1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
use std::{
alloc::{handle_alloc_error, Layout},
cell::UnsafeCell,
num::NonZeroUsize,
ptr::NonNull,
};
use bevy_ptr::{OwningPtr, Ptr, PtrMut};
use bevy_utils::OnDrop;
/// A flat, type-erased data storage type
///
/// Used to densely store homogeneous ECS data. A blob is usually just an arbitrary block of contiguous memory without any identity, and
/// could be used to represent any arbitrary data (i.e. string, arrays, etc). This type is an extendable and re-allocatable blob, which makes
/// it a blobby Vec, a `BlobVec`.
pub(super) struct BlobVec {
item_layout: Layout,
capacity: usize,
/// Number of elements, not bytes
len: usize,
// the `data` ptr's layout is always `array_layout(item_layout, capacity)`
data: NonNull<u8>,
// None if the underlying type doesn't need to be dropped
drop: Option<unsafe fn(OwningPtr<'_>)>,
}
// We want to ignore the `drop` field in our `Debug` impl
impl std::fmt::Debug for BlobVec {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("BlobVec")
.field("item_layout", &self.item_layout)
.field("capacity", &self.capacity)
.field("len", &self.len)
.field("data", &self.data)
.finish()
}
}
impl BlobVec {
/// Creates a new [`BlobVec`] with the specified `capacity`.
///
/// `drop` is an optional function pointer that is meant to be invoked when any element in the [`BlobVec`]
/// should be dropped. For all Rust-based types, this should match 1:1 with the implementation of [`Drop`]
/// if present, and should be `None` if `T: !Drop`. For non-Rust based types, this should match any cleanup
/// processes typically associated with the stored element.
///
/// # Safety
///
/// `drop` should be safe to call with an [`OwningPtr`] pointing to any item that's been pushed into this [`BlobVec`].
///
/// If `drop` is `None`, the items will be leaked. This should generally be set as None based on [`needs_drop`].
///
/// [`needs_drop`]: core::mem::needs_drop
pub unsafe fn new(
item_layout: Layout,
drop: Option<unsafe fn(OwningPtr<'_>)>,
capacity: usize,
) -> BlobVec {
let align = NonZeroUsize::new(item_layout.align()).expect("alignment must be > 0");
let data = bevy_ptr::dangling_with_align(align);
if item_layout.size() == 0 {
BlobVec {
data,
// ZST `BlobVec` max size is `usize::MAX`, and `reserve_exact` for ZST assumes
// the capacity is always `usize::MAX` and panics if it overflows.
capacity: usize::MAX,
len: 0,
item_layout,
drop,
}
} else {
let mut blob_vec = BlobVec {
data,
capacity: 0,
len: 0,
item_layout,
drop,
};
blob_vec.reserve_exact(capacity);
blob_vec
}
}
/// Returns the number of elements in the vector.
#[inline]
pub fn len(&self) -> usize {
self.len
}
/// Returns `true` if the vector contains no elements.
#[inline]
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// Returns the total number of elements the vector can hold without reallocating.
#[inline]
pub fn capacity(&self) -> usize {
self.capacity
}
/// Returns the [`Layout`] of the element type stored in the vector.
#[inline]
pub fn layout(&self) -> Layout {
self.item_layout
}
/// Reserves the minimum capacity for at least `additional` more elements to be inserted in the given `BlobVec`.
/// After calling `reserve_exact`, capacity will be greater than or equal to `self.len() + additional`. Does nothing if
/// the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it requests. Therefore, capacity can not be relied upon
/// to be precisely minimal.
///
/// # Panics
///
/// Panics if new capacity overflows `usize`.
pub fn reserve_exact(&mut self, additional: usize) {
let available_space = self.capacity - self.len;
if available_space < additional {
// SAFETY: `available_space < additional`, so `additional - available_space > 0`
let increment = unsafe { NonZeroUsize::new_unchecked(additional - available_space) };
self.grow_exact(increment);
}
}
/// Reserves the minimum capacity for at least `additional` more elements to be inserted in the given `BlobVec`.
#[inline]
pub fn reserve(&mut self, additional: usize) {
/// Similar to `reserve_exact`. This method ensures that the capacity will grow at least `self.capacity()` if there is no
/// enough space to hold `additional` more elements.
#[cold]
fn do_reserve(slf: &mut BlobVec, additional: usize) {
let increment = slf.capacity.max(additional - (slf.capacity - slf.len));
let increment = NonZeroUsize::new(increment).unwrap();
slf.grow_exact(increment);
}
if self.capacity - self.len < additional {
do_reserve(self, additional);
}
}
/// Grows the capacity by `increment` elements.
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
/// For ZST it panics unconditionally because ZST `BlobVec` capacity
/// is initialized to `usize::MAX` and always stays that way.
fn grow_exact(&mut self, increment: NonZeroUsize) {
let new_capacity = self
.capacity
.checked_add(increment.get())
.expect("capacity overflow");
let new_layout =
array_layout(&self.item_layout, new_capacity).expect("array layout should be valid");
let new_data = if self.capacity == 0 {
// SAFETY:
// - layout has non-zero size as per safety requirement
unsafe { std::alloc::alloc(new_layout) }
} else {
// SAFETY:
// - ptr was be allocated via this allocator
// - the layout of the ptr was `array_layout(self.item_layout, self.capacity)`
// - `item_layout.size() > 0` and `new_capacity > 0`, so the layout size is non-zero
// - "new_size, when rounded up to the nearest multiple of layout.align(), must not overflow (i.e., the rounded value must be less than usize::MAX)",
// since the item size is always a multiple of its align, the rounding cannot happen
// here and the overflow is handled in `array_layout`
unsafe {
std::alloc::realloc(
self.get_ptr_mut().as_ptr(),
array_layout(&self.item_layout, self.capacity)
.expect("array layout should be valid"),
new_layout.size(),
)
}
};
self.data = NonNull::new(new_data).unwrap_or_else(|| handle_alloc_error(new_layout));
self.capacity = new_capacity;
}
/// Initializes the value at `index` to `value`. This function does not do any bounds checking.
///
/// # Safety
/// - index must be in bounds
/// - the memory in the [`BlobVec`] starting at index `index`, of a size matching this [`BlobVec`]'s
/// `item_layout`, must have been previously allocated.
#[inline]
pub unsafe fn initialize_unchecked(&mut self, index: usize, value: OwningPtr<'_>) {
debug_assert!(index < self.len());
let ptr = self.get_unchecked_mut(index);
std::ptr::copy_nonoverlapping::<u8>(value.as_ptr(), ptr.as_ptr(), self.item_layout.size());
}
/// Replaces the value at `index` with `value`. This function does not do any bounds checking.
///
/// # Safety
/// - index must be in-bounds
/// - the memory in the [`BlobVec`] starting at index `index`, of a size matching this
/// [`BlobVec`]'s `item_layout`, must have been previously initialized with an item matching
/// this [`BlobVec`]'s `item_layout`
/// - the memory at `*value` must also be previously initialized with an item matching this
/// [`BlobVec`]'s `item_layout`
pub unsafe fn replace_unchecked(&mut self, index: usize, value: OwningPtr<'_>) {
debug_assert!(index < self.len());
// Pointer to the value in the vector that will get replaced.
// SAFETY: The caller ensures that `index` fits in this vector.
let destination = NonNull::from(self.get_unchecked_mut(index));
let source = value.as_ptr();
if let Some(drop) = self.drop {
// Temporarily set the length to zero, so that if `drop` panics the caller
// will not be left with a `BlobVec` containing a dropped element within
// its initialized range.
let old_len = self.len;
self.len = 0;
// Transfer ownership of the old value out of the vector, so it can be dropped.
// SAFETY:
// - `destination` was obtained from a `PtrMut` in this vector, which ensures it is non-null,
// well-aligned for the underlying type, and has proper provenance.
// - The storage location will get overwritten with `value` later, which ensures
// that the element will not get observed or double dropped later.
// - If a panic occurs, `self.len` will remain `0`, which ensures a double-drop
// does not occur. Instead, all elements will be forgotten.
let old_value = OwningPtr::new(destination);
// This closure will run in case `drop()` panics,
// which ensures that `value` does not get forgotten.
let on_unwind = OnDrop::new(|| drop(value));
drop(old_value);
// If the above code does not panic, make sure that `value` doesn't get dropped.
core::mem::forget(on_unwind);
// Make the vector's contents observable again, since panics are no longer possible.
self.len = old_len;
}
// Copy the new value into the vector, overwriting the previous value.
// SAFETY:
// - `source` and `destination` were obtained from `OwningPtr`s, which ensures they are
// valid for both reads and writes.
// - The value behind `source` will only be dropped if the above branch panics,
// so it must still be initialized and it is safe to transfer ownership into the vector.
// - `source` and `destination` were obtained from different memory locations,
// both of which we have exclusive access to, so they are guaranteed not to overlap.
std::ptr::copy_nonoverlapping::<u8>(source, destination.as_ptr(), self.item_layout.size());
}
/// Appends an element to the back of the vector.
///
/// # Safety
/// The `value` must match the [`layout`](`BlobVec::layout`) of the elements in the [`BlobVec`].
#[inline]
pub unsafe fn push(&mut self, value: OwningPtr<'_>) {
self.reserve(1);
let index = self.len;
self.len += 1;
self.initialize_unchecked(index, value);
}
/// Forces the length of the vector to `len`.
///
/// # Safety
/// `len` must be <= `capacity`. if length is decreased, "out of bounds" items must be dropped.
/// Newly added items must be immediately populated with valid values and length must be
/// increased. For better unwind safety, call [`BlobVec::set_len`] _after_ populating a new
/// value.
#[inline]
pub unsafe fn set_len(&mut self, len: usize) {
debug_assert!(len <= self.capacity());
self.len = len;
}
/// Performs a "swap remove" at the given `index`, which removes the item at `index` and moves
/// the last item in the [`BlobVec`] to `index` (if `index` is not the last item). It is the
/// caller's responsibility to drop the returned pointer, if that is desirable.
///
/// # Safety
/// It is the caller's responsibility to ensure that `index` is less than `self.len()`.
#[inline]
#[must_use = "The returned pointer should be used to dropped the removed element"]
pub unsafe fn swap_remove_and_forget_unchecked(&mut self, index: usize) -> OwningPtr<'_> {
debug_assert!(index < self.len());
// Since `index` must be strictly less than `self.len` and `index` is at least zero,
// `self.len` must be at least one. Thus, this cannot underflow.
let new_len = self.len - 1;
let size = self.item_layout.size();
if index != new_len {
std::ptr::swap_nonoverlapping::<u8>(
self.get_unchecked_mut(index).as_ptr(),
self.get_unchecked_mut(new_len).as_ptr(),
size,
);
}
self.len = new_len;
// Cannot use get_unchecked here as this is technically out of bounds after changing len.
// SAFETY:
// - `new_len` is less than the old len, so it must fit in this vector's allocation.
// - `size` is a multiple of the erased type's alignment,
// so adding a multiple of `size` will preserve alignment.
self.get_ptr_mut().byte_add(new_len * size).promote()
}
/// Removes the value at `index` and copies the value stored into `ptr`.
/// Does not do any bounds checking on `index`.
/// The removed element is replaced by the last element of the `BlobVec`.
///
/// # Safety
/// It is the caller's responsibility to ensure that `index` is < `self.len()`
/// and that `self[index]` has been properly initialized.
#[inline]
pub unsafe fn swap_remove_unchecked(&mut self, index: usize, ptr: PtrMut<'_>) {
debug_assert!(index < self.len());
let last = self.get_unchecked_mut(self.len - 1).as_ptr();
let target = self.get_unchecked_mut(index).as_ptr();
// Copy the item at the index into the provided ptr
std::ptr::copy_nonoverlapping::<u8>(target, ptr.as_ptr(), self.item_layout.size());
// Recompress the storage by moving the previous last element into the
// now-free row overwriting the previous data. The removed row may be the last
// one so a non-overlapping copy must not be used here.
std::ptr::copy::<u8>(last, target, self.item_layout.size());
// Invalidate the data stored in the last row, as it has been moved
self.len -= 1;
}
/// Removes the value at `index` and drops it.
/// Does not do any bounds checking on `index`.
/// The removed element is replaced by the last element of the `BlobVec`.
///
/// # Safety
/// It is the caller's responsibility to ensure that `index` is `< self.len()`.
#[inline]
pub unsafe fn swap_remove_and_drop_unchecked(&mut self, index: usize) {
debug_assert!(index < self.len());
let drop = self.drop;
let value = self.swap_remove_and_forget_unchecked(index);
if let Some(drop) = drop {
drop(value);
}
}
/// Returns a reference to the element at `index`, without doing bounds checking.
///
/// # Safety
/// It is the caller's responsibility to ensure that `index < self.len()`.
#[inline]
pub unsafe fn get_unchecked(&self, index: usize) -> Ptr<'_> {
debug_assert!(index < self.len());
let size = self.item_layout.size();
// SAFETY:
// - The caller ensures that `index` fits in this vector,
// so this operation will not overflow the original allocation.
// - `size` is a multiple of the erased type's alignment,
// so adding a multiple of `size` will preserve alignment.
self.get_ptr().byte_add(index * size)
}
/// Returns a mutable reference to the element at `index`, without doing bounds checking.
///
/// # Safety
/// It is the caller's responsibility to ensure that `index < self.len()`.
#[inline]
pub unsafe fn get_unchecked_mut(&mut self, index: usize) -> PtrMut<'_> {
debug_assert!(index < self.len());
let size = self.item_layout.size();
// SAFETY:
// - The caller ensures that `index` fits in this vector,
// so this operation will not overflow the original allocation.
// - `size` is a multiple of the erased type's alignment,
// so adding a multiple of `size` will preserve alignment.
self.get_ptr_mut().byte_add(index * size)
}
/// Gets a [`Ptr`] to the start of the vec
#[inline]
pub fn get_ptr(&self) -> Ptr<'_> {
// SAFETY: the inner data will remain valid for as long as 'self.
unsafe { Ptr::new(self.data) }
}
/// Gets a [`PtrMut`] to the start of the vec
#[inline]
pub fn get_ptr_mut(&mut self) -> PtrMut<'_> {
// SAFETY: the inner data will remain valid for as long as 'self.
unsafe { PtrMut::new(self.data) }
}
/// Get a reference to the entire [`BlobVec`] as if it were an array with elements of type `T`
///
/// # Safety
/// The type `T` must be the type of the items in this [`BlobVec`].
pub unsafe fn get_slice<T>(&self) -> &[UnsafeCell<T>] {
// SAFETY: the inner data will remain valid for as long as 'self.
std::slice::from_raw_parts(self.data.as_ptr() as *const UnsafeCell<T>, self.len)
}
/// Clears the vector, removing (and dropping) all values.
///
/// Note that this method has no effect on the allocated capacity of the vector.
pub fn clear(&mut self) {
let len = self.len;
// We set len to 0 _before_ dropping elements for unwind safety. This ensures we don't
// accidentally drop elements twice in the event of a drop impl panicking.
self.len = 0;
if let Some(drop) = self.drop {
let size = self.item_layout.size();
for i in 0..len {
// SAFETY:
// * 0 <= `i` < `len`, so `i * size` must be in bounds for the allocation.
// * `size` is a multiple of the erased type's alignment,
// so adding a multiple of `size` will preserve alignment.
// * The item is left unreachable so it can be safely promoted to an `OwningPtr`.
// NOTE: `self.get_unchecked_mut(i)` cannot be used here, since the `debug_assert`
// would panic due to `self.len` being set to 0.
let item = unsafe { self.get_ptr_mut().byte_add(i * size).promote() };
// SAFETY: `item` was obtained from this `BlobVec`, so its underlying type must match `drop`.
unsafe { drop(item) };
}
}
}
}
impl Drop for BlobVec {
fn drop(&mut self) {
self.clear();
let array_layout =
array_layout(&self.item_layout, self.capacity).expect("array layout should be valid");
if array_layout.size() > 0 {
// SAFETY: data ptr layout is correct, swap_scratch ptr layout is correct
unsafe {
std::alloc::dealloc(self.get_ptr_mut().as_ptr(), array_layout);
}
}
}
}
/// From <https://doc.rust-lang.org/beta/src/core/alloc/layout.rs.html>
fn array_layout(layout: &Layout, n: usize) -> Option<Layout> {
let (array_layout, offset) = repeat_layout(layout, n)?;
debug_assert_eq!(layout.size(), offset);
Some(array_layout)
}
// TODO: replace with `Layout::repeat` if/when it stabilizes
/// From <https://doc.rust-lang.org/beta/src/core/alloc/layout.rs.html>
fn repeat_layout(layout: &Layout, n: usize) -> Option<(Layout, usize)> {
// This cannot overflow. Quoting from the invariant of Layout:
// > `size`, when rounded up to the nearest multiple of `align`,
// > must not overflow (i.e., the rounded value must be less than
// > `usize::MAX`)
let padded_size = layout.size() + padding_needed_for(layout, layout.align());
let alloc_size = padded_size.checked_mul(n)?;
// SAFETY: self.align is already known to be valid and alloc_size has been
// padded already.
unsafe {
Some((
Layout::from_size_align_unchecked(alloc_size, layout.align()),
padded_size,
))
}
}
/// From <https://doc.rust-lang.org/beta/src/core/alloc/layout.rs.html>
const fn padding_needed_for(layout: &Layout, align: usize) -> usize {
let len = layout.size();
// Rounded up value is:
// len_rounded_up = (len + align - 1) & !(align - 1);
// and then we return the padding difference: `len_rounded_up - len`.
//
// We use modular arithmetic throughout:
//
// 1. align is guaranteed to be > 0, so align - 1 is always
// valid.
//
// 2. `len + align - 1` can overflow by at most `align - 1`,
// so the &-mask with `!(align - 1)` will ensure that in the
// case of overflow, `len_rounded_up` will itself be 0.
// Thus the returned padding, when added to `len`, yields 0,
// which trivially satisfies the alignment `align`.
//
// (Of course, attempts to allocate blocks of memory whose
// size and padding overflow in the above manner should cause
// the allocator to yield an error anyway.)
let len_rounded_up = len.wrapping_add(align).wrapping_sub(1) & !align.wrapping_sub(1);
len_rounded_up.wrapping_sub(len)
}
#[cfg(test)]
mod tests {
use crate as bevy_ecs; // required for derive macros
use crate::{component::Component, ptr::OwningPtr, world::World};
use super::BlobVec;
use std::{alloc::Layout, cell::RefCell, mem, rc::Rc};
// SAFETY: The pointer points to a valid value of type `T` and it is safe to drop this value.
unsafe fn drop_ptr<T>(x: OwningPtr<'_>) {
x.drop_as::<T>();
}
/// # Safety
///
/// `blob_vec` must have a layout that matches `Layout::new::<T>()`
unsafe fn push<T>(blob_vec: &mut BlobVec, value: T) {
OwningPtr::make(value, |ptr| {
blob_vec.push(ptr);
});
}
/// # Safety
///
/// `blob_vec` must have a layout that matches `Layout::new::<T>()`
unsafe fn swap_remove<T>(blob_vec: &mut BlobVec, index: usize) -> T {
assert!(index < blob_vec.len());
let value = blob_vec.swap_remove_and_forget_unchecked(index);
value.read::<T>()
}
/// # Safety
///
/// `blob_vec` must have a layout that matches `Layout::new::<T>()`, it most store a valid `T`
/// value at the given `index`
unsafe fn get_mut<T>(blob_vec: &mut BlobVec, index: usize) -> &mut T {
assert!(index < blob_vec.len());
blob_vec.get_unchecked_mut(index).deref_mut::<T>()
}
#[test]
fn resize_test() {
let item_layout = Layout::new::<usize>();
// SAFETY: `drop` fn is `None`, usize doesn't need dropping
let mut blob_vec = unsafe { BlobVec::new(item_layout, None, 64) };
// SAFETY: `i` is a usize, i.e. the type corresponding to `item_layout`
unsafe {
for i in 0..1_000 {
push(&mut blob_vec, i as usize);
}
}
assert_eq!(blob_vec.len(), 1_000);
assert_eq!(blob_vec.capacity(), 1_024);
}
#[derive(Debug, Eq, PartialEq, Clone)]
struct Foo {
a: u8,
b: String,
drop_counter: Rc<RefCell<usize>>,
}
impl Drop for Foo {
fn drop(&mut self) {
*self.drop_counter.borrow_mut() += 1;
}
}
#[test]
fn blob_vec() {
let drop_counter = Rc::new(RefCell::new(0));
{
let item_layout = Layout::new::<Foo>();
let drop = drop_ptr::<Foo>;
// SAFETY: drop is able to drop a value of its `item_layout`
let mut blob_vec = unsafe { BlobVec::new(item_layout, Some(drop), 2) };
assert_eq!(blob_vec.capacity(), 2);
// SAFETY: the following code only deals with values of type `Foo`, which satisfies the safety requirement of `push`, `get_mut` and `swap_remove` that the
// values have a layout compatible to the blob vec's `item_layout`.
// Every index is in range.
unsafe {
let foo1 = Foo {
a: 42,
b: "abc".to_string(),
drop_counter: drop_counter.clone(),
};
push(&mut blob_vec, foo1.clone());
assert_eq!(blob_vec.len(), 1);
assert_eq!(get_mut::<Foo>(&mut blob_vec, 0), &foo1);
let mut foo2 = Foo {
a: 7,
b: "xyz".to_string(),
drop_counter: drop_counter.clone(),
};
push::<Foo>(&mut blob_vec, foo2.clone());
assert_eq!(blob_vec.len(), 2);
assert_eq!(blob_vec.capacity(), 2);
assert_eq!(get_mut::<Foo>(&mut blob_vec, 0), &foo1);
assert_eq!(get_mut::<Foo>(&mut blob_vec, 1), &foo2);
get_mut::<Foo>(&mut blob_vec, 1).a += 1;
assert_eq!(get_mut::<Foo>(&mut blob_vec, 1).a, 8);
let foo3 = Foo {
a: 16,
b: "123".to_string(),
drop_counter: drop_counter.clone(),
};
push(&mut blob_vec, foo3.clone());
assert_eq!(blob_vec.len(), 3);
assert_eq!(blob_vec.capacity(), 4);
let last_index = blob_vec.len() - 1;
let value = swap_remove::<Foo>(&mut blob_vec, last_index);
assert_eq!(foo3, value);
assert_eq!(blob_vec.len(), 2);
assert_eq!(blob_vec.capacity(), 4);
let value = swap_remove::<Foo>(&mut blob_vec, 0);
assert_eq!(foo1, value);
assert_eq!(blob_vec.len(), 1);
assert_eq!(blob_vec.capacity(), 4);
foo2.a = 8;
assert_eq!(get_mut::<Foo>(&mut blob_vec, 0), &foo2);
}
}
assert_eq!(*drop_counter.borrow(), 6);
}
#[test]
fn blob_vec_drop_empty_capacity() {
let item_layout = Layout::new::<Foo>();
let drop = drop_ptr::<Foo>;
// SAFETY: drop is able to drop a value of its `item_layout`
let _ = unsafe { BlobVec::new(item_layout, Some(drop), 0) };
}
#[test]
#[should_panic(expected = "capacity overflow")]
fn blob_vec_zst_size_overflow() {
// SAFETY: no drop is correct drop for `()`.
let mut blob_vec = unsafe { BlobVec::new(Layout::new::<()>(), None, 0) };
assert_eq!(usize::MAX, blob_vec.capacity(), "Self-check");
// SAFETY: Because `()` is a ZST trivial drop type, and because `BlobVec` capacity
// is always `usize::MAX` for ZSTs, we can arbitrarily set the length
// and still be sound.
unsafe {
blob_vec.set_len(usize::MAX);
}
// SAFETY: `BlobVec` was initialized for `()`, so it is safe to push `()` to it.
unsafe {
OwningPtr::make((), |ptr| {
// This should panic because len is usize::MAX, remaining capacity is 0.
blob_vec.push(ptr);
});
}
}
#[test]
#[should_panic(expected = "capacity overflow")]
fn blob_vec_capacity_overflow() {
// SAFETY: no drop is correct drop for `u32`.
let mut blob_vec = unsafe { BlobVec::new(Layout::new::<u32>(), None, 0) };
assert_eq!(0, blob_vec.capacity(), "Self-check");
OwningPtr::make(17u32, |ptr| {
// SAFETY: we push the value of correct type.
unsafe {
blob_vec.push(ptr);
}
});
blob_vec.reserve_exact(usize::MAX);
}
#[test]
fn aligned_zst() {
// NOTE: This test is explicitly for uncovering potential UB with miri.
#[derive(Component)]
#[repr(align(32))]
struct Zst;
let mut world = World::default();
world.spawn(Zst);
world.spawn(Zst);
world.spawn(Zst);
world.spawn_empty();
let mut count = 0;
let mut q = world.query::<&Zst>();
for zst in q.iter(&world) {
// Ensure that the references returned are properly aligned.
assert_eq!(zst as *const Zst as usize % mem::align_of::<Zst>(), 0);
count += 1;
}
assert_eq!(count, 3);
}
}