1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
use std::{borrow::Cow, cell::UnsafeCell, marker::PhantomData};

use bevy_ptr::UnsafeCellDeref;

use crate::{
    archetype::ArchetypeComponentId,
    component::{ComponentId, Tick},
    prelude::World,
    query::Access,
    schedule::InternedSystemSet,
    world::unsafe_world_cell::UnsafeWorldCell,
};

use super::{ReadOnlySystem, System};

/// Customizes the behavior of a [`CombinatorSystem`].
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
/// use bevy_ecs::system::{CombinatorSystem, Combine};
///
/// // A system combinator that performs an exclusive-or (XOR)
/// // operation on the output of two systems.
/// pub type Xor<A, B> = CombinatorSystem<XorMarker, A, B>;
///
/// // This struct is used to customize the behavior of our combinator.
/// pub struct XorMarker;
///
/// impl<A, B> Combine<A, B> for XorMarker
/// where
///     A: System<In = (), Out = bool>,
///     B: System<In = (), Out = bool>,
/// {
///     type In = ();
///     type Out = bool;
///
///     fn combine(
///         _input: Self::In,
///         a: impl FnOnce(A::In) -> A::Out,
///         b: impl FnOnce(B::In) -> B::Out,
///     ) -> Self::Out {
///         a(()) ^ b(())
///     }
/// }
///
/// # #[derive(Resource, PartialEq, Eq)] struct A(u32);
/// # #[derive(Resource, PartialEq, Eq)] struct B(u32);
/// # #[derive(Resource, Default)] struct RanFlag(bool);
/// # let mut world = World::new();
/// # world.init_resource::<RanFlag>();
/// #
/// # let mut app = Schedule::default();
/// app.add_systems(my_system.run_if(Xor::new(
///     IntoSystem::into_system(resource_equals(A(1))),
///     IntoSystem::into_system(resource_equals(B(1))),
///     // The name of the combined system.
///     std::borrow::Cow::Borrowed("a ^ b"),
/// )));
/// # fn my_system(mut flag: ResMut<RanFlag>) { flag.0 = true; }
/// #
/// # world.insert_resource(A(0));
/// # world.insert_resource(B(0));
/// # app.run(&mut world);
/// # // Neither condition passes, so the system does not run.
/// # assert!(!world.resource::<RanFlag>().0);
/// #
/// # world.insert_resource(A(1));
/// # app.run(&mut world);
/// # // Only the first condition passes, so the system runs.
/// # assert!(world.resource::<RanFlag>().0);
/// # world.resource_mut::<RanFlag>().0 = false;
/// #
/// # world.insert_resource(B(1));
/// # app.run(&mut world);
/// # // Both conditions pass, so the system does not run.
/// # assert!(!world.resource::<RanFlag>().0);
/// #
/// # world.insert_resource(A(0));
/// # app.run(&mut world);
/// # // Only the second condition passes, so the system runs.
/// # assert!(world.resource::<RanFlag>().0);
/// # world.resource_mut::<RanFlag>().0 = false;
/// ```
pub trait Combine<A: System, B: System> {
    /// The [input](System::In) type for a [`CombinatorSystem`].
    type In;

    /// The [output](System::Out) type for a [`CombinatorSystem`].
    type Out;

    /// When used in a [`CombinatorSystem`], this function customizes how
    /// the two composite systems are invoked and their outputs are combined.
    ///
    /// See the trait-level docs for [`Combine`] for an example implementation.
    fn combine(
        input: Self::In,
        a: impl FnOnce(A::In) -> A::Out,
        b: impl FnOnce(B::In) -> B::Out,
    ) -> Self::Out;
}

/// A [`System`] defined by combining two other systems.
/// The behavior of this combinator is specified by implementing the [`Combine`] trait.
/// For a full usage example, see the docs for [`Combine`].
pub struct CombinatorSystem<Func, A, B> {
    _marker: PhantomData<fn() -> Func>,
    a: A,
    b: B,
    name: Cow<'static, str>,
    component_access: Access<ComponentId>,
    archetype_component_access: Access<ArchetypeComponentId>,
}

impl<Func, A, B> CombinatorSystem<Func, A, B> {
    /// Creates a new system that combines two inner systems.
    ///
    /// The returned system will only be usable if `Func` implements [`Combine<A, B>`].
    pub const fn new(a: A, b: B, name: Cow<'static, str>) -> Self {
        Self {
            _marker: PhantomData,
            a,
            b,
            name,
            component_access: Access::new(),
            archetype_component_access: Access::new(),
        }
    }
}

impl<A, B, Func> System for CombinatorSystem<Func, A, B>
where
    Func: Combine<A, B> + 'static,
    A: System,
    B: System,
{
    type In = Func::In;
    type Out = Func::Out;

    fn name(&self) -> Cow<'static, str> {
        self.name.clone()
    }

    fn component_access(&self) -> &Access<ComponentId> {
        &self.component_access
    }

    fn archetype_component_access(&self) -> &Access<ArchetypeComponentId> {
        &self.archetype_component_access
    }

    fn is_send(&self) -> bool {
        self.a.is_send() && self.b.is_send()
    }

    fn is_exclusive(&self) -> bool {
        self.a.is_exclusive() || self.b.is_exclusive()
    }

    fn has_deferred(&self) -> bool {
        self.a.has_deferred() || self.b.has_deferred()
    }

    unsafe fn run_unsafe(&mut self, input: Self::In, world: UnsafeWorldCell) -> Self::Out {
        Func::combine(
            input,
            // SAFETY: The world accesses for both underlying systems have been registered,
            // so the caller will guarantee that no other systems will conflict with `a` or `b`.
            // Since these closures are `!Send + !Sync + !'static`, they can never be called
            // in parallel, so their world accesses will not conflict with each other.
            // Additionally, `update_archetype_component_access` has been called,
            // which forwards to the implementations for `self.a` and `self.b`.
            |input| self.a.run_unsafe(input, world),
            |input| self.b.run_unsafe(input, world),
        )
    }

    fn run<'w>(&mut self, input: Self::In, world: &'w mut World) -> Self::Out {
        // SAFETY: Converting `&mut T` -> `&UnsafeCell<T>`
        // is explicitly allowed in the docs for `UnsafeCell`.
        let world: &'w UnsafeCell<World> = unsafe { std::mem::transmute(world) };
        Func::combine(
            input,
            // SAFETY: Since these closures are `!Send + !Sync + !'static`, they can never
            // be called in parallel. Since mutable access to `world` only exists within
            // the scope of either closure, we can be sure they will never alias one another.
            |input| self.a.run(input, unsafe { world.deref_mut() }),
            #[allow(clippy::undocumented_unsafe_blocks)]
            |input| self.b.run(input, unsafe { world.deref_mut() }),
        )
    }

    fn apply_deferred(&mut self, world: &mut World) {
        self.a.apply_deferred(world);
        self.b.apply_deferred(world);
    }

    fn initialize(&mut self, world: &mut World) {
        self.a.initialize(world);
        self.b.initialize(world);
        self.component_access.extend(self.a.component_access());
        self.component_access.extend(self.b.component_access());
    }

    fn update_archetype_component_access(&mut self, world: UnsafeWorldCell) {
        self.a.update_archetype_component_access(world);
        self.b.update_archetype_component_access(world);

        self.archetype_component_access
            .extend(self.a.archetype_component_access());
        self.archetype_component_access
            .extend(self.b.archetype_component_access());
    }

    fn check_change_tick(&mut self, change_tick: Tick) {
        self.a.check_change_tick(change_tick);
        self.b.check_change_tick(change_tick);
    }

    fn default_system_sets(&self) -> Vec<InternedSystemSet> {
        let mut default_sets = self.a.default_system_sets();
        default_sets.append(&mut self.b.default_system_sets());
        default_sets
    }

    fn get_last_run(&self) -> Tick {
        self.a.get_last_run()
    }

    fn set_last_run(&mut self, last_run: Tick) {
        self.a.set_last_run(last_run);
        self.b.set_last_run(last_run);
    }
}

/// SAFETY: Both systems are read-only, so any system created by combining them will only read from the world.
unsafe impl<A, B, Func> ReadOnlySystem for CombinatorSystem<Func, A, B>
where
    Func: Combine<A, B> + 'static,
    A: ReadOnlySystem,
    B: ReadOnlySystem,
{
}

impl<Func, A, B> Clone for CombinatorSystem<Func, A, B>
where
    A: Clone,
    B: Clone,
{
    /// Clone the combined system. The cloned instance must be `.initialize()`d before it can run.
    fn clone(&self) -> Self {
        CombinatorSystem::new(self.a.clone(), self.b.clone(), self.name.clone())
    }
}

/// A [`System`] created by piping the output of the first system into the input of the second.
///
/// This can be repeated indefinitely, but system pipes cannot branch: the output is consumed by the receiving system.
///
/// Given two systems `A` and `B`, A may be piped into `B` as `A.pipe(B)` if the output type of `A` is
/// equal to the input type of `B`.
///
/// Note that for [`FunctionSystem`](crate::system::FunctionSystem)s the output is the return value
/// of the function and the input is the first [`SystemParam`](crate::system::SystemParam) if it is
/// tagged with [`In`](crate::system::In) or `()` if the function has no designated input parameter.
///
/// # Examples
///
/// ```
/// use std::num::ParseIntError;
///
/// use bevy_ecs::prelude::*;
///
/// fn main() {
///     let mut world = World::default();
///     world.insert_resource(Message("42".to_string()));
///
///     // pipe the `parse_message_system`'s output into the `filter_system`s input
///     let mut piped_system = parse_message_system.pipe(filter_system);
///     piped_system.initialize(&mut world);
///     assert_eq!(piped_system.run((), &mut world), Some(42));
/// }
///
/// #[derive(Resource)]
/// struct Message(String);
///
/// fn parse_message_system(message: Res<Message>) -> Result<usize, ParseIntError> {
///     message.0.parse::<usize>()
/// }
///
/// fn filter_system(In(result): In<Result<usize, ParseIntError>>) -> Option<usize> {
///     result.ok().filter(|&n| n < 100)
/// }
/// ```
pub type PipeSystem<SystemA, SystemB> = CombinatorSystem<Pipe, SystemA, SystemB>;

#[doc(hidden)]
pub struct Pipe;

impl<A, B> Combine<A, B> for Pipe
where
    A: System,
    B: System<In = A::Out>,
{
    type In = A::In;
    type Out = B::Out;

    fn combine(
        input: Self::In,
        a: impl FnOnce(A::In) -> A::Out,
        b: impl FnOnce(B::In) -> B::Out,
    ) -> Self::Out {
        let value = a(input);
        b(value)
    }
}