1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
//! Types for declaring and storing [`Component`]s.

use crate::{
    self as bevy_ecs,
    change_detection::MAX_CHANGE_AGE,
    storage::{SparseSetIndex, Storages},
    system::{Local, Resource, SystemParam},
    world::{FromWorld, World},
};
pub use bevy_ecs_macros::Component;
use bevy_ptr::{OwningPtr, UnsafeCellDeref};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
use bevy_utils::TypeIdMap;
use std::cell::UnsafeCell;
use std::{
    alloc::Layout,
    any::{Any, TypeId},
    borrow::Cow,
    marker::PhantomData,
    mem::needs_drop,
};

/// A data type that can be used to store data for an [entity].
///
/// `Component` is a [derivable trait]: this means that a data type can implement it by applying a `#[derive(Component)]` attribute to it.
/// However, components must always satisfy the `Send + Sync + 'static` trait bounds.
///
/// [entity]: crate::entity
/// [derivable trait]: https://doc.rust-lang.org/book/appendix-03-derivable-traits.html
///
/// # Examples
///
/// Components can take many forms: they are usually structs, but can also be of every other kind of data type, like enums or zero sized types.
/// The following examples show how components are laid out in code.
///
/// ```
/// # use bevy_ecs::component::Component;
/// # struct Color;
/// #
/// // A component can contain data...
/// #[derive(Component)]
/// struct LicensePlate(String);
///
/// // ... but it can also be a zero-sized marker.
/// #[derive(Component)]
/// struct Car;
///
/// // Components can also be structs with named fields...
/// #[derive(Component)]
/// struct VehiclePerformance {
///     acceleration: f32,
///     top_speed: f32,
///     handling: f32,
/// }
///
/// // ... or enums.
/// #[derive(Component)]
/// enum WheelCount {
///     Two,
///     Three,
///     Four,
/// }
/// ```
///
/// # Component and data access
///
/// See the [`entity`] module level documentation to learn how to add or remove components from an entity.
///
/// See the documentation for [`Query`] to learn how to access component data from a system.
///
/// [`entity`]: crate::entity#usage
/// [`Query`]: crate::system::Query
///
/// # Choosing a storage type
///
/// Components can be stored in the world using different strategies with their own performance implications.
/// By default, components are added to the [`Table`] storage, which is optimized for query iteration.
///
/// Alternatively, components can be added to the [`SparseSet`] storage, which is optimized for component insertion and removal.
/// This is achieved by adding an additional `#[component(storage = "SparseSet")]` attribute to the derive one:
///
/// ```
/// # use bevy_ecs::component::Component;
/// #
/// #[derive(Component)]
/// #[component(storage = "SparseSet")]
/// struct ComponentA;
/// ```
///
/// [`Table`]: crate::storage::Table
/// [`SparseSet`]: crate::storage::SparseSet
///
/// # Implementing the trait for foreign types
///
/// As a consequence of the [orphan rule], it is not possible to separate into two different crates the implementation of `Component` from the definition of a type.
/// This means that it is not possible to directly have a type defined in a third party library as a component.
/// This important limitation can be easily worked around using the [newtype pattern]:
/// this makes it possible to locally define and implement `Component` for a tuple struct that wraps the foreign type.
/// The following example gives a demonstration of this pattern.
///
/// ```
/// // `Component` is defined in the `bevy_ecs` crate.
/// use bevy_ecs::component::Component;
///
/// // `Duration` is defined in the `std` crate.
/// use std::time::Duration;
///
/// // It is not possible to implement `Component` for `Duration` from this position, as they are
/// // both foreign items, defined in an external crate. However, nothing prevents to define a new
/// // `Cooldown` type that wraps `Duration`. As `Cooldown` is defined in a local crate, it is
/// // possible to implement `Component` for it.
/// #[derive(Component)]
/// struct Cooldown(Duration);
/// ```
///
/// [orphan rule]: https://doc.rust-lang.org/book/ch10-02-traits.html#implementing-a-trait-on-a-type
/// [newtype pattern]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#using-the-newtype-pattern-to-implement-external-traits-on-external-types
///
/// # `!Sync` Components
/// A `!Sync` type cannot implement `Component`. However, it is possible to wrap a `Send` but not `Sync`
/// type in [`SyncCell`] or the currently unstable [`Exclusive`] to make it `Sync`. This forces only
/// having mutable access (`&mut T` only, never `&T`), but makes it safe to reference across multiple
/// threads.
///
/// This will fail to compile since `RefCell` is `!Sync`.
/// ```compile_fail
/// # use std::cell::RefCell;
/// # use bevy_ecs::component::Component;
/// #[derive(Component)]
/// struct NotSync {
///    counter: RefCell<usize>,
/// }
/// ```
///
/// This will compile since the `RefCell` is wrapped with `SyncCell`.
/// ```
/// # use std::cell::RefCell;
/// # use bevy_ecs::component::Component;
/// use bevy_utils::synccell::SyncCell;
///
/// // This will compile.
/// #[derive(Component)]
/// struct ActuallySync {
///    counter: SyncCell<RefCell<usize>>,
/// }
/// ```
///
/// [`SyncCell`]: bevy_utils::synccell::SyncCell
/// [`Exclusive`]: https://doc.rust-lang.org/nightly/std/sync/struct.Exclusive.html
pub trait Component: Send + Sync + 'static {
    /// A marker type indicating the storage type used for this component.
    /// This must be either [`TableStorage`] or [`SparseStorage`].
    type Storage: ComponentStorage;
}

/// Marker type for components stored in a [`Table`](crate::storage::Table).
pub struct TableStorage;

/// Marker type for components stored in a [`ComponentSparseSet`](crate::storage::ComponentSparseSet).
pub struct SparseStorage;

/// Types used to specify the storage strategy for a component.
///
/// This trait is implemented for [`TableStorage`] and [`SparseStorage`].
/// Custom implementations are forbidden.
pub trait ComponentStorage: sealed::Sealed {
    /// A value indicating the storage strategy specified by this type.
    const STORAGE_TYPE: StorageType;
}

impl ComponentStorage for TableStorage {
    const STORAGE_TYPE: StorageType = StorageType::Table;
}
impl ComponentStorage for SparseStorage {
    const STORAGE_TYPE: StorageType = StorageType::SparseSet;
}

mod sealed {
    pub trait Sealed {}
    impl Sealed for super::TableStorage {}
    impl Sealed for super::SparseStorage {}
}

/// The storage used for a specific component type.
///
/// # Examples
/// The [`StorageType`] for a component is configured via the derive attribute
///
/// ```
/// # use bevy_ecs::{prelude::*, component::*};
/// #[derive(Component)]
/// #[component(storage = "SparseSet")]
/// struct A;
/// ```
#[derive(Debug, Copy, Clone, Default, Eq, PartialEq)]
pub enum StorageType {
    /// Provides fast and cache-friendly iteration, but slower addition and removal of components.
    /// This is the default storage type.
    #[default]
    Table,
    /// Provides fast addition and removal of components, but slower iteration.
    SparseSet,
}

/// Stores metadata for a type of component or resource stored in a specific [`World`].
#[derive(Debug, Clone)]
pub struct ComponentInfo {
    id: ComponentId,
    descriptor: ComponentDescriptor,
}

impl ComponentInfo {
    /// Returns a value uniquely identifying the current component.
    #[inline]
    pub fn id(&self) -> ComponentId {
        self.id
    }

    /// Returns the name of the current component.
    #[inline]
    pub fn name(&self) -> &str {
        &self.descriptor.name
    }

    /// Returns the [`TypeId`] of the underlying component type.
    /// Returns `None` if the component does not correspond to a Rust type.
    #[inline]
    pub fn type_id(&self) -> Option<TypeId> {
        self.descriptor.type_id
    }

    /// Returns the layout used to store values of this component in memory.
    #[inline]
    pub fn layout(&self) -> Layout {
        self.descriptor.layout
    }

    #[inline]
    /// Get the function which should be called to clean up values of
    /// the underlying component type. This maps to the
    /// [`Drop`] implementation for 'normal' Rust components
    ///
    /// Returns `None` if values of the underlying component type don't
    /// need to be dropped, e.g. as reported by [`needs_drop`].
    pub fn drop(&self) -> Option<unsafe fn(OwningPtr<'_>)> {
        self.descriptor.drop
    }

    /// Returns a value indicating the storage strategy for the current component.
    #[inline]
    pub fn storage_type(&self) -> StorageType {
        self.descriptor.storage_type
    }

    /// Returns `true` if the underlying component type can be freely shared between threads.
    /// If this returns `false`, then extra care must be taken to ensure that components
    /// are not accessed from the wrong thread.
    #[inline]
    pub fn is_send_and_sync(&self) -> bool {
        self.descriptor.is_send_and_sync
    }

    /// Create a new [`ComponentInfo`].
    pub(crate) fn new(id: ComponentId, descriptor: ComponentDescriptor) -> Self {
        ComponentInfo { id, descriptor }
    }
}

/// A value which uniquely identifies the type of a [`Component`] of [`Resource`] within a
/// [`World`].
///
/// Each time a new `Component` type is registered within a `World` using
/// e.g. [`World::init_component`] or [`World::init_component_with_descriptor`]
/// or a Resource with e.g. [`World::init_resource`],
/// a corresponding `ComponentId` is created to track it.
///
/// While the distinction between `ComponentId` and [`TypeId`] may seem superficial, breaking them
/// into two separate but related concepts allows components to exist outside of Rust's type system.
/// Each Rust type registered as a `Component` will have a corresponding `ComponentId`, but additional
/// `ComponentId`s may exist in a `World` to track components which cannot be
/// represented as Rust types for scripting or other advanced use-cases.
///
/// A `ComponentId` is tightly coupled to its parent `World`. Attempting to use a `ComponentId` from
/// one `World` to access the metadata of a `Component` in a different `World` is undefined behavior
/// and must not be attempted.
///
/// Given a type `T` which implements [`Component`], the `ComponentId` for `T` can be retrieved
/// from a `World` using [`World::component_id()`] or via [`Components::component_id()`]. Access
/// to the `ComponentId` for a [`Resource`] is available via [`Components::resource_id()`].
#[derive(Debug, Copy, Clone, Hash, Ord, PartialOrd, Eq, PartialEq)]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, Hash, PartialEq)
)]
pub struct ComponentId(usize);

impl ComponentId {
    /// Creates a new [`ComponentId`].
    ///
    /// The `index` is a unique value associated with each type of component in a given world.
    /// Usually, this value is taken from a counter incremented for each type of component registered with the world.
    #[inline]
    pub const fn new(index: usize) -> ComponentId {
        ComponentId(index)
    }

    /// Returns the index of the current component.
    #[inline]
    pub fn index(self) -> usize {
        self.0
    }
}

impl SparseSetIndex for ComponentId {
    #[inline]
    fn sparse_set_index(&self) -> usize {
        self.index()
    }

    #[inline]
    fn get_sparse_set_index(value: usize) -> Self {
        Self(value)
    }
}

/// A value describing a component or resource, which may or may not correspond to a Rust type.
#[derive(Clone)]
pub struct ComponentDescriptor {
    name: Cow<'static, str>,
    // SAFETY: This must remain private. It must match the statically known StorageType of the
    // associated rust component type if one exists.
    storage_type: StorageType,
    // SAFETY: This must remain private. It must only be set to "true" if this component is
    // actually Send + Sync
    is_send_and_sync: bool,
    type_id: Option<TypeId>,
    layout: Layout,
    // SAFETY: this function must be safe to call with pointers pointing to items of the type
    // this descriptor describes.
    // None if the underlying type doesn't need to be dropped
    drop: Option<for<'a> unsafe fn(OwningPtr<'a>)>,
}

// We need to ignore the `drop` field in our `Debug` impl
impl std::fmt::Debug for ComponentDescriptor {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("ComponentDescriptor")
            .field("name", &self.name)
            .field("storage_type", &self.storage_type)
            .field("is_send_and_sync", &self.is_send_and_sync)
            .field("type_id", &self.type_id)
            .field("layout", &self.layout)
            .finish()
    }
}

impl ComponentDescriptor {
    // SAFETY: The pointer points to a valid value of type `T` and it is safe to drop this value.
    unsafe fn drop_ptr<T>(x: OwningPtr<'_>) {
        x.drop_as::<T>();
    }

    /// Create a new `ComponentDescriptor` for the type `T`.
    pub fn new<T: Component>() -> Self {
        Self {
            name: Cow::Borrowed(std::any::type_name::<T>()),
            storage_type: T::Storage::STORAGE_TYPE,
            is_send_and_sync: true,
            type_id: Some(TypeId::of::<T>()),
            layout: Layout::new::<T>(),
            drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
        }
    }

    /// Create a new `ComponentDescriptor`.
    ///
    /// # Safety
    /// - the `drop` fn must be usable on a pointer with a value of the layout `layout`
    /// - the component type must be safe to access from any thread (Send + Sync in rust terms)
    pub unsafe fn new_with_layout(
        name: impl Into<Cow<'static, str>>,
        storage_type: StorageType,
        layout: Layout,
        drop: Option<for<'a> unsafe fn(OwningPtr<'a>)>,
    ) -> Self {
        Self {
            name: name.into(),
            storage_type,
            is_send_and_sync: true,
            type_id: None,
            layout,
            drop,
        }
    }

    /// Create a new `ComponentDescriptor` for a resource.
    ///
    /// The [`StorageType`] for resources is always [`TableStorage`].
    pub fn new_resource<T: Resource>() -> Self {
        Self {
            name: Cow::Borrowed(std::any::type_name::<T>()),
            // PERF: `SparseStorage` may actually be a more
            // reasonable choice as `storage_type` for resources.
            storage_type: StorageType::Table,
            is_send_and_sync: true,
            type_id: Some(TypeId::of::<T>()),
            layout: Layout::new::<T>(),
            drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
        }
    }

    fn new_non_send<T: Any>(storage_type: StorageType) -> Self {
        Self {
            name: Cow::Borrowed(std::any::type_name::<T>()),
            storage_type,
            is_send_and_sync: false,
            type_id: Some(TypeId::of::<T>()),
            layout: Layout::new::<T>(),
            drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
        }
    }

    /// Returns a value indicating the storage strategy for the current component.
    #[inline]
    pub fn storage_type(&self) -> StorageType {
        self.storage_type
    }

    /// Returns the [`TypeId`] of the underlying component type.
    /// Returns `None` if the component does not correspond to a Rust type.
    #[inline]
    pub fn type_id(&self) -> Option<TypeId> {
        self.type_id
    }

    /// Returns the name of the current component.
    #[inline]
    pub fn name(&self) -> &str {
        self.name.as_ref()
    }
}

/// Stores metadata associated with each kind of [`Component`] in a given [`World`].
#[derive(Debug, Default)]
pub struct Components {
    components: Vec<ComponentInfo>,
    indices: TypeIdMap<ComponentId>,
    resource_indices: TypeIdMap<ComponentId>,
}

impl Components {
    /// Initializes a component of type `T` with this instance.
    /// If a component of this type has already been initialized, this will return
    /// the ID of the pre-existing component.
    ///
    /// # See also
    ///
    /// * [`Components::component_id()`]
    /// * [`Components::init_component_with_descriptor()`]
    #[inline]
    pub fn init_component<T: Component>(&mut self, storages: &mut Storages) -> ComponentId {
        let type_id = TypeId::of::<T>();

        let Components {
            indices,
            components,
            ..
        } = self;
        *indices.entry(type_id).or_insert_with(|| {
            Components::init_component_inner(components, storages, ComponentDescriptor::new::<T>())
        })
    }

    /// Initializes a component described by `descriptor`.
    ///
    /// ## Note
    ///
    /// If this method is called multiple times with identical descriptors, a distinct `ComponentId`
    /// will be created for each one.
    ///
    /// # See also
    ///
    /// * [`Components::component_id()`]
    /// * [`Components::init_component()`]
    pub fn init_component_with_descriptor(
        &mut self,
        storages: &mut Storages,
        descriptor: ComponentDescriptor,
    ) -> ComponentId {
        Components::init_component_inner(&mut self.components, storages, descriptor)
    }

    #[inline]
    fn init_component_inner(
        components: &mut Vec<ComponentInfo>,
        storages: &mut Storages,
        descriptor: ComponentDescriptor,
    ) -> ComponentId {
        let component_id = ComponentId(components.len());
        let info = ComponentInfo::new(component_id, descriptor);
        if info.descriptor.storage_type == StorageType::SparseSet {
            storages.sparse_sets.get_or_insert(&info);
        }
        components.push(info);
        component_id
    }

    /// Returns the number of components registered with this instance.
    #[inline]
    pub fn len(&self) -> usize {
        self.components.len()
    }

    /// Returns `true` if there are no components registered with this instance. Otherwise, this returns `false`.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.components.len() == 0
    }

    /// Gets the metadata associated with the given component.
    ///
    /// This will return an incorrect result if `id` did not come from the same world as `self`. It may return `None` or a garbage value.
    #[inline]
    pub fn get_info(&self, id: ComponentId) -> Option<&ComponentInfo> {
        self.components.get(id.0)
    }

    /// Returns the name associated with the given component.
    ///
    /// This will return an incorrect result if `id` did not come from the same world as `self`. It may return `None` or a garbage value.
    #[inline]
    pub fn get_name(&self, id: ComponentId) -> Option<&str> {
        self.get_info(id).map(|descriptor| descriptor.name())
    }

    /// Gets the metadata associated with the given component.
    /// # Safety
    ///
    /// `id` must be a valid [`ComponentId`]
    #[inline]
    pub unsafe fn get_info_unchecked(&self, id: ComponentId) -> &ComponentInfo {
        debug_assert!(id.index() < self.components.len());
        self.components.get_unchecked(id.0)
    }

    /// Type-erased equivalent of [`Components::component_id()`].
    #[inline]
    pub fn get_id(&self, type_id: TypeId) -> Option<ComponentId> {
        self.indices.get(&type_id).copied()
    }

    /// Returns the [`ComponentId`] of the given [`Component`] type `T`.
    ///
    /// The returned `ComponentId` is specific to the `Components` instance
    /// it was retrieved from and should not be used with another `Components`
    /// instance.
    ///
    /// Returns [`None`] if the `Component` type has not
    /// yet been initialized using [`Components::init_component()`].
    ///
    /// ```
    /// use bevy_ecs::prelude::*;
    ///
    /// let mut world = World::new();
    ///
    /// #[derive(Component)]
    /// struct ComponentA;
    ///
    /// let component_a_id = world.init_component::<ComponentA>();
    ///
    /// assert_eq!(component_a_id, world.components().component_id::<ComponentA>().unwrap())
    /// ```
    ///
    /// # See also
    ///
    /// * [`Components::get_id()`]
    /// * [`Components::resource_id()`]
    /// * [`World::component_id()`]
    #[inline]
    pub fn component_id<T: Component>(&self) -> Option<ComponentId> {
        self.get_id(TypeId::of::<T>())
    }

    /// Type-erased equivalent of [`Components::resource_id()`].
    #[inline]
    pub fn get_resource_id(&self, type_id: TypeId) -> Option<ComponentId> {
        self.resource_indices.get(&type_id).copied()
    }

    /// Returns the [`ComponentId`] of the given [`Resource`] type `T`.
    ///
    /// The returned `ComponentId` is specific to the `Components` instance
    /// it was retrieved from and should not be used with another `Components`
    /// instance.
    ///
    /// Returns [`None`] if the `Resource` type has not
    /// yet been initialized using [`Components::init_resource()`].
    ///
    /// ```
    /// use bevy_ecs::prelude::*;
    ///
    /// let mut world = World::new();
    ///
    /// #[derive(Resource, Default)]
    /// struct ResourceA;
    ///
    /// let resource_a_id = world.init_resource::<ResourceA>();
    ///
    /// assert_eq!(resource_a_id, world.components().resource_id::<ResourceA>().unwrap())
    /// ```
    ///
    /// # See also
    ///
    /// * [`Components::component_id()`]
    /// * [`Components::get_resource_id()`]
    #[inline]
    pub fn resource_id<T: Resource>(&self) -> Option<ComponentId> {
        self.get_resource_id(TypeId::of::<T>())
    }

    /// Initializes a [`Resource`] of type `T` with this instance.
    /// If a resource of this type has already been initialized, this will return
    /// the ID of the pre-existing resource.
    ///
    /// # See also
    ///
    /// * [`Components::resource_id()`]
    #[inline]
    pub fn init_resource<T: Resource>(&mut self) -> ComponentId {
        // SAFETY: The [`ComponentDescriptor`] matches the [`TypeId`]
        unsafe {
            self.get_or_insert_resource_with(TypeId::of::<T>(), || {
                ComponentDescriptor::new_resource::<T>()
            })
        }
    }

    /// Initializes a [non-send resource](crate::system::NonSend) of type `T` with this instance.
    /// If a resource of this type has already been initialized, this will return
    /// the ID of the pre-existing resource.
    #[inline]
    pub fn init_non_send<T: Any>(&mut self) -> ComponentId {
        // SAFETY: The [`ComponentDescriptor`] matches the [`TypeId`]
        unsafe {
            self.get_or_insert_resource_with(TypeId::of::<T>(), || {
                ComponentDescriptor::new_non_send::<T>(StorageType::default())
            })
        }
    }

    /// # Safety
    ///
    /// The [`ComponentDescriptor`] must match the [`TypeId`]
    #[inline]
    unsafe fn get_or_insert_resource_with(
        &mut self,
        type_id: TypeId,
        func: impl FnOnce() -> ComponentDescriptor,
    ) -> ComponentId {
        let components = &mut self.components;
        *self.resource_indices.entry(type_id).or_insert_with(|| {
            let descriptor = func();
            let component_id = ComponentId(components.len());
            components.push(ComponentInfo::new(component_id, descriptor));
            component_id
        })
    }

    /// Gets an iterator over all components registered with this instance.
    pub fn iter(&self) -> impl Iterator<Item = &ComponentInfo> + '_ {
        self.components.iter()
    }
}

/// A value that tracks when a system ran relative to other systems.
/// This is used to power change detection.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
pub struct Tick {
    tick: u32,
}

impl Tick {
    /// The maximum relative age for a change tick.
    /// The value of this is equal to [`MAX_CHANGE_AGE`].
    ///
    /// Since change detection will not work for any ticks older than this,
    /// ticks are periodically scanned to ensure their relative values are below this.
    pub const MAX: Self = Self::new(MAX_CHANGE_AGE);

    /// Creates a new [`Tick`] wrapping the given value.
    #[inline]
    pub const fn new(tick: u32) -> Self {
        Self { tick }
    }

    /// Gets the value of this change tick.
    #[inline]
    pub const fn get(self) -> u32 {
        self.tick
    }

    /// Sets the value of this change tick.
    #[inline]
    pub fn set(&mut self, tick: u32) {
        self.tick = tick;
    }

    /// Returns `true` if this `Tick` occurred since the system's `last_run`.
    ///
    /// `this_run` is the current tick of the system, used as a reference to help deal with wraparound.
    #[inline]
    pub fn is_newer_than(self, last_run: Tick, this_run: Tick) -> bool {
        // This works even with wraparound because the world tick (`this_run`) is always "newer" than
        // `last_run` and `self.tick`, and we scan periodically to clamp `ComponentTicks` values
        // so they never get older than `u32::MAX` (the difference would overflow).
        //
        // The clamp here ensures determinism (since scans could differ between app runs).
        let ticks_since_insert = this_run.relative_to(self).tick.min(MAX_CHANGE_AGE);
        let ticks_since_system = this_run.relative_to(last_run).tick.min(MAX_CHANGE_AGE);

        ticks_since_system > ticks_since_insert
    }

    /// Returns a change tick representing the relationship between `self` and `other`.
    #[inline]
    pub(crate) fn relative_to(self, other: Self) -> Self {
        let tick = self.tick.wrapping_sub(other.tick);
        Self { tick }
    }

    /// Wraps this change tick's value if it exceeds [`Tick::MAX`].
    ///
    /// Returns `true` if wrapping was performed. Otherwise, returns `false`.
    #[inline]
    pub(crate) fn check_tick(&mut self, tick: Tick) -> bool {
        let age = tick.relative_to(*self);
        // This comparison assumes that `age` has not overflowed `u32::MAX` before, which will be true
        // so long as this check always runs before that can happen.
        if age.get() > Self::MAX.get() {
            *self = tick.relative_to(Self::MAX);
            true
        } else {
            false
        }
    }
}

/// Interior-mutable access to the [`Tick`]s for a single component or resource.
#[derive(Copy, Clone, Debug)]
pub struct TickCells<'a> {
    /// The tick indicating when the value was added to the world.
    pub added: &'a UnsafeCell<Tick>,
    /// The tick indicating the last time the value was modified.
    pub changed: &'a UnsafeCell<Tick>,
}

impl<'a> TickCells<'a> {
    /// # Safety
    /// All cells contained within must uphold the safety invariants of [`UnsafeCellDeref::read`].
    #[inline]
    pub(crate) unsafe fn read(&self) -> ComponentTicks {
        ComponentTicks {
            added: self.added.read(),
            changed: self.changed.read(),
        }
    }
}

/// Records when a component or resource was added and when it was last mutably dereferenced (or added).
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct ComponentTicks {
    pub(crate) added: Tick,
    pub(crate) changed: Tick,
}

impl ComponentTicks {
    /// Returns `true` if the component or resource was added after the system last ran.
    #[inline]
    pub fn is_added(&self, last_run: Tick, this_run: Tick) -> bool {
        self.added.is_newer_than(last_run, this_run)
    }

    /// Returns `true` if the component or resource was added or mutably dereferenced after the system last ran.
    #[inline]
    pub fn is_changed(&self, last_run: Tick, this_run: Tick) -> bool {
        self.changed.is_newer_than(last_run, this_run)
    }

    /// Returns the tick recording the time this component or resource was most recently changed.
    #[inline]
    pub fn last_changed_tick(&self) -> Tick {
        self.changed
    }

    /// Returns the tick recording the time this component or resource was added.
    #[inline]
    pub fn added_tick(&self) -> Tick {
        self.added
    }

    pub(crate) fn new(change_tick: Tick) -> Self {
        Self {
            added: change_tick,
            changed: change_tick,
        }
    }

    /// Manually sets the change tick.
    ///
    /// This is normally done automatically via the [`DerefMut`](std::ops::DerefMut) implementation
    /// on [`Mut<T>`](crate::change_detection::Mut), [`ResMut<T>`](crate::change_detection::ResMut), etc.
    /// However, components and resources that make use of interior mutability might require manual updates.
    ///
    /// # Example
    /// ```no_run
    /// # use bevy_ecs::{world::World, component::ComponentTicks};
    /// let world: World = unimplemented!();
    /// let component_ticks: ComponentTicks = unimplemented!();
    ///
    /// component_ticks.set_changed(world.read_change_tick());
    /// ```
    #[inline]
    pub fn set_changed(&mut self, change_tick: Tick) {
        self.changed = change_tick;
    }
}

/// A [`SystemParam`] that provides access to the [`ComponentId`] for a specific component type.
///
/// # Example
/// ```
/// # use bevy_ecs::{system::Local, component::{Component, ComponentId, ComponentIdFor}};
/// #[derive(Component)]
/// struct Player;
/// fn my_system(component_id: ComponentIdFor<Player>) {
///     let component_id: ComponentId = component_id.get();
///     // ...
/// }
/// ```
#[derive(SystemParam)]
pub struct ComponentIdFor<'s, T: Component>(Local<'s, InitComponentId<T>>);

impl<T: Component> ComponentIdFor<'_, T> {
    /// Gets the [`ComponentId`] for the type `T`.
    #[inline]
    pub fn get(&self) -> ComponentId {
        **self
    }
}

impl<T: Component> std::ops::Deref for ComponentIdFor<'_, T> {
    type Target = ComponentId;
    fn deref(&self) -> &Self::Target {
        &self.0.component_id
    }
}

impl<T: Component> From<ComponentIdFor<'_, T>> for ComponentId {
    #[inline]
    fn from(to_component_id: ComponentIdFor<T>) -> ComponentId {
        *to_component_id
    }
}

/// Initializes the [`ComponentId`] for a specific type when used with [`FromWorld`].
struct InitComponentId<T: Component> {
    component_id: ComponentId,
    marker: PhantomData<T>,
}

impl<T: Component> FromWorld for InitComponentId<T> {
    fn from_world(world: &mut World) -> Self {
        Self {
            component_id: world.init_component::<T>(),
            marker: PhantomData,
        }
    }
}