/// Helper function for cubic spline interpolation.
fn cubic_spline_interpolation<T>(
    value_start: T,
    tangent_out_start: T,
    tangent_in_end: T,
    value_end: T,
    lerp: f32,
    step_duration: f32,
) -> T
where
    T: Mul<f32, Output = T> + Add<Output = T>,
{
    value_start * (2.0 * lerp.powi(3) - 3.0 * lerp.powi(2) + 1.0)
        + tangent_out_start * (step_duration) * (lerp.powi(3) - 2.0 * lerp.powi(2) + lerp)
        + value_end * (-2.0 * lerp.powi(3) + 3.0 * lerp.powi(2))
        + tangent_in_end * step_duration * (lerp.powi(3) - lerp.powi(2))
}

#[allow(clippy::too_many_arguments)]
fn apply_animation(
    weight: f32,
    animation: &mut PlayingAnimation,
    paused: bool,
    root: Entity,
    time: &Time,
    animations: &Assets<AnimationClip>,
    names: &Query<&Name>,
    transforms: &Query<&mut Transform>,
    morphs: &Query<&mut MorphWeights>,
    maybe_parent: Option<&Parent>,
    parents: &Query<(Has<AnimationPlayer>, Option<&Parent>)>,
    children: &Query<&Children>,
) {
    let Some(animation_clip) = animations.get(&animation.animation_clip) else {
        return;
    };

    // We don't return early because seek_to() may have been called on the animation player.
    animation.update(
        if paused { 0.0 } else { time.delta_seconds() },
        animation_clip.duration,
    );

    if animation.path_cache.len() != animation_clip.paths.len() {
        let new_len = animation_clip.paths.len();
        animation.path_cache.iter_mut().for_each(|v| v.clear());
        animation.path_cache.resize_with(new_len, Vec::new);
    }
    if !verify_no_ancestor_player(maybe_parent, parents) {
        warn!("Animation player on {:?} has a conflicting animation player on an ancestor. Cannot safely animate.", root);
        return;
    }

    let mut any_path_found = false;
    for (path, bone_id) in &animation_clip.paths {
        let cached_path = &mut animation.path_cache[*bone_id];
        let curves = animation_clip.get_curves(*bone_id).unwrap();
        let Some(target) = entity_from_path(root, path, children, names, cached_path) else {
            continue;
        };
        any_path_found = true;
        // SAFETY: The verify_no_ancestor_player check above ensures that two animation players cannot alias
        // any of their descendant Transforms.
        //
        // The system scheduler prevents any other system from mutating Transforms at the same time,
        // so the only way this fetch can alias is if two AnimationPlayers are targeting the same bone.
        // This can only happen if there are two or more AnimationPlayers are ancestors to the same
        // entities. By verifying that there is no other AnimationPlayer in the ancestors of a
        // running AnimationPlayer before animating any entity, this fetch cannot alias.
        //
        // This means only the AnimationPlayers closest to the root of the hierarchy will be able
        // to run their animation. Any players in the children or descendants will log a warning
        // and do nothing.
        let Ok(mut transform) = (unsafe { transforms.get_unchecked(target) }) else {
            continue;
        };
        // SAFETY: As above, there can't be other AnimationPlayers with this target so this fetch can't alias
        let mut morphs = unsafe { morphs.get_unchecked(target) }.ok();
        for curve in curves {
            // Some curves have only one keyframe used to set a transform
            if curve.keyframe_timestamps.len() == 1 {
                match &curve.keyframes {
                    Keyframes::Rotation(keyframes) => {
                        transform.rotation = transform.rotation.slerp(keyframes[0], weight);
                    }
                    Keyframes::Translation(keyframes) => {
                        transform.translation = transform.translation.lerp(keyframes[0], weight);
                    }
                    Keyframes::Scale(keyframes) => {
                        transform.scale = transform.scale.lerp(keyframes[0], weight);
                    }
                    Keyframes::Weights(keyframes) => {
                        if let Some(morphs) = &mut morphs {
                            let target_count = morphs.weights().len();
                            lerp_morph_weights(
                                morphs.weights_mut(),
                                get_keyframe(target_count, keyframes, 0).iter().copied(),
                                weight,
                            );
                        }
                    }
                }
                continue;
            }

            // Find the current keyframe
            let Some(step_start) = curve.find_current_keyframe(animation.seek_time) else {
                continue;
            };

            let timestamp_start = curve.keyframe_timestamps[step_start];
            let timestamp_end = curve.keyframe_timestamps[step_start + 1];
            // Compute how far we are through the keyframe, normalized to [0, 1]
            let lerp = f32::inverse_lerp(timestamp_start, timestamp_end, animation.seek_time);

            apply_keyframe(
                curve,
                step_start,
                weight,
                lerp,
                timestamp_end - timestamp_start,
                &mut transform,
                &mut morphs,
            );
        }
    }

    if !any_path_found {
        warn!("Animation player on {root:?} did not match any entity paths.");
    }
}

#[inline(always)]
fn apply_keyframe(
    curve: &VariableCurve,
    step_start: usize,
    weight: f32,
    lerp: f32,
    duration: f32,
    transform: &mut Mut<Transform>,
    morphs: &mut Option<Mut<MorphWeights>>,
) {
    match (&curve.interpolation, &curve.keyframes) {
        (Interpolation::Step, Keyframes::Rotation(keyframes)) => {
            transform.rotation = transform.rotation.slerp(keyframes[step_start], weight);
        }
        (Interpolation::Linear, Keyframes::Rotation(keyframes)) => {
            let rot_start = keyframes[step_start];
            let mut rot_end = keyframes[step_start + 1];
            // Choose the smallest angle for the rotation
            if rot_end.dot(rot_start) < 0.0 {
                rot_end = -rot_end;
            }
            // Rotations are using a spherical linear interpolation
            let rot = rot_start.normalize().slerp(rot_end.normalize(), lerp);
            transform.rotation = transform.rotation.slerp(rot, weight);
        }
        (Interpolation::CubicSpline, Keyframes::Rotation(keyframes)) => {
            let value_start = keyframes[step_start * 3 + 1];
            let tangent_out_start = keyframes[step_start * 3 + 2];
            let tangent_in_end = keyframes[(step_start + 1) * 3];
            let value_end = keyframes[(step_start + 1) * 3 + 1];
            let result = cubic_spline_interpolation(
                value_start,
                tangent_out_start,
                tangent_in_end,
                value_end,
                lerp,
                duration,
            );
            transform.rotation = transform.rotation.slerp(result.normalize(), weight);
        }
        (Interpolation::Step, Keyframes::Translation(keyframes)) => {
            transform.translation = transform.translation.lerp(keyframes[step_start], weight);
        }
        (Interpolation::Linear, Keyframes::Translation(keyframes)) => {
            let translation_start = keyframes[step_start];
            let translation_end = keyframes[step_start + 1];
            let result = translation_start.lerp(translation_end, lerp);
            transform.translation = transform.translation.lerp(result, weight);
        }
        (Interpolation::CubicSpline, Keyframes::Translation(keyframes)) => {
            let value_start = keyframes[step_start * 3 + 1];
            let tangent_out_start = keyframes[step_start * 3 + 2];
            let tangent_in_end = keyframes[(step_start + 1) * 3];
            let value_end = keyframes[(step_start + 1) * 3 + 1];
            let result = cubic_spline_interpolation(
                value_start,
                tangent_out_start,
                tangent_in_end,
                value_end,
                lerp,
                duration,
            );
            transform.translation = transform.translation.lerp(result, weight);
        }
        (Interpolation::Step, Keyframes::Scale(keyframes)) => {
            transform.scale = transform.scale.lerp(keyframes[step_start], weight);
        }
        (Interpolation::Linear, Keyframes::Scale(keyframes)) => {
            let scale_start = keyframes[step_start];
            let scale_end = keyframes[step_start + 1];
            let result = scale_start.lerp(scale_end, lerp);
            transform.scale = transform.scale.lerp(result, weight);
        }
        (Interpolation::CubicSpline, Keyframes::Scale(keyframes)) => {
            let value_start = keyframes[step_start * 3 + 1];
            let tangent_out_start = keyframes[step_start * 3 + 2];
            let tangent_in_end = keyframes[(step_start + 1) * 3];
            let value_end = keyframes[(step_start + 1) * 3 + 1];
            let result = cubic_spline_interpolation(
                value_start,
                tangent_out_start,
                tangent_in_end,
                value_end,
                lerp,
                duration,
            );
            transform.scale = transform.scale.lerp(result, weight);
        }
        (Interpolation::Step, Keyframes::Weights(keyframes)) => {
            if let Some(morphs) = morphs {
                let target_count = morphs.weights().len();
                let morph_start = get_keyframe(target_count, keyframes, step_start);
                lerp_morph_weights(morphs.weights_mut(), morph_start.iter().copied(), weight);
            }
        }
        (Interpolation::Linear, Keyframes::Weights(keyframes)) => {
            if let Some(morphs) = morphs {
                let target_count = morphs.weights().len();
                let morph_start = get_keyframe(target_count, keyframes, step_start);
                let morph_end = get_keyframe(target_count, keyframes, step_start + 1);
                let result = morph_start
                    .iter()
                    .zip(morph_end)
                    .map(|(a, b)| a.lerp(*b, lerp));
                lerp_morph_weights(morphs.weights_mut(), result, weight);
            }
        }
        (Interpolation::CubicSpline, Keyframes::Weights(keyframes)) => {
            if let Some(morphs) = morphs {
                let target_count = morphs.weights().len();
                let morph_start = get_keyframe(target_count, keyframes, step_start * 3 + 1);
                let tangents_out_start = get_keyframe(target_count, keyframes, step_start * 3 + 2);
                let tangents_in_end = get_keyframe(target_count, keyframes, (step_start + 1) * 3);
                let morph_end = get_keyframe(target_count, keyframes, (step_start + 1) * 3 + 1);
                let result = morph_start
                    .iter()
                    .zip(tangents_out_start)
                    .zip(tangents_in_end)
                    .zip(morph_end)
                    .map(
                        |(((&value_start, &tangent_out_start), &tangent_in_end), &value_end)| {
                            cubic_spline_interpolation(
                                value_start,
                                tangent_out_start,
                                tangent_in_end,
                                value_end,
                                lerp,
                                duration,
                            )
                        },
                    );
                lerp_morph_weights(morphs.weights_mut(), result, weight);
            }
        }
    }
}

fn update_transitions(player: &mut AnimationPlayer, time: &Time) {
    player.transitions.retain_mut(|animation| {
        animation.current_weight -= animation.weight_decline_per_sec * time.delta_seconds();
        animation.current_weight > 0.0
    });
}

/// Adds animation support to an app
#[derive(Default)]
pub struct AnimationPlugin;

impl Plugin for AnimationPlugin {
    fn build(&self, app: &mut App) {
        app.init_asset::<AnimationClip>()
            .register_asset_reflect::<AnimationClip>()
            .register_type::<AnimationPlayer>()
            .register_type::<VariableCurve>()
            .register_type::<Vec<VariableCurve>>()
            .register_type::<Interpolation>()
            .register_type::<Keyframes>()
            .add_systems(
                PostUpdate,
                animation_player.before(TransformSystem::TransformPropagate),
            );
    }
}

#[cfg(test)]
mod tests {
    use crate::VariableCurve;
    use bevy_math::Vec3;

    fn test_variable_curve() -> VariableCurve {
        let keyframe_timestamps = vec![1.0, 2.0, 3.0, 4.0];
        let keyframes = vec![
            Vec3::ONE * 0.0,
            Vec3::ONE * 3.0,
            Vec3::ONE * 6.0,
            Vec3::ONE * 9.0,
        ];
        let interpolation = crate::Interpolation::Linear;

        let variable_curve = VariableCurve {
            keyframe_timestamps,
            keyframes: crate::Keyframes::Translation(keyframes),
            interpolation,
        };

        assert!(variable_curve.keyframe_timestamps.len() == variable_curve.keyframes.len());

        // f32 doesn't impl Ord so we can't easily sort it
        let mut maybe_last_timestamp = None;
        for current_timestamp in &variable_curve.keyframe_timestamps {
            assert!(current_timestamp.is_finite());

            if let Some(last_timestamp) = maybe_last_timestamp {
                assert!(current_timestamp > last_timestamp);
            }
            maybe_last_timestamp = Some(current_timestamp);
        }

        variable_curve
    }

    #[test]
    fn find_current_keyframe_is_in_bounds() {
        let curve = test_variable_curve();
        let min_time = *curve.keyframe_timestamps.first().unwrap();
        // We will always get none at times at or past the second last keyframe
        let second_last_keyframe = curve.keyframe_timestamps.len() - 2;
        let max_time = curve.keyframe_timestamps[second_last_keyframe];
        let elapsed_time = max_time - min_time;

        let n_keyframes = curve.keyframe_timestamps.len();
        let n_test_points = 5;

        for i in 0..=n_test_points {
            // Get a value between 0 and 1
            let normalized_time = i as f32 / n_test_points as f32;
            let seek_time = min_time + normalized_time * elapsed_time;
            assert!(seek_time >= min_time);
            assert!(seek_time <= max_time);

            let maybe_current_keyframe = curve.find_current_keyframe(seek_time);
            assert!(
                maybe_current_keyframe.is_some(),
                "Seek time: {seek_time}, Min time: {min_time}, Max time: {max_time}"
            );

            // We cannot return the last keyframe,
            // because we want to interpolate between the current and next keyframe
            assert!(maybe_current_keyframe.unwrap() < n_keyframes);
        }
    }

    #[test]
    fn find_current_keyframe_returns_none_on_unstarted_animations() {
        let curve = test_variable_curve();
        let min_time = *curve.keyframe_timestamps.first().unwrap();
        let seek_time = 0.0;
        assert!(seek_time < min_time);

        let maybe_keyframe = curve.find_current_keyframe(seek_time);
        assert!(
            maybe_keyframe.is_none(),
            "Seek time: {seek_time}, Minimum time: {min_time}"
        );
    }

    #[test]
    fn find_current_keyframe_returns_none_on_finished_animation() {
        let curve = test_variable_curve();
        let max_time = *curve.keyframe_timestamps.last().unwrap();

        assert!(max_time < f32::INFINITY);
        let maybe_keyframe = curve.find_current_keyframe(f32::INFINITY);
        assert!(maybe_keyframe.is_none());

        let maybe_keyframe = curve.find_current_keyframe(max_time);
        assert!(maybe_keyframe.is_none());
    }

    #[test]
    fn second_last_keyframe_is_found_correctly() {
        let curve = test_variable_curve();

        // Exact time match
        let second_last_keyframe = curve.keyframe_timestamps.len() - 2;
        let second_last_time = curve.keyframe_timestamps[second_last_keyframe];
        let maybe_keyframe = curve.find_current_keyframe(second_last_time);
        assert!(maybe_keyframe.unwrap() == second_last_keyframe);

        // Inexact match, between the last and second last frames
        let seek_time = second_last_time + 0.001;
        let last_time = curve.keyframe_timestamps[second_last_keyframe + 1];
        assert!(seek_time < last_time);

        let maybe_keyframe = curve.find_current_keyframe(seek_time);
        assert!(maybe_keyframe.unwrap() == second_last_keyframe);
    }

    #[test]
    fn exact_keyframe_matches_are_found_correctly() {
        let curve = test_variable_curve();
        let second_last_keyframe = curve.keyframes.len() - 2;

        for i in 0..=second_last_keyframe {
            let seek_time = curve.keyframe_timestamps[i];

            let keyframe = curve.find_current_keyframe(seek_time).unwrap();
            assert!(keyframe == i);
        }
    }

    #[test]
    fn exact_and_inexact_keyframes_correspond() {
        let curve = test_variable_curve();

        let second_last_keyframe = curve.keyframes.len() - 2;

        for i in 0..=second_last_keyframe {
            let seek_time = curve.keyframe_timestamps[i];

            let exact_keyframe = curve.find_current_keyframe(seek_time).unwrap();

            let inexact_seek_time = seek_time + 0.0001;
            let final_time = *curve.keyframe_timestamps.last().unwrap();
            assert!(inexact_seek_time < final_time);

            let inexact_keyframe = curve.find_current_keyframe(inexact_seek_time).unwrap();

            assert!(exact_keyframe == inexact_keyframe);
        }
    }
}