1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
//! Definitions for [`Component`] reflection.
//! This allows inserting, updating, removing and generally interacting with components
//! whose types are only known at runtime.
//!
//! This module exports two types: [`ReflectComponentFns`] and [`ReflectComponent`].
//!
//! # Architecture
//!
//! [`ReflectComponent`] wraps a [`ReflectComponentFns`]. In fact, each method on
//! [`ReflectComponent`] wraps a call to a function pointer field in `ReflectComponentFns`.
//!
//! ## Who creates `ReflectComponent`s?
//!
//! When a user adds the `#[reflect(Component)]` attribute to their `#[derive(Reflect)]`
//! type, it tells the derive macro for `Reflect` to add the following single line to its
//! [`get_type_registration`] method (see the relevant code[^1]).
//!
//! ```
//! # use bevy_reflect::{FromType, Reflect};
//! # use bevy_ecs::prelude::{ReflectComponent, Component};
//! # #[derive(Default, Reflect, Component)]
//! # struct A;
//! # impl A {
//! #   fn foo() {
//! # let mut registration = bevy_reflect::TypeRegistration::of::<A>();
//! registration.insert::<ReflectComponent>(FromType::<Self>::from_type());
//! #   }
//! # }
//! ```
//!
//! This line adds a `ReflectComponent` to the registration data for the type in question.
//! The user can access the `ReflectComponent` for type `T` through the type registry,
//! as per the `trait_reflection.rs` example.
//!
//! The `FromType::<Self>::from_type()` in the previous line calls the `FromType<C>`
//! implementation of `ReflectComponent`.
//!
//! The `FromType<C>` impl creates a function per field of [`ReflectComponentFns`].
//! In those functions, we call generic methods on [`World`] and [`EntityWorldMut`].
//!
//! The result is a `ReflectComponent` completely independent of `C`, yet capable
//! of using generic ECS methods such as `entity.get::<C>()` to get `&dyn Reflect`
//! with underlying type `C`, without the `C` appearing in the type signature.
//!
//! ## A note on code generation
//!
//! A downside of this approach is that monomorphized code (ie: concrete code
//! for generics) is generated **unconditionally**, regardless of whether it ends
//! up used or not.
//!
//! Adding `N` fields on `ReflectComponentFns` will generate `N × M` additional
//! functions, where `M` is how many types derive `#[reflect(Component)]`.
//!
//! Those functions will increase the size of the final app binary.
//!
//! [^1]: `crates/bevy_reflect/bevy_reflect_derive/src/registration.rs`
//!
//! [`get_type_registration`]: bevy_reflect::GetTypeRegistration::get_type_registration

use std::any::TypeId;

use super::ReflectFromWorld;
use crate::{
    change_detection::Mut,
    component::Component,
    entity::Entity,
    world::{unsafe_world_cell::UnsafeEntityCell, EntityRef, EntityWorldMut, World},
};
use bevy_reflect::{FromReflect, FromType, Reflect, TypeRegistry};

/// A struct used to operate on reflected [`Component`] trait of a type.
///
/// A [`ReflectComponent`] for type `T` can be obtained via
/// [`bevy_reflect::TypeRegistration::data`].
#[derive(Clone)]
pub struct ReflectComponent(ReflectComponentFns);

/// The raw function pointers needed to make up a [`ReflectComponent`].
///
/// This is used when creating custom implementations of [`ReflectComponent`] with
/// [`ReflectComponent::new()`].
///
/// > **Note:**
/// > Creating custom implementations of [`ReflectComponent`] is an advanced feature that most users
/// > will not need.
/// > Usually a [`ReflectComponent`] is created for a type by deriving [`Reflect`]
/// > and adding the `#[reflect(Component)]` attribute.
/// > After adding the component to the [`TypeRegistry`],
/// > its [`ReflectComponent`] can then be retrieved when needed.
///
/// Creating a custom [`ReflectComponent`] may be useful if you need to create new component types
/// at runtime, for example, for scripting implementations.
///
/// By creating a custom [`ReflectComponent`] and inserting it into a type's
/// [`TypeRegistration`][bevy_reflect::TypeRegistration],
/// you can modify the way that reflected components of that type will be inserted into the Bevy
/// world.
#[derive(Clone)]
pub struct ReflectComponentFns {
    /// Function pointer implementing [`ReflectComponent::insert()`].
    pub insert: fn(&mut EntityWorldMut, &dyn Reflect, &TypeRegistry),
    /// Function pointer implementing [`ReflectComponent::apply()`].
    pub apply: fn(&mut EntityWorldMut, &dyn Reflect),
    /// Function pointer implementing [`ReflectComponent::apply_or_insert()`].
    pub apply_or_insert: fn(&mut EntityWorldMut, &dyn Reflect, &TypeRegistry),
    /// Function pointer implementing [`ReflectComponent::remove()`].
    pub remove: fn(&mut EntityWorldMut),
    /// Function pointer implementing [`ReflectComponent::contains()`].
    pub contains: fn(EntityRef) -> bool,
    /// Function pointer implementing [`ReflectComponent::reflect()`].
    pub reflect: fn(EntityRef) -> Option<&dyn Reflect>,
    /// Function pointer implementing [`ReflectComponent::reflect_mut()`].
    pub reflect_mut: for<'a> fn(&'a mut EntityWorldMut<'_>) -> Option<Mut<'a, dyn Reflect>>,
    /// Function pointer implementing [`ReflectComponent::reflect_unchecked_mut()`].
    ///
    /// # Safety
    /// The function may only be called with an [`UnsafeEntityCell`] that can be used to mutably access the relevant component on the given entity.
    pub reflect_unchecked_mut: unsafe fn(UnsafeEntityCell<'_>) -> Option<Mut<'_, dyn Reflect>>,
    /// Function pointer implementing [`ReflectComponent::copy()`].
    pub copy: fn(&World, &mut World, Entity, Entity, &TypeRegistry),
}

impl ReflectComponentFns {
    /// Get the default set of [`ReflectComponentFns`] for a specific component type using its
    /// [`FromType`] implementation.
    ///
    /// This is useful if you want to start with the default implementation before overriding some
    /// of the functions to create a custom implementation.
    pub fn new<T: Component + Reflect + FromReflect>() -> Self {
        <ReflectComponent as FromType<T>>::from_type().0
    }
}

impl ReflectComponent {
    /// Insert a reflected [`Component`] into the entity like [`insert()`](EntityWorldMut::insert).
    pub fn insert(
        &self,
        entity: &mut EntityWorldMut,
        component: &dyn Reflect,
        registry: &TypeRegistry,
    ) {
        (self.0.insert)(entity, component, registry);
    }

    /// Uses reflection to set the value of this [`Component`] type in the entity to the given value.
    ///
    /// # Panics
    ///
    /// Panics if there is no [`Component`] of the given type.
    pub fn apply(&self, entity: &mut EntityWorldMut, component: &dyn Reflect) {
        (self.0.apply)(entity, component);
    }

    /// Uses reflection to set the value of this [`Component`] type in the entity to the given value or insert a new one if it does not exist.
    pub fn apply_or_insert(
        &self,
        entity: &mut EntityWorldMut,
        component: &dyn Reflect,
        registry: &TypeRegistry,
    ) {
        (self.0.apply_or_insert)(entity, component, registry);
    }

    /// Removes this [`Component`] type from the entity. Does nothing if it doesn't exist.
    pub fn remove(&self, entity: &mut EntityWorldMut) {
        (self.0.remove)(entity);
    }

    /// Returns whether entity contains this [`Component`]
    pub fn contains(&self, entity: EntityRef) -> bool {
        (self.0.contains)(entity)
    }

    /// Gets the value of this [`Component`] type from the entity as a reflected reference.
    pub fn reflect<'a>(&self, entity: EntityRef<'a>) -> Option<&'a dyn Reflect> {
        (self.0.reflect)(entity)
    }

    /// Gets the value of this [`Component`] type from the entity as a mutable reflected reference.
    pub fn reflect_mut<'a>(
        &self,
        entity: &'a mut EntityWorldMut<'_>,
    ) -> Option<Mut<'a, dyn Reflect>> {
        (self.0.reflect_mut)(entity)
    }

    /// # Safety
    /// This method does not prevent you from having two mutable pointers to the same data,
    /// violating Rust's aliasing rules. To avoid this:
    /// * Only call this method with a [`UnsafeEntityCell`] that may be used to mutably access the component on the entity `entity`
    /// * Don't call this method more than once in the same scope for a given [`Component`].
    pub unsafe fn reflect_unchecked_mut<'a>(
        &self,
        entity: UnsafeEntityCell<'a>,
    ) -> Option<Mut<'a, dyn Reflect>> {
        // SAFETY: safety requirements deferred to caller
        (self.0.reflect_unchecked_mut)(entity)
    }

    /// Gets the value of this [`Component`] type from entity from `source_world` and [applies](Self::apply()) it to the value of this [`Component`] type in entity in `destination_world`.
    ///
    /// # Panics
    ///
    /// Panics if there is no [`Component`] of the given type or either entity does not exist.
    pub fn copy(
        &self,
        source_world: &World,
        destination_world: &mut World,
        source_entity: Entity,
        destination_entity: Entity,
        registry: &TypeRegistry,
    ) {
        (self.0.copy)(
            source_world,
            destination_world,
            source_entity,
            destination_entity,
            registry,
        );
    }

    /// Create a custom implementation of [`ReflectComponent`].
    ///
    /// This is an advanced feature,
    /// useful for scripting implementations,
    /// that should not be used by most users
    /// unless you know what you are doing.
    ///
    /// Usually you should derive [`Reflect`] and add the `#[reflect(Component)]` component
    /// to generate a [`ReflectComponent`] implementation automatically.
    ///
    /// See [`ReflectComponentFns`] for more information.
    pub fn new(fns: ReflectComponentFns) -> Self {
        Self(fns)
    }

    /// The underlying function pointers implementing methods on `ReflectComponent`.
    ///
    /// This is useful when you want to keep track locally of an individual
    /// function pointer.
    ///
    /// Calling [`TypeRegistry::get`] followed by
    /// [`TypeRegistration::data::<ReflectComponent>`] can be costly if done several
    /// times per frame. Consider cloning [`ReflectComponent`] and keeping it
    /// between frames, cloning a `ReflectComponent` is very cheap.
    ///
    /// If you only need a subset of the methods on `ReflectComponent`,
    /// use `fn_pointers` to get the underlying [`ReflectComponentFns`]
    /// and copy the subset of function pointers you care about.
    ///
    /// [`TypeRegistration::data::<ReflectComponent>`]: bevy_reflect::TypeRegistration::data
    /// [`TypeRegistry::get`]: bevy_reflect::TypeRegistry::get
    pub fn fn_pointers(&self) -> &ReflectComponentFns {
        &self.0
    }
}

impl<C: Component + Reflect + FromReflect> FromType<C> for ReflectComponent {
    fn from_type() -> Self {
        ReflectComponent(ReflectComponentFns {
            insert: |entity, reflected_component, registry| {
                let component = entity.world_scope(|world| {
                    from_reflect_or_world::<C>(reflected_component, world, registry)
                });
                entity.insert(component);
            },
            apply: |entity, reflected_component| {
                let mut component = entity.get_mut::<C>().unwrap();
                component.apply(reflected_component);
            },
            apply_or_insert: |entity, reflected_component, registry| {
                if let Some(mut component) = entity.get_mut::<C>() {
                    component.apply(reflected_component);
                } else {
                    let component = entity.world_scope(|world| {
                        from_reflect_or_world::<C>(reflected_component, world, registry)
                    });
                    entity.insert(component);
                }
            },
            remove: |entity| {
                entity.remove::<C>();
            },
            contains: |entity| entity.contains::<C>(),
            copy: |source_world, destination_world, source_entity, destination_entity, registry| {
                let source_component = source_world.get::<C>(source_entity).unwrap();
                let destination_component =
                    from_reflect_or_world::<C>(source_component, destination_world, registry);
                destination_world
                    .entity_mut(destination_entity)
                    .insert(destination_component);
            },
            reflect: |entity| entity.get::<C>().map(|c| c as &dyn Reflect),
            reflect_mut: |entity| {
                entity.get_mut::<C>().map(|c| Mut {
                    value: c.value as &mut dyn Reflect,
                    ticks: c.ticks,
                })
            },
            reflect_unchecked_mut: |entity| {
                // SAFETY: reflect_unchecked_mut is an unsafe function pointer used by
                // `reflect_unchecked_mut` which must be called with an UnsafeEntityCell with access to the component `C` on the `entity`
                unsafe {
                    entity.get_mut::<C>().map(|c| Mut {
                        value: c.value as &mut dyn Reflect,
                        ticks: c.ticks,
                    })
                }
            },
        })
    }
}

/// Creates a `T` from a `&dyn Reflect`.
///
/// The first approach uses `T`'s implementation of `FromReflect`.
/// If this fails, it falls back to default-initializing a new instance of `T` using its
/// `ReflectFromWorld` data from the `world`'s `AppTypeRegistry` and `apply`ing the
/// `&dyn Reflect` on it.
///
/// Panics if both approaches fail.
fn from_reflect_or_world<T: FromReflect>(
    reflected: &dyn Reflect,
    world: &mut World,
    registry: &TypeRegistry,
) -> T {
    if let Some(value) = T::from_reflect(reflected) {
        return value;
    }

    // Clone the `ReflectFromWorld` because it's cheap and "frees"
    // the borrow of `world` so that it can be passed to `from_world`.
    let Some(reflect_from_world) = registry.get_type_data::<ReflectFromWorld>(TypeId::of::<T>())
    else {
        panic!(
            "`FromReflect` failed and no `ReflectFromWorld` registration found for `{}`",
            // FIXME: once we have unique reflect, use `TypePath`.
            std::any::type_name::<T>(),
        );
    };

    let Ok(mut value) = reflect_from_world
        .from_world(world)
        .into_any()
        .downcast::<T>()
    else {
        panic!(
            "the `ReflectFromWorld` registration for `{}` produced a value of a different type",
            // FIXME: once we have unique reflect, use `TypePath`.
            std::any::type_name::<T>(),
        );
    };

    value.apply(reflected);
    *value
}