1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
use crate::{
    archetype::{Archetype, ArchetypeEntity, ArchetypeId, Archetypes},
    component::Tick,
    entity::{Entities, Entity},
    query::{ArchetypeFilter, DebugCheckedUnwrap, QueryState},
    storage::{Table, TableId, TableRow, Tables},
    world::unsafe_world_cell::UnsafeWorldCell,
};
use std::{borrow::Borrow, iter::FusedIterator, mem::MaybeUninit, ops::Range};

use super::{QueryData, QueryFilter, ReadOnlyQueryData};

/// An [`Iterator`] over query results of a [`Query`](crate::system::Query).
///
/// This struct is created by the [`Query::iter`](crate::system::Query::iter) and
/// [`Query::iter_mut`](crate::system::Query::iter_mut) methods.
pub struct QueryIter<'w, 's, D: QueryData, F: QueryFilter> {
    tables: &'w Tables,
    archetypes: &'w Archetypes,
    query_state: &'s QueryState<D, F>,
    cursor: QueryIterationCursor<'w, 's, D, F>,
}

impl<'w, 's, D: QueryData, F: QueryFilter> QueryIter<'w, 's, D, F> {
    /// # Safety
    /// - `world` must have permission to access any of the components registered in `query_state`.
    /// - `world` must be the same one used to initialize `query_state`.
    pub(crate) unsafe fn new(
        world: UnsafeWorldCell<'w>,
        query_state: &'s QueryState<D, F>,
        last_run: Tick,
        this_run: Tick,
    ) -> Self {
        QueryIter {
            query_state,
            // SAFETY: We only access table data that has been registered in `query_state`.
            tables: &world.storages().tables,
            archetypes: world.archetypes(),
            cursor: QueryIterationCursor::init(world, query_state, last_run, this_run),
        }
    }

    /// Executes the equivalent of [`Iterator::for_each`] over a contiguous segment
    /// from an table.
    ///
    /// # Safety
    ///  - all `rows` must be in `[0, table.entity_count)`.
    ///  - `table` must match D and F
    ///  - Both `D::IS_DENSE` and `F::IS_DENSE` must be true.
    #[inline]
    #[cfg(all(not(target = "wasm32"), feature = "multi-threaded"))]
    pub(super) unsafe fn for_each_in_table_range<Func>(
        &mut self,
        func: &mut Func,
        table: &'w Table,
        rows: Range<usize>,
    ) where
        Func: FnMut(D::Item<'w>),
    {
        // SAFETY: Caller assures that D::IS_DENSE and F::IS_DENSE are true, that table matches D and F
        // and all indicies in rows are in range.
        unsafe {
            self.fold_over_table_range((), &mut |_, item| func(item), table, rows);
        }
    }

    /// Executes the equivalent of [`Iterator::for_each`] over a contiguous segment
    /// from an archetype.
    ///
    /// # Safety
    ///  - all `indices` must be in `[0, archetype.len())`.
    ///  - `archetype` must match D and F
    ///  - Either `D::IS_DENSE` or `F::IS_DENSE` must be false.
    #[inline]
    #[cfg(all(not(target = "wasm32"), feature = "multi-threaded"))]
    pub(super) unsafe fn for_each_in_archetype_range<Func>(
        &mut self,
        func: &mut Func,
        archetype: &'w Archetype,
        rows: Range<usize>,
    ) where
        Func: FnMut(D::Item<'w>),
    {
        // SAFETY: Caller assures that either D::IS_DENSE or F::IS_DENSE are false, that archetype matches D and F
        // and all indices in rows are in range.
        unsafe {
            self.fold_over_archetype_range((), &mut |_, item| func(item), archetype, rows);
        }
    }

    /// Executes the equivalent of [`Iterator::fold`] over a contiguous segment
    /// from an table.
    ///
    /// # Safety
    ///  - all `rows` must be in `[0, table.entity_count)`.
    ///  - `table` must match D and F
    ///  - Both `D::IS_DENSE` and `F::IS_DENSE` must be true.
    #[inline]
    pub(super) unsafe fn fold_over_table_range<B, Func>(
        &mut self,
        mut accum: B,
        func: &mut Func,
        table: &'w Table,
        rows: Range<usize>,
    ) -> B
    where
        Func: FnMut(B, D::Item<'w>) -> B,
    {
        assert!(
            rows.end <= u32::MAX as usize,
            "TableRow is only valid up to u32::MAX"
        );

        D::set_table(&mut self.cursor.fetch, &self.query_state.fetch_state, table);
        F::set_table(
            &mut self.cursor.filter,
            &self.query_state.filter_state,
            table,
        );

        let entities = table.entities();
        for row in rows {
            // SAFETY: Caller assures `row` in range of the current archetype.
            let entity = entities.get_unchecked(row);
            let row = TableRow::from_usize(row);
            // SAFETY: set_table was called prior.
            // Caller assures `row` in range of the current archetype.
            if !F::filter_fetch(&mut self.cursor.filter, *entity, row) {
                continue;
            }

            // SAFETY: set_table was called prior.
            // Caller assures `row` in range of the current archetype.
            let item = D::fetch(&mut self.cursor.fetch, *entity, row);

            accum = func(accum, item);
        }
        accum
    }

    /// Executes the equivalent of [`Iterator::fold`] over a contiguous segment
    /// from an archetype.
    ///
    /// # Safety
    ///  - all `indices` must be in `[0, archetype.len())`.
    ///  - `archetype` must match D and F
    ///  - Either `D::IS_DENSE` or `F::IS_DENSE` must be false.
    #[inline]
    pub(super) unsafe fn fold_over_archetype_range<B, Func>(
        &mut self,
        mut accum: B,
        func: &mut Func,
        archetype: &'w Archetype,
        indices: Range<usize>,
    ) -> B
    where
        Func: FnMut(B, D::Item<'w>) -> B,
    {
        let table = self.tables.get(archetype.table_id()).debug_checked_unwrap();
        D::set_archetype(
            &mut self.cursor.fetch,
            &self.query_state.fetch_state,
            archetype,
            table,
        );
        F::set_archetype(
            &mut self.cursor.filter,
            &self.query_state.filter_state,
            archetype,
            table,
        );

        let entities = archetype.entities();
        for index in indices {
            // SAFETY: Caller assures `index` in range of the current archetype.
            let archetype_entity = entities.get_unchecked(index);
            // SAFETY: set_archetype was called prior.
            // Caller assures `index` in range of the current archetype.
            if !F::filter_fetch(
                &mut self.cursor.filter,
                archetype_entity.id(),
                archetype_entity.table_row(),
            ) {
                continue;
            }

            // SAFETY: set_archetype was called prior, `index` is an archetype index in range of the current archetype
            // Caller assures `index` in range of the current archetype.
            let item = D::fetch(
                &mut self.cursor.fetch,
                archetype_entity.id(),
                archetype_entity.table_row(),
            );

            accum = func(accum, item);
        }
        accum
    }
}

impl<'w, 's, D: QueryData, F: QueryFilter> Iterator for QueryIter<'w, 's, D, F> {
    type Item = D::Item<'w>;

    #[inline(always)]
    fn next(&mut self) -> Option<Self::Item> {
        // SAFETY:
        // `tables` and `archetypes` belong to the same world that the cursor was initialized for.
        // `query_state` is the state that was passed to `QueryIterationCursor::init`.
        unsafe {
            self.cursor
                .next(self.tables, self.archetypes, self.query_state)
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let max_size = self.cursor.max_remaining(self.tables, self.archetypes);
        let archetype_query = F::IS_ARCHETYPAL;
        let min_size = if archetype_query { max_size } else { 0 };
        (min_size, Some(max_size))
    }

    #[inline]
    fn fold<B, Func>(mut self, init: B, mut func: Func) -> B
    where
        Func: FnMut(B, Self::Item) -> B,
    {
        let mut accum = init;
        // Empty any remaining uniterated values from the current table/archetype
        while self.cursor.current_row != self.cursor.current_len {
            let Some(item) = self.next() else { break };
            accum = func(accum, item);
        }
        if D::IS_DENSE && F::IS_DENSE {
            for table_id in self.cursor.table_id_iter.clone() {
                // SAFETY: Matched table IDs are guaranteed to still exist.
                let table = unsafe { self.tables.get(*table_id).debug_checked_unwrap() };
                accum =
                    // SAFETY: 
                    // - The fetched table matches both D and F
                    // - The provided range is equivalent to [0, table.entity_count)
                    // - The if block ensures that D::IS_DENSE and F::IS_DENSE are both true
                    unsafe { self.fold_over_table_range(accum, &mut func, table, 0..table.entity_count()) };
            }
        } else {
            for archetype_id in self.cursor.archetype_id_iter.clone() {
                let archetype =
                    // SAFETY: Matched archetype IDs are guaranteed to still exist.
                    unsafe { self.archetypes.get(*archetype_id).debug_checked_unwrap() };
                accum =
                    // SAFETY:
                    // - The fetched archetype matches both D and F
                    // - The provided range is equivalent to [0, archetype.len)
                    // - The if block ensures that ether D::IS_DENSE or F::IS_DENSE are false
                    unsafe { self.fold_over_archetype_range(accum, &mut func, archetype, 0..archetype.len()) };
            }
        }
        accum
    }
}

// This is correct as [`QueryIter`] always returns `None` once exhausted.
impl<'w, 's, D: QueryData, F: QueryFilter> FusedIterator for QueryIter<'w, 's, D, F> {}

/// An [`Iterator`] over the query items generated from an iterator of [`Entity`]s.
///
/// Items are returned in the order of the provided iterator.
/// Entities that don't match the query are skipped.
///
/// This struct is created by the [`Query::iter_many`](crate::system::Query::iter_many) and [`Query::iter_many_mut`](crate::system::Query::iter_many_mut) methods.
pub struct QueryManyIter<'w, 's, D: QueryData, F: QueryFilter, I: Iterator>
where
    I::Item: Borrow<Entity>,
{
    entity_iter: I,
    entities: &'w Entities,
    tables: &'w Tables,
    archetypes: &'w Archetypes,
    fetch: D::Fetch<'w>,
    filter: F::Fetch<'w>,
    query_state: &'s QueryState<D, F>,
}

impl<'w, 's, D: QueryData, F: QueryFilter, I: Iterator> QueryManyIter<'w, 's, D, F, I>
where
    I::Item: Borrow<Entity>,
{
    /// # Safety
    /// - `world` must have permission to access any of the components registered in `query_state`.
    /// - `world` must be the same one used to initialize `query_state`.
    pub(crate) unsafe fn new<EntityList: IntoIterator<IntoIter = I>>(
        world: UnsafeWorldCell<'w>,
        query_state: &'s QueryState<D, F>,
        entity_list: EntityList,
        last_run: Tick,
        this_run: Tick,
    ) -> QueryManyIter<'w, 's, D, F, I> {
        let fetch = D::init_fetch(world, &query_state.fetch_state, last_run, this_run);
        let filter = F::init_fetch(world, &query_state.filter_state, last_run, this_run);
        QueryManyIter {
            query_state,
            entities: world.entities(),
            archetypes: world.archetypes(),
            // SAFETY: We only access table data that has been registered in `query_state`.
            // This means `world` has permission to access the data we use.
            tables: &world.storages().tables,
            fetch,
            filter,
            entity_iter: entity_list.into_iter(),
        }
    }

    /// Safety:
    /// The lifetime here is not restrictive enough for Fetch with &mut access,
    /// as calling `fetch_next_aliased_unchecked` multiple times can produce multiple
    /// references to the same component, leading to unique reference aliasing.
    ///
    /// It is always safe for shared access.
    #[inline(always)]
    unsafe fn fetch_next_aliased_unchecked(&mut self) -> Option<D::Item<'w>> {
        for entity in self.entity_iter.by_ref() {
            let entity = *entity.borrow();
            let Some(location) = self.entities.get(entity) else {
                continue;
            };

            if !self
                .query_state
                .matched_archetypes
                .contains(location.archetype_id.index())
            {
                continue;
            }

            let archetype = self
                .archetypes
                .get(location.archetype_id)
                .debug_checked_unwrap();
            let table = self.tables.get(location.table_id).debug_checked_unwrap();

            // SAFETY: `archetype` is from the world that `fetch/filter` were created for,
            // `fetch_state`/`filter_state` are the states that `fetch/filter` were initialized with
            D::set_archetype(
                &mut self.fetch,
                &self.query_state.fetch_state,
                archetype,
                table,
            );
            // SAFETY: `table` is from the world that `fetch/filter` were created for,
            // `fetch_state`/`filter_state` are the states that `fetch/filter` were initialized with
            F::set_archetype(
                &mut self.filter,
                &self.query_state.filter_state,
                archetype,
                table,
            );

            // SAFETY: set_archetype was called prior.
            // `location.archetype_row` is an archetype index row in range of the current archetype, because if it was not, the match above would have `continue`d
            if F::filter_fetch(&mut self.filter, entity, location.table_row) {
                // SAFETY:
                // - set_archetype was called prior, `location.archetype_row` is an archetype index in range of the current archetype
                // - fetch is only called once for each entity.
                return Some(D::fetch(&mut self.fetch, entity, location.table_row));
            }
        }
        None
    }

    /// Get next result from the query
    #[inline(always)]
    pub fn fetch_next(&mut self) -> Option<D::Item<'_>> {
        // SAFETY: we are limiting the returned reference to self,
        // making sure this method cannot be called multiple times without getting rid
        // of any previously returned unique references first, thus preventing aliasing.
        unsafe { self.fetch_next_aliased_unchecked().map(D::shrink) }
    }
}

impl<'w, 's, D: ReadOnlyQueryData, F: QueryFilter, I: Iterator> Iterator
    for QueryManyIter<'w, 's, D, F, I>
where
    I::Item: Borrow<Entity>,
{
    type Item = D::Item<'w>;

    #[inline(always)]
    fn next(&mut self) -> Option<Self::Item> {
        // SAFETY: It is safe to alias for ReadOnlyWorldQuery.
        unsafe { self.fetch_next_aliased_unchecked() }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let (_, max_size) = self.entity_iter.size_hint();
        (0, max_size)
    }
}

// This is correct as [`QueryManyIter`] always returns `None` once exhausted.
impl<'w, 's, D: ReadOnlyQueryData, F: QueryFilter, I: Iterator> FusedIterator
    for QueryManyIter<'w, 's, D, F, I>
where
    I::Item: Borrow<Entity>,
{
}

/// An iterator over `K`-sized combinations of query items without repetition.
///
/// A combination is an arrangement of a collection of items where order does not matter.
///
/// `K` is the number of items that make up each subset, and the number of items returned by the iterator.
/// `N` is the number of total entities output by the query.
///
/// For example, given the list [1, 2, 3, 4], where `K` is 2, the combinations without repeats are
/// [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4].
/// And in this case, `N` would be defined as 4 since the size of the input list is 4.
///
/// The number of combinations depend on how `K` relates to the number of entities matching the [`Query`]:
/// - if `K = N`, only one combination exists,
/// - if `K < N`, there are <sub>N</sub>C<sub>K</sub> combinations (see the [performance section] of `Query`),
/// - if `K > N`, there are no combinations.
///
/// The output combination is not guaranteed to have any order of iteration.
///
/// # Usage
///
/// This type is returned by calling [`Query::iter_combinations`] or [`Query::iter_combinations_mut`].
///
/// It implements [`Iterator`] only if it iterates over read-only query items ([learn more]).
///
/// In the case of mutable query items, it can be iterated by calling [`fetch_next`] in a `while let` loop.
///
/// # Examples
///
/// The following example shows how to traverse the iterator when the query items are read-only.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)]
/// # struct ComponentA;
/// #
/// fn some_system(query: Query<&ComponentA>) {
///     for [a1, a2] in query.iter_combinations() {
///         // ...
///     }
/// }
/// ```
///
/// The following example shows how `fetch_next` should be called with a `while let` loop to traverse the iterator when the query items are mutable.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)]
/// # struct ComponentA;
/// #
/// fn some_system(mut query: Query<&mut ComponentA>) {
///     let mut combinations = query.iter_combinations_mut();
///     while let Some([a1, a2]) = combinations.fetch_next() {
///         // ...
///     }
/// }
/// ```
///
/// [`fetch_next`]: Self::fetch_next
/// [learn more]: Self#impl-Iterator
/// [performance section]: crate::system::Query#performance
/// [`Query`]: crate::system::Query
/// [`Query::iter_combinations`]: crate::system::Query::iter_combinations
/// [`Query::iter_combinations_mut`]: crate::system::Query::iter_combinations_mut
pub struct QueryCombinationIter<'w, 's, D: QueryData, F: QueryFilter, const K: usize> {
    tables: &'w Tables,
    archetypes: &'w Archetypes,
    query_state: &'s QueryState<D, F>,
    cursors: [QueryIterationCursor<'w, 's, D, F>; K],
}

impl<'w, 's, D: QueryData, F: QueryFilter, const K: usize> QueryCombinationIter<'w, 's, D, F, K> {
    /// # Safety
    /// - `world` must have permission to access any of the components registered in `query_state`.
    /// - `world` must be the same one used to initialize `query_state`.
    pub(crate) unsafe fn new(
        world: UnsafeWorldCell<'w>,
        query_state: &'s QueryState<D, F>,
        last_run: Tick,
        this_run: Tick,
    ) -> Self {
        // Initialize array with cursors.
        // There is no FromIterator on arrays, so instead initialize it manually with MaybeUninit

        let mut array: MaybeUninit<[QueryIterationCursor<'w, 's, D, F>; K]> = MaybeUninit::uninit();
        let ptr = array
            .as_mut_ptr()
            .cast::<QueryIterationCursor<'w, 's, D, F>>();
        if K != 0 {
            ptr.write(QueryIterationCursor::init(
                world,
                query_state,
                last_run,
                this_run,
            ));
        }
        for slot in (1..K).map(|offset| ptr.add(offset)) {
            slot.write(QueryIterationCursor::init_empty(
                world,
                query_state,
                last_run,
                this_run,
            ));
        }

        QueryCombinationIter {
            query_state,
            // SAFETY: We only access table data that has been registered in `query_state`.
            tables: &world.storages().tables,
            archetypes: world.archetypes(),
            cursors: array.assume_init(),
        }
    }

    /// Safety:
    /// The lifetime here is not restrictive enough for Fetch with &mut access,
    /// as calling `fetch_next_aliased_unchecked` multiple times can produce multiple
    /// references to the same component, leading to unique reference aliasing.
    ///.
    /// It is always safe for shared access.
    unsafe fn fetch_next_aliased_unchecked(&mut self) -> Option<[D::Item<'w>; K]> {
        if K == 0 {
            return None;
        }

        // PERF: can speed up the following code using `cursor.remaining()` instead of `next_item.is_none()`
        // when D::IS_ARCHETYPAL && F::IS_ARCHETYPAL
        //
        // let `i` be the index of `c`, the last cursor in `self.cursors` that
        // returns `K-i` or more elements.
        // Make cursor in index `j` for all `j` in `[i, K)` a copy of `c` advanced `j-i+1` times.
        // If no such `c` exists, return `None`
        'outer: for i in (0..K).rev() {
            match self.cursors[i].next(self.tables, self.archetypes, self.query_state) {
                Some(_) => {
                    for j in (i + 1)..K {
                        self.cursors[j] = self.cursors[j - 1].clone();
                        match self.cursors[j].next(self.tables, self.archetypes, self.query_state) {
                            Some(_) => {}
                            None if i > 0 => continue 'outer,
                            None => return None,
                        }
                    }
                    break;
                }
                None if i > 0 => continue,
                None => return None,
            }
        }

        let mut values = MaybeUninit::<[D::Item<'w>; K]>::uninit();

        let ptr = values.as_mut_ptr().cast::<D::Item<'w>>();
        for (offset, cursor) in self.cursors.iter_mut().enumerate() {
            ptr.add(offset).write(cursor.peek_last().unwrap());
        }

        Some(values.assume_init())
    }

    /// Get next combination of queried components
    #[inline]
    pub fn fetch_next(&mut self) -> Option<[D::Item<'_>; K]> {
        // SAFETY: we are limiting the returned reference to self,
        // making sure this method cannot be called multiple times without getting rid
        // of any previously returned unique references first, thus preventing aliasing.
        unsafe {
            self.fetch_next_aliased_unchecked()
                .map(|array| array.map(D::shrink))
        }
    }
}

// Iterator type is intentionally implemented only for read-only access.
// Doing so for mutable references would be unsound, because calling `next`
// multiple times would allow multiple owned references to the same data to exist.
impl<'w, 's, D: ReadOnlyQueryData, F: QueryFilter, const K: usize> Iterator
    for QueryCombinationIter<'w, 's, D, F, K>
{
    type Item = [D::Item<'w>; K];

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        // Safety: it is safe to alias for ReadOnlyWorldQuery
        unsafe { QueryCombinationIter::fetch_next_aliased_unchecked(self) }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        // binomial coefficient: (n ; k) = n! / k!(n-k)! = (n*n-1*...*n-k+1) / k!
        // See https://en.wikipedia.org/wiki/Binomial_coefficient
        // See https://blog.plover.com/math/choose.html for implementation
        // It was chosen to reduce overflow potential.
        fn choose(n: usize, k: usize) -> Option<usize> {
            if k > n || n == 0 {
                return Some(0);
            }
            let k = k.min(n - k);
            let ks = 1..=k;
            let ns = (n - k + 1..=n).rev();
            ks.zip(ns)
                .try_fold(1_usize, |acc, (k, n)| Some(acc.checked_mul(n)? / k))
        }
        // sum_i=0..k choose(cursors[i].remaining, k-i)
        let max_combinations = self
            .cursors
            .iter()
            .enumerate()
            .try_fold(0, |acc, (i, cursor)| {
                let n = cursor.max_remaining(self.tables, self.archetypes);
                Some(acc + choose(n, K - i)?)
            });

        let archetype_query = F::IS_ARCHETYPAL;
        let known_max = max_combinations.unwrap_or(usize::MAX);
        let min_combinations = if archetype_query { known_max } else { 0 };
        (min_combinations, max_combinations)
    }
}

impl<'w, 's, D: QueryData, F: QueryFilter> ExactSizeIterator for QueryIter<'w, 's, D, F>
where
    F: ArchetypeFilter,
{
    fn len(&self) -> usize {
        self.size_hint().0
    }
}

// This is correct as [`QueryCombinationIter`] always returns `None` once exhausted.
impl<'w, 's, D: ReadOnlyQueryData, F: QueryFilter, const K: usize> FusedIterator
    for QueryCombinationIter<'w, 's, D, F, K>
{
}

struct QueryIterationCursor<'w, 's, D: QueryData, F: QueryFilter> {
    table_id_iter: std::slice::Iter<'s, TableId>,
    archetype_id_iter: std::slice::Iter<'s, ArchetypeId>,
    table_entities: &'w [Entity],
    archetype_entities: &'w [ArchetypeEntity],
    fetch: D::Fetch<'w>,
    filter: F::Fetch<'w>,
    // length of the table table or length of the archetype, depending on whether both `D`'s and `F`'s fetches are dense
    current_len: usize,
    // either table row or archetype index, depending on whether both `D`'s and `F`'s fetches are dense
    current_row: usize,
}

impl<D: QueryData, F: QueryFilter> Clone for QueryIterationCursor<'_, '_, D, F> {
    fn clone(&self) -> Self {
        Self {
            table_id_iter: self.table_id_iter.clone(),
            archetype_id_iter: self.archetype_id_iter.clone(),
            table_entities: self.table_entities,
            archetype_entities: self.archetype_entities,
            fetch: self.fetch.clone(),
            filter: self.filter.clone(),
            current_len: self.current_len,
            current_row: self.current_row,
        }
    }
}

impl<'w, 's, D: QueryData, F: QueryFilter> QueryIterationCursor<'w, 's, D, F> {
    const IS_DENSE: bool = D::IS_DENSE && F::IS_DENSE;

    unsafe fn init_empty(
        world: UnsafeWorldCell<'w>,
        query_state: &'s QueryState<D, F>,
        last_run: Tick,
        this_run: Tick,
    ) -> Self {
        QueryIterationCursor {
            table_id_iter: [].iter(),
            archetype_id_iter: [].iter(),
            ..Self::init(world, query_state, last_run, this_run)
        }
    }

    /// # Safety
    /// - `world` must have permission to access any of the components registered in `query_state`.
    /// - `world` must be the same one used to initialize `query_state`.
    unsafe fn init(
        world: UnsafeWorldCell<'w>,
        query_state: &'s QueryState<D, F>,
        last_run: Tick,
        this_run: Tick,
    ) -> Self {
        let fetch = D::init_fetch(world, &query_state.fetch_state, last_run, this_run);
        let filter = F::init_fetch(world, &query_state.filter_state, last_run, this_run);
        QueryIterationCursor {
            fetch,
            filter,
            table_entities: &[],
            archetype_entities: &[],
            table_id_iter: query_state.matched_table_ids.iter(),
            archetype_id_iter: query_state.matched_archetype_ids.iter(),
            current_len: 0,
            current_row: 0,
        }
    }

    /// retrieve item returned from most recent `next` call again.
    #[inline]
    unsafe fn peek_last(&mut self) -> Option<D::Item<'w>> {
        if self.current_row > 0 {
            let index = self.current_row - 1;
            if Self::IS_DENSE {
                let entity = self.table_entities.get_unchecked(index);
                Some(D::fetch(
                    &mut self.fetch,
                    *entity,
                    TableRow::from_usize(index),
                ))
            } else {
                let archetype_entity = self.archetype_entities.get_unchecked(index);
                Some(D::fetch(
                    &mut self.fetch,
                    archetype_entity.id(),
                    archetype_entity.table_row(),
                ))
            }
        } else {
            None
        }
    }

    /// How many values will this cursor return at most?
    ///
    /// Note that if `D::IS_ARCHETYPAL && F::IS_ARCHETYPAL`, the return value
    /// will be **the exact count of remaining values**.
    fn max_remaining(&self, tables: &'w Tables, archetypes: &'w Archetypes) -> usize {
        let remaining_matched: usize = if Self::IS_DENSE {
            let ids = self.table_id_iter.clone();
            ids.map(|id| tables[*id].entity_count()).sum()
        } else {
            let ids = self.archetype_id_iter.clone();
            ids.map(|id| archetypes[*id].len()).sum()
        };
        remaining_matched + self.current_len - self.current_row
    }

    // NOTE: If you are changing query iteration code, remember to update the following places, where relevant:
    // QueryIter, QueryIterationCursor, QueryManyIter, QueryCombinationIter, QueryState::par_for_each_unchecked_manual
    /// # Safety
    /// `tables` and `archetypes` must belong to the same world that the [`QueryIterationCursor`]
    /// was initialized for.
    /// `query_state` must be the same [`QueryState`] that was passed to `init` or `init_empty`.
    #[inline(always)]
    unsafe fn next(
        &mut self,
        tables: &'w Tables,
        archetypes: &'w Archetypes,
        query_state: &'s QueryState<D, F>,
    ) -> Option<D::Item<'w>> {
        if Self::IS_DENSE {
            loop {
                // we are on the beginning of the query, or finished processing a table, so skip to the next
                if self.current_row == self.current_len {
                    let table_id = self.table_id_iter.next()?;
                    let table = tables.get(*table_id).debug_checked_unwrap();
                    // SAFETY: `table` is from the world that `fetch/filter` were created for,
                    // `fetch_state`/`filter_state` are the states that `fetch/filter` were initialized with
                    D::set_table(&mut self.fetch, &query_state.fetch_state, table);
                    F::set_table(&mut self.filter, &query_state.filter_state, table);
                    self.table_entities = table.entities();
                    self.current_len = table.entity_count();
                    self.current_row = 0;
                    continue;
                }

                // SAFETY: set_table was called prior.
                // `current_row` is a table row in range of the current table, because if it was not, then the if above would have been executed.
                let entity = self.table_entities.get_unchecked(self.current_row);
                let row = TableRow::from_usize(self.current_row);
                if !F::filter_fetch(&mut self.filter, *entity, row) {
                    self.current_row += 1;
                    continue;
                }

                // SAFETY:
                // - set_table was called prior.
                // - `current_row` must be a table row in range of the current table,
                //   because if it was not, then the if above would have been executed.
                // - fetch is only called once for each `entity`.
                let item = D::fetch(&mut self.fetch, *entity, row);

                self.current_row += 1;
                return Some(item);
            }
        } else {
            loop {
                if self.current_row == self.current_len {
                    let archetype_id = self.archetype_id_iter.next()?;
                    let archetype = archetypes.get(*archetype_id).debug_checked_unwrap();
                    let table = tables.get(archetype.table_id()).debug_checked_unwrap();
                    // SAFETY: `archetype` and `tables` are from the world that `fetch/filter` were created for,
                    // `fetch_state`/`filter_state` are the states that `fetch/filter` were initialized with
                    D::set_archetype(&mut self.fetch, &query_state.fetch_state, archetype, table);
                    F::set_archetype(
                        &mut self.filter,
                        &query_state.filter_state,
                        archetype,
                        table,
                    );
                    self.archetype_entities = archetype.entities();
                    self.current_len = archetype.len();
                    self.current_row = 0;
                    continue;
                }

                // SAFETY: set_archetype was called prior.
                // `current_row` is an archetype index row in range of the current archetype, because if it was not, then the if above would have been executed.
                let archetype_entity = self.archetype_entities.get_unchecked(self.current_row);
                if !F::filter_fetch(
                    &mut self.filter,
                    archetype_entity.id(),
                    archetype_entity.table_row(),
                ) {
                    self.current_row += 1;
                    continue;
                }

                // SAFETY:
                // - set_archetype was called prior.
                // - `current_row` must be an archetype index row in range of the current archetype,
                //   because if it was not, then the if above would have been executed.
                // - fetch is only called once for each `archetype_entity`.
                let item = D::fetch(
                    &mut self.fetch,
                    archetype_entity.id(),
                    archetype_entity.table_row(),
                );
                self.current_row += 1;
                return Some(item);
            }
        }
    }
}