1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
//! Types for declaring and storing [`Component`]s.
use crate::{
self as bevy_ecs,
change_detection::MAX_CHANGE_AGE,
storage::{SparseSetIndex, Storages},
system::{Local, Resource, SystemParam},
world::{FromWorld, World},
};
pub use bevy_ecs_macros::Component;
use bevy_ptr::{OwningPtr, UnsafeCellDeref};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
use bevy_utils::TypeIdMap;
use std::cell::UnsafeCell;
use std::{
alloc::Layout,
any::{Any, TypeId},
borrow::Cow,
marker::PhantomData,
mem::needs_drop,
};
/// A data type that can be used to store data for an [entity].
///
/// `Component` is a [derivable trait]: this means that a data type can implement it by applying a `#[derive(Component)]` attribute to it.
/// However, components must always satisfy the `Send + Sync + 'static` trait bounds.
///
/// [entity]: crate::entity
/// [derivable trait]: https://doc.rust-lang.org/book/appendix-03-derivable-traits.html
///
/// # Examples
///
/// Components can take many forms: they are usually structs, but can also be of every other kind of data type, like enums or zero sized types.
/// The following examples show how components are laid out in code.
///
/// ```
/// # use bevy_ecs::component::Component;
/// # struct Color;
/// #
/// // A component can contain data...
/// #[derive(Component)]
/// struct LicensePlate(String);
///
/// // ... but it can also be a zero-sized marker.
/// #[derive(Component)]
/// struct Car;
///
/// // Components can also be structs with named fields...
/// #[derive(Component)]
/// struct VehiclePerformance {
/// acceleration: f32,
/// top_speed: f32,
/// handling: f32,
/// }
///
/// // ... or enums.
/// #[derive(Component)]
/// enum WheelCount {
/// Two,
/// Three,
/// Four,
/// }
/// ```
///
/// # Component and data access
///
/// See the [`entity`] module level documentation to learn how to add or remove components from an entity.
///
/// See the documentation for [`Query`] to learn how to access component data from a system.
///
/// [`entity`]: crate::entity#usage
/// [`Query`]: crate::system::Query
///
/// # Choosing a storage type
///
/// Components can be stored in the world using different strategies with their own performance implications.
/// By default, components are added to the [`Table`] storage, which is optimized for query iteration.
///
/// Alternatively, components can be added to the [`SparseSet`] storage, which is optimized for component insertion and removal.
/// This is achieved by adding an additional `#[component(storage = "SparseSet")]` attribute to the derive one:
///
/// ```
/// # use bevy_ecs::component::Component;
/// #
/// #[derive(Component)]
/// #[component(storage = "SparseSet")]
/// struct ComponentA;
/// ```
///
/// [`Table`]: crate::storage::Table
/// [`SparseSet`]: crate::storage::SparseSet
///
/// # Implementing the trait for foreign types
///
/// As a consequence of the [orphan rule], it is not possible to separate into two different crates the implementation of `Component` from the definition of a type.
/// This means that it is not possible to directly have a type defined in a third party library as a component.
/// This important limitation can be easily worked around using the [newtype pattern]:
/// this makes it possible to locally define and implement `Component` for a tuple struct that wraps the foreign type.
/// The following example gives a demonstration of this pattern.
///
/// ```
/// // `Component` is defined in the `bevy_ecs` crate.
/// use bevy_ecs::component::Component;
///
/// // `Duration` is defined in the `std` crate.
/// use std::time::Duration;
///
/// // It is not possible to implement `Component` for `Duration` from this position, as they are
/// // both foreign items, defined in an external crate. However, nothing prevents to define a new
/// // `Cooldown` type that wraps `Duration`. As `Cooldown` is defined in a local crate, it is
/// // possible to implement `Component` for it.
/// #[derive(Component)]
/// struct Cooldown(Duration);
/// ```
///
/// [orphan rule]: https://doc.rust-lang.org/book/ch10-02-traits.html#implementing-a-trait-on-a-type
/// [newtype pattern]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#using-the-newtype-pattern-to-implement-external-traits-on-external-types
///
/// # `!Sync` Components
/// A `!Sync` type cannot implement `Component`. However, it is possible to wrap a `Send` but not `Sync`
/// type in [`SyncCell`] or the currently unstable [`Exclusive`] to make it `Sync`. This forces only
/// having mutable access (`&mut T` only, never `&T`), but makes it safe to reference across multiple
/// threads.
///
/// This will fail to compile since `RefCell` is `!Sync`.
/// ```compile_fail
/// # use std::cell::RefCell;
/// # use bevy_ecs::component::Component;
/// #[derive(Component)]
/// struct NotSync {
/// counter: RefCell<usize>,
/// }
/// ```
///
/// This will compile since the `RefCell` is wrapped with `SyncCell`.
/// ```
/// # use std::cell::RefCell;
/// # use bevy_ecs::component::Component;
/// use bevy_utils::synccell::SyncCell;
///
/// // This will compile.
/// #[derive(Component)]
/// struct ActuallySync {
/// counter: SyncCell<RefCell<usize>>,
/// }
/// ```
///
/// [`SyncCell`]: bevy_utils::synccell::SyncCell
/// [`Exclusive`]: https://doc.rust-lang.org/nightly/std/sync/struct.Exclusive.html
pub trait Component: Send + Sync + 'static {
/// A marker type indicating the storage type used for this component.
/// This must be either [`TableStorage`] or [`SparseStorage`].
type Storage: ComponentStorage;
}
/// Marker type for components stored in a [`Table`](crate::storage::Table).
pub struct TableStorage;
/// Marker type for components stored in a [`ComponentSparseSet`](crate::storage::ComponentSparseSet).
pub struct SparseStorage;
/// Types used to specify the storage strategy for a component.
///
/// This trait is implemented for [`TableStorage`] and [`SparseStorage`].
/// Custom implementations are forbidden.
pub trait ComponentStorage: sealed::Sealed {
/// A value indicating the storage strategy specified by this type.
const STORAGE_TYPE: StorageType;
}
impl ComponentStorage for TableStorage {
const STORAGE_TYPE: StorageType = StorageType::Table;
}
impl ComponentStorage for SparseStorage {
const STORAGE_TYPE: StorageType = StorageType::SparseSet;
}
mod sealed {
pub trait Sealed {}
impl Sealed for super::TableStorage {}
impl Sealed for super::SparseStorage {}
}
/// The storage used for a specific component type.
///
/// # Examples
/// The [`StorageType`] for a component is configured via the derive attribute
///
/// ```
/// # use bevy_ecs::{prelude::*, component::*};
/// #[derive(Component)]
/// #[component(storage = "SparseSet")]
/// struct A;
/// ```
#[derive(Debug, Copy, Clone, Default, Eq, PartialEq)]
pub enum StorageType {
/// Provides fast and cache-friendly iteration, but slower addition and removal of components.
/// This is the default storage type.
#[default]
Table,
/// Provides fast addition and removal of components, but slower iteration.
SparseSet,
}
/// Stores metadata for a type of component or resource stored in a specific [`World`].
#[derive(Debug, Clone)]
pub struct ComponentInfo {
id: ComponentId,
descriptor: ComponentDescriptor,
}
impl ComponentInfo {
/// Returns a value uniquely identifying the current component.
#[inline]
pub fn id(&self) -> ComponentId {
self.id
}
/// Returns the name of the current component.
#[inline]
pub fn name(&self) -> &str {
&self.descriptor.name
}
/// Returns the [`TypeId`] of the underlying component type.
/// Returns `None` if the component does not correspond to a Rust type.
#[inline]
pub fn type_id(&self) -> Option<TypeId> {
self.descriptor.type_id
}
/// Returns the layout used to store values of this component in memory.
#[inline]
pub fn layout(&self) -> Layout {
self.descriptor.layout
}
#[inline]
/// Get the function which should be called to clean up values of
/// the underlying component type. This maps to the
/// [`Drop`] implementation for 'normal' Rust components
///
/// Returns `None` if values of the underlying component type don't
/// need to be dropped, e.g. as reported by [`needs_drop`].
pub fn drop(&self) -> Option<unsafe fn(OwningPtr<'_>)> {
self.descriptor.drop
}
/// Returns a value indicating the storage strategy for the current component.
#[inline]
pub fn storage_type(&self) -> StorageType {
self.descriptor.storage_type
}
/// Returns `true` if the underlying component type can be freely shared between threads.
/// If this returns `false`, then extra care must be taken to ensure that components
/// are not accessed from the wrong thread.
#[inline]
pub fn is_send_and_sync(&self) -> bool {
self.descriptor.is_send_and_sync
}
/// Create a new [`ComponentInfo`].
pub(crate) fn new(id: ComponentId, descriptor: ComponentDescriptor) -> Self {
ComponentInfo { id, descriptor }
}
}
/// A value which uniquely identifies the type of a [`Component`] of [`Resource`] within a
/// [`World`].
///
/// Each time a new `Component` type is registered within a `World` using
/// e.g. [`World::init_component`] or [`World::init_component_with_descriptor`]
/// or a Resource with e.g. [`World::init_resource`],
/// a corresponding `ComponentId` is created to track it.
///
/// While the distinction between `ComponentId` and [`TypeId`] may seem superficial, breaking them
/// into two separate but related concepts allows components to exist outside of Rust's type system.
/// Each Rust type registered as a `Component` will have a corresponding `ComponentId`, but additional
/// `ComponentId`s may exist in a `World` to track components which cannot be
/// represented as Rust types for scripting or other advanced use-cases.
///
/// A `ComponentId` is tightly coupled to its parent `World`. Attempting to use a `ComponentId` from
/// one `World` to access the metadata of a `Component` in a different `World` is undefined behavior
/// and must not be attempted.
///
/// Given a type `T` which implements [`Component`], the `ComponentId` for `T` can be retrieved
/// from a `World` using [`World::component_id()`] or via [`Components::component_id()`]. Access
/// to the `ComponentId` for a [`Resource`] is available via [`Components::resource_id()`].
#[derive(Debug, Copy, Clone, Hash, Ord, PartialOrd, Eq, PartialEq)]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, Hash, PartialEq)
)]
pub struct ComponentId(usize);
impl ComponentId {
/// Creates a new [`ComponentId`].
///
/// The `index` is a unique value associated with each type of component in a given world.
/// Usually, this value is taken from a counter incremented for each type of component registered with the world.
#[inline]
pub const fn new(index: usize) -> ComponentId {
ComponentId(index)
}
/// Returns the index of the current component.
#[inline]
pub fn index(self) -> usize {
self.0
}
}
impl SparseSetIndex for ComponentId {
#[inline]
fn sparse_set_index(&self) -> usize {
self.index()
}
#[inline]
fn get_sparse_set_index(value: usize) -> Self {
Self(value)
}
}
/// A value describing a component or resource, which may or may not correspond to a Rust type.
#[derive(Clone)]
pub struct ComponentDescriptor {
name: Cow<'static, str>,
// SAFETY: This must remain private. It must match the statically known StorageType of the
// associated rust component type if one exists.
storage_type: StorageType,
// SAFETY: This must remain private. It must only be set to "true" if this component is
// actually Send + Sync
is_send_and_sync: bool,
type_id: Option<TypeId>,
layout: Layout,
// SAFETY: this function must be safe to call with pointers pointing to items of the type
// this descriptor describes.
// None if the underlying type doesn't need to be dropped
drop: Option<for<'a> unsafe fn(OwningPtr<'a>)>,
}
// We need to ignore the `drop` field in our `Debug` impl
impl std::fmt::Debug for ComponentDescriptor {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("ComponentDescriptor")
.field("name", &self.name)
.field("storage_type", &self.storage_type)
.field("is_send_and_sync", &self.is_send_and_sync)
.field("type_id", &self.type_id)
.field("layout", &self.layout)
.finish()
}
}
impl ComponentDescriptor {
// SAFETY: The pointer points to a valid value of type `T` and it is safe to drop this value.
unsafe fn drop_ptr<T>(x: OwningPtr<'_>) {
x.drop_as::<T>();
}
/// Create a new `ComponentDescriptor` for the type `T`.
pub fn new<T: Component>() -> Self {
Self {
name: Cow::Borrowed(std::any::type_name::<T>()),
storage_type: T::Storage::STORAGE_TYPE,
is_send_and_sync: true,
type_id: Some(TypeId::of::<T>()),
layout: Layout::new::<T>(),
drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
}
}
/// Create a new `ComponentDescriptor`.
///
/// # Safety
/// - the `drop` fn must be usable on a pointer with a value of the layout `layout`
/// - the component type must be safe to access from any thread (Send + Sync in rust terms)
pub unsafe fn new_with_layout(
name: impl Into<Cow<'static, str>>,
storage_type: StorageType,
layout: Layout,
drop: Option<for<'a> unsafe fn(OwningPtr<'a>)>,
) -> Self {
Self {
name: name.into(),
storage_type,
is_send_and_sync: true,
type_id: None,
layout,
drop,
}
}
/// Create a new `ComponentDescriptor` for a resource.
///
/// The [`StorageType`] for resources is always [`TableStorage`].
pub fn new_resource<T: Resource>() -> Self {
Self {
name: Cow::Borrowed(std::any::type_name::<T>()),
// PERF: `SparseStorage` may actually be a more
// reasonable choice as `storage_type` for resources.
storage_type: StorageType::Table,
is_send_and_sync: true,
type_id: Some(TypeId::of::<T>()),
layout: Layout::new::<T>(),
drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
}
}
fn new_non_send<T: Any>(storage_type: StorageType) -> Self {
Self {
name: Cow::Borrowed(std::any::type_name::<T>()),
storage_type,
is_send_and_sync: false,
type_id: Some(TypeId::of::<T>()),
layout: Layout::new::<T>(),
drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
}
}
/// Returns a value indicating the storage strategy for the current component.
#[inline]
pub fn storage_type(&self) -> StorageType {
self.storage_type
}
/// Returns the [`TypeId`] of the underlying component type.
/// Returns `None` if the component does not correspond to a Rust type.
#[inline]
pub fn type_id(&self) -> Option<TypeId> {
self.type_id
}
/// Returns the name of the current component.
#[inline]
pub fn name(&self) -> &str {
self.name.as_ref()
}
}
/// Stores metadata associated with each kind of [`Component`] in a given [`World`].
#[derive(Debug, Default)]
pub struct Components {
components: Vec<ComponentInfo>,
indices: TypeIdMap<ComponentId>,
resource_indices: TypeIdMap<ComponentId>,
}
impl Components {
/// Initializes a component of type `T` with this instance.
/// If a component of this type has already been initialized, this will return
/// the ID of the pre-existing component.
///
/// # See also
///
/// * [`Components::component_id()`]
/// * [`Components::init_component_with_descriptor()`]
#[inline]
pub fn init_component<T: Component>(&mut self, storages: &mut Storages) -> ComponentId {
let type_id = TypeId::of::<T>();
let Components {
indices,
components,
..
} = self;
*indices.entry(type_id).or_insert_with(|| {
Components::init_component_inner(components, storages, ComponentDescriptor::new::<T>())
})
}
/// Initializes a component described by `descriptor`.
///
/// ## Note
///
/// If this method is called multiple times with identical descriptors, a distinct `ComponentId`
/// will be created for each one.
///
/// # See also
///
/// * [`Components::component_id()`]
/// * [`Components::init_component()`]
pub fn init_component_with_descriptor(
&mut self,
storages: &mut Storages,
descriptor: ComponentDescriptor,
) -> ComponentId {
Components::init_component_inner(&mut self.components, storages, descriptor)
}
#[inline]
fn init_component_inner(
components: &mut Vec<ComponentInfo>,
storages: &mut Storages,
descriptor: ComponentDescriptor,
) -> ComponentId {
let component_id = ComponentId(components.len());
let info = ComponentInfo::new(component_id, descriptor);
if info.descriptor.storage_type == StorageType::SparseSet {
storages.sparse_sets.get_or_insert(&info);
}
components.push(info);
component_id
}
/// Returns the number of components registered with this instance.
#[inline]
pub fn len(&self) -> usize {
self.components.len()
}
/// Returns `true` if there are no components registered with this instance. Otherwise, this returns `false`.
#[inline]
pub fn is_empty(&self) -> bool {
self.components.len() == 0
}
/// Gets the metadata associated with the given component.
///
/// This will return an incorrect result if `id` did not come from the same world as `self`. It may return `None` or a garbage value.
#[inline]
pub fn get_info(&self, id: ComponentId) -> Option<&ComponentInfo> {
self.components.get(id.0)
}
/// Returns the name associated with the given component.
///
/// This will return an incorrect result if `id` did not come from the same world as `self`. It may return `None` or a garbage value.
#[inline]
pub fn get_name(&self, id: ComponentId) -> Option<&str> {
self.get_info(id).map(|descriptor| descriptor.name())
}
/// Gets the metadata associated with the given component.
/// # Safety
///
/// `id` must be a valid [`ComponentId`]
#[inline]
pub unsafe fn get_info_unchecked(&self, id: ComponentId) -> &ComponentInfo {
debug_assert!(id.index() < self.components.len());
self.components.get_unchecked(id.0)
}
/// Type-erased equivalent of [`Components::component_id()`].
#[inline]
pub fn get_id(&self, type_id: TypeId) -> Option<ComponentId> {
self.indices.get(&type_id).copied()
}
/// Returns the [`ComponentId`] of the given [`Component`] type `T`.
///
/// The returned `ComponentId` is specific to the `Components` instance
/// it was retrieved from and should not be used with another `Components`
/// instance.
///
/// Returns [`None`] if the `Component` type has not
/// yet been initialized using [`Components::init_component()`].
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// let mut world = World::new();
///
/// #[derive(Component)]
/// struct ComponentA;
///
/// let component_a_id = world.init_component::<ComponentA>();
///
/// assert_eq!(component_a_id, world.components().component_id::<ComponentA>().unwrap())
/// ```
///
/// # See also
///
/// * [`Components::get_id()`]
/// * [`Components::resource_id()`]
/// * [`World::component_id()`]
#[inline]
pub fn component_id<T: Component>(&self) -> Option<ComponentId> {
self.get_id(TypeId::of::<T>())
}
/// Type-erased equivalent of [`Components::resource_id()`].
#[inline]
pub fn get_resource_id(&self, type_id: TypeId) -> Option<ComponentId> {
self.resource_indices.get(&type_id).copied()
}
/// Returns the [`ComponentId`] of the given [`Resource`] type `T`.
///
/// The returned `ComponentId` is specific to the `Components` instance
/// it was retrieved from and should not be used with another `Components`
/// instance.
///
/// Returns [`None`] if the `Resource` type has not
/// yet been initialized using [`Components::init_resource()`].
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// let mut world = World::new();
///
/// #[derive(Resource, Default)]
/// struct ResourceA;
///
/// let resource_a_id = world.init_resource::<ResourceA>();
///
/// assert_eq!(resource_a_id, world.components().resource_id::<ResourceA>().unwrap())
/// ```
///
/// # See also
///
/// * [`Components::component_id()`]
/// * [`Components::get_resource_id()`]
#[inline]
pub fn resource_id<T: Resource>(&self) -> Option<ComponentId> {
self.get_resource_id(TypeId::of::<T>())
}
/// Initializes a [`Resource`] of type `T` with this instance.
/// If a resource of this type has already been initialized, this will return
/// the ID of the pre-existing resource.
///
/// # See also
///
/// * [`Components::resource_id()`]
#[inline]
pub fn init_resource<T: Resource>(&mut self) -> ComponentId {
// SAFETY: The [`ComponentDescriptor`] matches the [`TypeId`]
unsafe {
self.get_or_insert_resource_with(TypeId::of::<T>(), || {
ComponentDescriptor::new_resource::<T>()
})
}
}
/// Initializes a [non-send resource](crate::system::NonSend) of type `T` with this instance.
/// If a resource of this type has already been initialized, this will return
/// the ID of the pre-existing resource.
#[inline]
pub fn init_non_send<T: Any>(&mut self) -> ComponentId {
// SAFETY: The [`ComponentDescriptor`] matches the [`TypeId`]
unsafe {
self.get_or_insert_resource_with(TypeId::of::<T>(), || {
ComponentDescriptor::new_non_send::<T>(StorageType::default())
})
}
}
/// # Safety
///
/// The [`ComponentDescriptor`] must match the [`TypeId`]
#[inline]
unsafe fn get_or_insert_resource_with(
&mut self,
type_id: TypeId,
func: impl FnOnce() -> ComponentDescriptor,
) -> ComponentId {
let components = &mut self.components;
*self.resource_indices.entry(type_id).or_insert_with(|| {
let descriptor = func();
let component_id = ComponentId(components.len());
components.push(ComponentInfo::new(component_id, descriptor));
component_id
})
}
/// Gets an iterator over all components registered with this instance.
pub fn iter(&self) -> impl Iterator<Item = &ComponentInfo> + '_ {
self.components.iter()
}
}
/// A value that tracks when a system ran relative to other systems.
/// This is used to power change detection.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
pub struct Tick {
tick: u32,
}
impl Tick {
/// The maximum relative age for a change tick.
/// The value of this is equal to [`MAX_CHANGE_AGE`].
///
/// Since change detection will not work for any ticks older than this,
/// ticks are periodically scanned to ensure their relative values are below this.
pub const MAX: Self = Self::new(MAX_CHANGE_AGE);
/// Creates a new [`Tick`] wrapping the given value.
#[inline]
pub const fn new(tick: u32) -> Self {
Self { tick }
}
/// Gets the value of this change tick.
#[inline]
pub const fn get(self) -> u32 {
self.tick
}
/// Sets the value of this change tick.
#[inline]
pub fn set(&mut self, tick: u32) {
self.tick = tick;
}
/// Returns `true` if this `Tick` occurred since the system's `last_run`.
///
/// `this_run` is the current tick of the system, used as a reference to help deal with wraparound.
#[inline]
pub fn is_newer_than(self, last_run: Tick, this_run: Tick) -> bool {
// This works even with wraparound because the world tick (`this_run`) is always "newer" than
// `last_run` and `self.tick`, and we scan periodically to clamp `ComponentTicks` values
// so they never get older than `u32::MAX` (the difference would overflow).
//
// The clamp here ensures determinism (since scans could differ between app runs).
let ticks_since_insert = this_run.relative_to(self).tick.min(MAX_CHANGE_AGE);
let ticks_since_system = this_run.relative_to(last_run).tick.min(MAX_CHANGE_AGE);
ticks_since_system > ticks_since_insert
}
/// Returns a change tick representing the relationship between `self` and `other`.
#[inline]
pub(crate) fn relative_to(self, other: Self) -> Self {
let tick = self.tick.wrapping_sub(other.tick);
Self { tick }
}
/// Wraps this change tick's value if it exceeds [`Tick::MAX`].
///
/// Returns `true` if wrapping was performed. Otherwise, returns `false`.
#[inline]
pub(crate) fn check_tick(&mut self, tick: Tick) -> bool {
let age = tick.relative_to(*self);
// This comparison assumes that `age` has not overflowed `u32::MAX` before, which will be true
// so long as this check always runs before that can happen.
if age.get() > Self::MAX.get() {
*self = tick.relative_to(Self::MAX);
true
} else {
false
}
}
}
/// Interior-mutable access to the [`Tick`]s for a single component or resource.
#[derive(Copy, Clone, Debug)]
pub struct TickCells<'a> {
/// The tick indicating when the value was added to the world.
pub added: &'a UnsafeCell<Tick>,
/// The tick indicating the last time the value was modified.
pub changed: &'a UnsafeCell<Tick>,
}
impl<'a> TickCells<'a> {
/// # Safety
/// All cells contained within must uphold the safety invariants of [`UnsafeCellDeref::read`].
#[inline]
pub(crate) unsafe fn read(&self) -> ComponentTicks {
ComponentTicks {
added: self.added.read(),
changed: self.changed.read(),
}
}
}
/// Records when a component or resource was added and when it was last mutably dereferenced (or added).
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct ComponentTicks {
pub(crate) added: Tick,
pub(crate) changed: Tick,
}
impl ComponentTicks {
/// Returns `true` if the component or resource was added after the system last ran.
#[inline]
pub fn is_added(&self, last_run: Tick, this_run: Tick) -> bool {
self.added.is_newer_than(last_run, this_run)
}
/// Returns `true` if the component or resource was added or mutably dereferenced after the system last ran.
#[inline]
pub fn is_changed(&self, last_run: Tick, this_run: Tick) -> bool {
self.changed.is_newer_than(last_run, this_run)
}
/// Returns the tick recording the time this component or resource was most recently changed.
#[inline]
pub fn last_changed_tick(&self) -> Tick {
self.changed
}
/// Returns the tick recording the time this component or resource was added.
#[inline]
pub fn added_tick(&self) -> Tick {
self.added
}
pub(crate) fn new(change_tick: Tick) -> Self {
Self {
added: change_tick,
changed: change_tick,
}
}
/// Manually sets the change tick.
///
/// This is normally done automatically via the [`DerefMut`](std::ops::DerefMut) implementation
/// on [`Mut<T>`](crate::change_detection::Mut), [`ResMut<T>`](crate::change_detection::ResMut), etc.
/// However, components and resources that make use of interior mutability might require manual updates.
///
/// # Example
/// ```no_run
/// # use bevy_ecs::{world::World, component::ComponentTicks};
/// let world: World = unimplemented!();
/// let component_ticks: ComponentTicks = unimplemented!();
///
/// component_ticks.set_changed(world.read_change_tick());
/// ```
#[inline]
pub fn set_changed(&mut self, change_tick: Tick) {
self.changed = change_tick;
}
}
/// A [`SystemParam`] that provides access to the [`ComponentId`] for a specific component type.
///
/// # Example
/// ```
/// # use bevy_ecs::{system::Local, component::{Component, ComponentId, ComponentIdFor}};
/// #[derive(Component)]
/// struct Player;
/// fn my_system(component_id: ComponentIdFor<Player>) {
/// let component_id: ComponentId = component_id.get();
/// // ...
/// }
/// ```
#[derive(SystemParam)]
pub struct ComponentIdFor<'s, T: Component>(Local<'s, InitComponentId<T>>);
impl<T: Component> ComponentIdFor<'_, T> {
/// Gets the [`ComponentId`] for the type `T`.
#[inline]
pub fn get(&self) -> ComponentId {
**self
}
}
impl<T: Component> std::ops::Deref for ComponentIdFor<'_, T> {
type Target = ComponentId;
fn deref(&self) -> &Self::Target {
&self.0.component_id
}
}
impl<T: Component> From<ComponentIdFor<'_, T>> for ComponentId {
#[inline]
fn from(to_component_id: ComponentIdFor<T>) -> ComponentId {
*to_component_id
}
}
/// Initializes the [`ComponentId`] for a specific type when used with [`FromWorld`].
struct InitComponentId<T: Component> {
component_id: ComponentId,
marker: PhantomData<T>,
}
impl<T: Component> FromWorld for InitComponentId<T> {
fn from_world(world: &mut World) -> Self {
Self {
component_id: world.init_component::<T>(),
marker: PhantomData,
}
}
}