1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
use bevy_utils::tracing::warn;
use core::fmt::Debug;

use crate::component::Tick;
use crate::schedule::InternedSystemSet;
use crate::world::unsafe_world_cell::UnsafeWorldCell;
use crate::{archetype::ArchetypeComponentId, component::ComponentId, query::Access, world::World};

use std::any::TypeId;
use std::borrow::Cow;

use super::IntoSystem;

/// An ECS system that can be added to a [`Schedule`](crate::schedule::Schedule)
///
/// Systems are functions with all arguments implementing
/// [`SystemParam`](crate::system::SystemParam).
///
/// Systems are added to an application using `App::add_systems(Update, my_system)`
/// or similar methods, and will generally run once per pass of the main loop.
///
/// Systems are executed in parallel, in opportunistic order; data access is managed automatically.
/// It's possible to specify explicit execution order between specific systems,
/// see [`IntoSystemConfigs`](crate::schedule::IntoSystemConfigs).
pub trait System: Send + Sync + 'static {
    /// The system's input. See [`In`](crate::system::In) for
    /// [`FunctionSystem`](crate::system::FunctionSystem)s.
    type In;
    /// The system's output.
    type Out;
    /// Returns the system's name.
    fn name(&self) -> Cow<'static, str>;
    /// Returns the [`TypeId`] of the underlying system type.
    #[inline]
    fn type_id(&self) -> TypeId {
        TypeId::of::<Self>()
    }
    /// Returns the system's component [`Access`].
    fn component_access(&self) -> &Access<ComponentId>;
    /// Returns the system's archetype component [`Access`].
    fn archetype_component_access(&self) -> &Access<ArchetypeComponentId>;
    /// Returns true if the system is [`Send`].
    fn is_send(&self) -> bool;

    /// Returns true if the system must be run exclusively.
    fn is_exclusive(&self) -> bool;

    /// Returns true if system as deferred buffers
    fn has_deferred(&self) -> bool;

    /// Runs the system with the given input in the world. Unlike [`System::run`], this function
    /// can be called in parallel with other systems and may break Rust's aliasing rules
    /// if used incorrectly, making it unsafe to call.
    ///
    /// # Safety
    ///
    /// - The caller must ensure that `world` has permission to access any world data
    ///   registered in [`Self::archetype_component_access`]. There must be no conflicting
    ///   simultaneous accesses while the system is running.
    /// - The method [`Self::update_archetype_component_access`] must be called at some
    ///   point before this one, with the same exact [`World`]. If `update_archetype_component_access`
    ///   panics (or otherwise does not return for any reason), this method must not be called.
    unsafe fn run_unsafe(&mut self, input: Self::In, world: UnsafeWorldCell) -> Self::Out;

    /// Runs the system with the given input in the world.
    ///
    /// For [read-only](ReadOnlySystem) systems, see [`run_readonly`], which can be called using `&World`.
    ///
    /// [`run_readonly`]: ReadOnlySystem::run_readonly
    fn run(&mut self, input: Self::In, world: &mut World) -> Self::Out {
        let world = world.as_unsafe_world_cell();
        self.update_archetype_component_access(world);
        // SAFETY:
        // - We have exclusive access to the entire world.
        // - `update_archetype_component_access` has been called.
        unsafe { self.run_unsafe(input, world) }
    }

    /// Applies any [`Deferred`](crate::system::Deferred) system parameters (or other system buffers) of this system to the world.
    ///
    /// This is where [`Commands`](crate::system::Commands) get applied.
    fn apply_deferred(&mut self, world: &mut World);

    /// Initialize the system.
    fn initialize(&mut self, _world: &mut World);

    /// Update the system's archetype component [`Access`].
    ///
    /// ## Note for implementors
    /// `world` may only be used to access metadata. This can be done in safe code
    /// via functions such as [`UnsafeWorldCell::archetypes`].
    fn update_archetype_component_access(&mut self, world: UnsafeWorldCell);

    /// Checks any [`Tick`]s stored on this system and wraps their value if they get too old.
    ///
    /// This method must be called periodically to ensure that change detection behaves correctly.
    /// When using bevy's default configuration, this will be called for you as needed.
    fn check_change_tick(&mut self, change_tick: Tick);

    /// Returns the system's default [system sets](crate::schedule::SystemSet).
    fn default_system_sets(&self) -> Vec<InternedSystemSet> {
        Vec::new()
    }

    /// Gets the tick indicating the last time this system ran.
    fn get_last_run(&self) -> Tick;

    /// Overwrites the tick indicating the last time this system ran.
    ///
    /// # Warning
    /// This is a complex and error-prone operation, that can have unexpected consequences on any system relying on this code.
    /// However, it can be an essential escape hatch when, for example,
    /// you are trying to synchronize representations using change detection and need to avoid infinite recursion.
    fn set_last_run(&mut self, last_run: Tick);
}

/// [`System`] types that do not modify the [`World`] when run.
/// This is implemented for any systems whose parameters all implement [`ReadOnlySystemParam`].
///
/// Note that systems which perform [deferred](System::apply_deferred) mutations (such as with [`Commands`])
/// may implement this trait.
///
/// [`ReadOnlySystemParam`]: crate::system::ReadOnlySystemParam
/// [`Commands`]: crate::system::Commands
///
/// # Safety
///
/// This must only be implemented for system types which do not mutate the `World`
/// when [`System::run_unsafe`] is called.
pub unsafe trait ReadOnlySystem: System {
    /// Runs this system with the given input in the world.
    ///
    /// Unlike [`System::run`], this can be called with a shared reference to the world,
    /// since this system is known not to modify the world.
    fn run_readonly(&mut self, input: Self::In, world: &World) -> Self::Out {
        let world = world.as_unsafe_world_cell_readonly();
        self.update_archetype_component_access(world);
        // SAFETY:
        // - We have read-only access to the entire world.
        // - `update_archetype_component_access` has been called.
        unsafe { self.run_unsafe(input, world) }
    }
}

/// A convenience type alias for a boxed [`System`] trait object.
pub type BoxedSystem<In = (), Out = ()> = Box<dyn System<In = In, Out = Out>>;

pub(crate) fn check_system_change_tick(last_run: &mut Tick, this_run: Tick, system_name: &str) {
    if last_run.check_tick(this_run) {
        let age = this_run.relative_to(*last_run).get();
        warn!(
            "System '{system_name}' has not run for {age} ticks. \
            Changes older than {} ticks will not be detected.",
            Tick::MAX.get() - 1,
        );
    }
}

impl<In: 'static, Out: 'static> Debug for dyn System<In = In, Out = Out> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("System")
            .field("name", &self.name())
            .field("is_exclusive", &self.is_exclusive())
            .field("is_send", &self.is_send())
            .finish_non_exhaustive()
    }
}

/// Trait used to run a system immediately on a [`World`].
///
/// # Warning
/// This function is not an efficient method of running systems and its meant to be used as a utility
/// for testing and/or diagnostics.
///
/// Systems called through [`run_system_once`](RunSystemOnce::run_system_once) do not hold onto any state,
/// as they are created and destroyed every time [`run_system_once`](RunSystemOnce::run_system_once) is called.
/// Practically, this means that [`Local`](crate::system::Local) variables are
/// reset on every run and change detection does not work.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_ecs::system::RunSystemOnce;
/// #[derive(Resource, Default)]
/// struct Counter(u8);
///
/// fn increment(mut counter: Local<Counter>) {
///    counter.0 += 1;
///    println!("{}", counter.0);
/// }
///
/// let mut world = World::default();
/// world.run_system_once(increment); // prints 1
/// world.run_system_once(increment); // still prints 1
/// ```
///
/// If you do need systems to hold onto state between runs, use the [`World::run_system`](World::run_system)
/// and run the system by their [`SystemId`](crate::system::SystemId).
///
/// # Usage
/// Typically, to test a system, or to extract specific diagnostics information from a world,
/// you'd need a [`Schedule`](crate::schedule::Schedule) to run the system. This can create redundant boilerplate code
/// when writing tests or trying to quickly iterate on debug specific systems.
///
/// For these situations, this function can be useful because it allows you to execute a system
/// immediately with some custom input and retrieve its output without requiring the necessary boilerplate.
///
/// # Examples
///
/// ## Immediate Command Execution
///
/// This usage is helpful when trying to test systems or functions that operate on [`Commands`](crate::system::Commands):
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_ecs::system::RunSystemOnce;
/// let mut world = World::default();
/// let entity = world.run_system_once(|mut commands: Commands| {
///     commands.spawn_empty().id()
/// });
/// # assert!(world.get_entity(entity).is_some());
/// ```
///
/// ## Immediate Queries
///
/// This usage is helpful when trying to run an arbitrary query on a world for testing or debugging purposes:
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_ecs::system::RunSystemOnce;
///
/// #[derive(Component)]
/// struct T(usize);
///
/// let mut world = World::default();
/// world.spawn(T(0));
/// world.spawn(T(1));
/// world.spawn(T(1));
/// let count = world.run_system_once(|query: Query<&T>| {
///     query.iter().filter(|t| t.0 == 1).count()
/// });
///
/// # assert_eq!(count, 2);
/// ```
///
/// Note that instead of closures you can also pass in regular functions as systems:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_ecs::system::RunSystemOnce;
///
/// #[derive(Component)]
/// struct T(usize);
///
/// fn count(query: Query<&T>) -> usize {
///     query.iter().filter(|t| t.0 == 1).count()
/// }
///
/// let mut world = World::default();
/// world.spawn(T(0));
/// world.spawn(T(1));
/// world.spawn(T(1));
/// let count = world.run_system_once(count);
///
/// # assert_eq!(count, 2);
/// ```
pub trait RunSystemOnce: Sized {
    /// Runs a system and applies its deferred parameters.
    fn run_system_once<T: IntoSystem<(), Out, Marker>, Out, Marker>(self, system: T) -> Out {
        self.run_system_once_with((), system)
    }

    /// Runs a system with given input and applies its deferred parameters.
    fn run_system_once_with<T: IntoSystem<In, Out, Marker>, In, Out, Marker>(
        self,
        input: In,
        system: T,
    ) -> Out;
}

impl RunSystemOnce for &mut World {
    fn run_system_once_with<T: IntoSystem<In, Out, Marker>, In, Out, Marker>(
        self,
        input: In,
        system: T,
    ) -> Out {
        let mut system: T::System = IntoSystem::into_system(system);
        system.initialize(self);
        let out = system.run(input, self);
        system.apply_deferred(self);
        out
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate as bevy_ecs;
    use crate::prelude::*;

    #[test]
    fn run_system_once() {
        struct T(usize);

        impl Resource for T {}

        fn system(In(n): In<usize>, mut commands: Commands) -> usize {
            commands.insert_resource(T(n));
            n + 1
        }

        let mut world = World::default();
        let n = world.run_system_once_with(1, system);
        assert_eq!(n, 2);
        assert_eq!(world.resource::<T>().0, 1);
    }

    #[derive(Resource, Default, PartialEq, Debug)]
    struct Counter(u8);

    #[allow(dead_code)]
    fn count_up(mut counter: ResMut<Counter>) {
        counter.0 += 1;
    }

    #[test]
    fn run_two_systems() {
        let mut world = World::new();
        world.init_resource::<Counter>();
        assert_eq!(*world.resource::<Counter>(), Counter(0));
        world.run_system_once(count_up);
        assert_eq!(*world.resource::<Counter>(), Counter(1));
        world.run_system_once(count_up);
        assert_eq!(*world.resource::<Counter>(), Counter(2));
    }

    #[allow(dead_code)]
    fn spawn_entity(mut commands: Commands) {
        commands.spawn_empty();
    }

    #[test]
    fn command_processing() {
        let mut world = World::new();
        assert_eq!(world.entities.len(), 0);
        world.run_system_once(spawn_entity);
        assert_eq!(world.entities.len(), 1);
    }

    #[test]
    fn non_send_resources() {
        fn non_send_count_down(mut ns: NonSendMut<Counter>) {
            ns.0 -= 1;
        }

        let mut world = World::new();
        world.insert_non_send_resource(Counter(10));
        assert_eq!(*world.non_send_resource::<Counter>(), Counter(10));
        world.run_system_once(non_send_count_down);
        assert_eq!(*world.non_send_resource::<Counter>(), Counter(9));
    }
}