1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
use std::fmt::Debug;
use std::hash::Hash;
use std::mem;
use std::ops::Deref;
use crate as bevy_ecs;
use crate::change_detection::DetectChangesMut;
use crate::event::Event;
use crate::prelude::FromWorld;
#[cfg(feature = "bevy_reflect")]
use crate::reflect::ReflectResource;
use crate::schedule::ScheduleLabel;
use crate::system::Resource;
use crate::world::World;
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::std_traits::ReflectDefault;
pub use bevy_ecs_macros::States;
/// Types that can define world-wide states in a finite-state machine.
///
/// The [`Default`] trait defines the starting state.
/// Multiple states can be defined for the same world,
/// allowing you to classify the state of the world across orthogonal dimensions.
/// You can access the current state of type `T` with the [`State<T>`] resource,
/// and the queued state with the [`NextState<T>`] resource.
///
/// State transitions typically occur in the [`OnEnter<T::Variant>`] and [`OnExit<T::Variant>`] schedules,
/// which can be run via the [`apply_state_transition::<T>`] system.
///
/// # Example
///
/// ```
/// use bevy_ecs::prelude::States;
///
/// #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, Default, States)]
/// enum GameState {
/// #[default]
/// MainMenu,
/// SettingsMenu,
/// InGame,
/// }
///
/// ```
pub trait States: 'static + Send + Sync + Clone + PartialEq + Eq + Hash + Debug {}
/// The label of a [`Schedule`](super::Schedule) that runs whenever [`State<S>`]
/// enters this state.
#[derive(ScheduleLabel, Clone, Debug, PartialEq, Eq, Hash)]
pub struct OnEnter<S: States>(pub S);
/// The label of a [`Schedule`](super::Schedule) that runs whenever [`State<S>`]
/// exits this state.
#[derive(ScheduleLabel, Clone, Debug, PartialEq, Eq, Hash)]
pub struct OnExit<S: States>(pub S);
/// The label of a [`Schedule`](super::Schedule) that **only** runs whenever [`State<S>`]
/// exits the `from` state, AND enters the `to` state.
///
/// Systems added to this schedule are always ran *after* [`OnExit`], and *before* [`OnEnter`].
#[derive(ScheduleLabel, Clone, Debug, PartialEq, Eq, Hash)]
pub struct OnTransition<S: States> {
/// The state being exited.
pub from: S,
/// The state being entered.
pub to: S,
}
/// A finite-state machine whose transitions have associated schedules
/// ([`OnEnter(state)`] and [`OnExit(state)`]).
///
/// The current state value can be accessed through this resource. To *change* the state,
/// queue a transition in the [`NextState<S>`] resource, and it will be applied by the next
/// [`apply_state_transition::<S>`] system.
///
/// The starting state is defined via the [`Default`] implementation for `S`.
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, Default, States)]
/// enum GameState {
/// #[default]
/// MainMenu,
/// SettingsMenu,
/// InGame,
/// }
///
/// fn game_logic(game_state: Res<State<GameState>>) {
/// match game_state.get() {
/// GameState::InGame => {
/// // Run game logic here...
/// },
/// _ => {},
/// }
/// }
/// ```
#[derive(Resource, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
pub struct State<S: States>(S);
impl<S: States> State<S> {
/// Creates a new state with a specific value.
///
/// To change the state use [`NextState<S>`] rather than using this to modify the `State<S>`.
pub fn new(state: S) -> Self {
Self(state)
}
/// Get the current state.
pub fn get(&self) -> &S {
&self.0
}
}
impl<S: States + FromWorld> FromWorld for State<S> {
fn from_world(world: &mut World) -> Self {
Self(S::from_world(world))
}
}
impl<S: States> PartialEq<S> for State<S> {
fn eq(&self, other: &S) -> bool {
self.get() == other
}
}
impl<S: States> Deref for State<S> {
type Target = S;
fn deref(&self) -> &Self::Target {
self.get()
}
}
/// The next state of [`State<S>`].
///
/// To queue a transition, just set the contained value to `Some(next_state)`.
/// Note that these transitions can be overridden by other systems:
/// only the actual value of this resource at the time of [`apply_state_transition`] matters.
///
/// ```
/// use bevy_ecs::prelude::*;
///
/// #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, Default, States)]
/// enum GameState {
/// #[default]
/// MainMenu,
/// SettingsMenu,
/// InGame,
/// }
///
/// fn start_game(mut next_game_state: ResMut<NextState<GameState>>) {
/// next_game_state.set(GameState::InGame);
/// }
/// ```
#[derive(Resource, Debug)]
#[cfg_attr(
feature = "bevy_reflect",
derive(bevy_reflect::Reflect),
reflect(Resource, Default)
)]
pub struct NextState<S: States>(pub Option<S>);
impl<S: States> Default for NextState<S> {
fn default() -> Self {
Self(None)
}
}
impl<S: States> NextState<S> {
/// Tentatively set a planned state transition to `Some(state)`.
pub fn set(&mut self, state: S) {
self.0 = Some(state);
}
}
/// Event sent when any state transition of `S` happens.
///
/// If you know exactly what state you want to respond to ahead of time, consider [`OnEnter`], [`OnTransition`], or [`OnExit`]
#[derive(Debug, Copy, Clone, PartialEq, Eq, Event)]
pub struct StateTransitionEvent<S: States> {
/// the state we were in before
pub before: S,
/// the state we're in now
pub after: S,
}
/// Run the enter schedule (if it exists) for the current state.
pub fn run_enter_schedule<S: States>(world: &mut World) {
let Some(state) = world.get_resource::<State<S>>() else {
return;
};
world.try_run_schedule(OnEnter(state.0.clone())).ok();
}
/// If a new state is queued in [`NextState<S>`], this system:
/// - Takes the new state value from [`NextState<S>`] and updates [`State<S>`].
/// - Sends a relevant [`StateTransitionEvent`]
/// - Runs the [`OnExit(exited_state)`] schedule, if it exists.
/// - Runs the [`OnTransition { from: exited_state, to: entered_state }`](OnTransition), if it exists.
/// - Runs the [`OnEnter(entered_state)`] schedule, if it exists.
pub fn apply_state_transition<S: States>(world: &mut World) {
// We want to take the `NextState` resource,
// but only mark it as changed if it wasn't empty.
let Some(mut next_state_resource) = world.get_resource_mut::<NextState<S>>() else {
return;
};
if let Some(entered) = next_state_resource.bypass_change_detection().0.take() {
next_state_resource.set_changed();
match world.get_resource_mut::<State<S>>() {
Some(mut state_resource) => {
if *state_resource != entered {
let exited = mem::replace(&mut state_resource.0, entered.clone());
world.send_event(StateTransitionEvent {
before: exited.clone(),
after: entered.clone(),
});
// Try to run the schedules if they exist.
world.try_run_schedule(OnExit(exited.clone())).ok();
world
.try_run_schedule(OnTransition {
from: exited,
to: entered.clone(),
})
.ok();
world.try_run_schedule(OnEnter(entered)).ok();
}
}
None => {
world.insert_resource(State(entered.clone()));
world.try_run_schedule(OnEnter(entered)).ok();
}
};
}
}