1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
//! Provides types for building cubic splines for rendering curves and use with animation easing.
use glam::{Vec2, Vec3, Vec3A};
use std::{
fmt::Debug,
iter::Sum,
ops::{Add, Mul, Sub},
};
/// A point in space of any dimension that supports the math ops needed for cubic spline
/// interpolation.
pub trait Point:
Mul<f32, Output = Self>
+ Add<Self, Output = Self>
+ Sub<Self, Output = Self>
+ Add<f32, Output = Self>
+ Sum
+ Default
+ Debug
+ Clone
+ PartialEq
+ Copy
{
}
impl Point for Vec3 {}
impl Point for Vec3A {}
impl Point for Vec2 {}
impl Point for f32 {}
/// A spline composed of a single cubic Bezier curve.
///
/// Useful for user-drawn curves with local control, or animation easing. See
/// [`CubicSegment::new_bezier`] for use in easing.
///
/// ### Interpolation
/// The curve only passes through the first and last control point in each set of four points.
///
/// ### Tangency
/// Manually defined by the two intermediate control points within each set of four points.
///
/// ### Continuity
/// At minimum C0 continuous, up to C2. Continuity greater than C0 can result in a loss of local
/// control over the spline due to the curvature constraints.
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [[
/// vec2(-1.0, -20.0),
/// vec2(3.0, 2.0),
/// vec2(5.0, 3.0),
/// vec2(9.0, 8.0),
/// ]];
/// let bezier = CubicBezier::new(points).to_curve();
/// let positions: Vec<_> = bezier.iter_positions(100).collect();
/// ```
pub struct CubicBezier<P: Point> {
control_points: Vec<[P; 4]>,
}
impl<P: Point> CubicBezier<P> {
/// Create a new cubic Bezier curve from sets of control points.
pub fn new(control_points: impl Into<Vec<[P; 4]>>) -> Self {
Self {
control_points: control_points.into(),
}
}
}
impl<P: Point> CubicGenerator<P> for CubicBezier<P> {
#[inline]
fn to_curve(&self) -> CubicCurve<P> {
let char_matrix = [
[1., 0., 0., 0.],
[-3., 3., 0., 0.],
[3., -6., 3., 0.],
[-1., 3., -3., 1.],
];
let segments = self
.control_points
.iter()
.map(|p| CubicCurve::coefficients(*p, 1.0, char_matrix))
.collect();
CubicCurve { segments }
}
}
/// A spline interpolated continuously between the nearest two control points, with the position and
/// velocity of the curve specified at both control points. This curve passes through all control
/// points, with the specified velocity which includes direction and parametric speed.
///
/// Useful for smooth interpolation when you know the position and velocity at two points in time,
/// such as network prediction.
///
/// ### Interpolation
/// The curve passes through every control point.
///
/// ### Tangency
/// Explicitly defined at each control point.
///
/// ### Continuity
/// At minimum C0 continuous, up to C1.
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [
/// vec2(-1.0, -20.0),
/// vec2(3.0, 2.0),
/// vec2(5.0, 3.0),
/// vec2(9.0, 8.0),
/// ];
/// let tangents = [
/// vec2(0.0, 1.0),
/// vec2(0.0, 1.0),
/// vec2(0.0, 1.0),
/// vec2(0.0, 1.0),
/// ];
/// let hermite = CubicHermite::new(points, tangents).to_curve();
/// let positions: Vec<_> = hermite.iter_positions(100).collect();
/// ```
pub struct CubicHermite<P: Point> {
control_points: Vec<(P, P)>,
}
impl<P: Point> CubicHermite<P> {
/// Create a new Hermite curve from sets of control points.
pub fn new(
control_points: impl IntoIterator<Item = P>,
tangents: impl IntoIterator<Item = P>,
) -> Self {
Self {
control_points: control_points.into_iter().zip(tangents).collect(),
}
}
}
impl<P: Point> CubicGenerator<P> for CubicHermite<P> {
#[inline]
fn to_curve(&self) -> CubicCurve<P> {
let char_matrix = [
[1., 0., 0., 0.],
[0., 1., 0., 0.],
[-3., -2., 3., -1.],
[2., 1., -2., 1.],
];
let segments = self
.control_points
.windows(2)
.map(|p| {
let (p0, v0, p1, v1) = (p[0].0, p[0].1, p[1].0, p[1].1);
CubicCurve::coefficients([p0, v0, p1, v1], 1.0, char_matrix)
})
.collect();
CubicCurve { segments }
}
}
/// A spline interpolated continuously across the nearest four control points, with the position of
/// the curve specified at every control point and the tangents computed automatically.
///
/// **Note** the Catmull-Rom spline is a special case of Cardinal spline where the tension is 0.5.
///
/// ### Interpolation
/// The curve passes through every control point.
///
/// ### Tangency
/// Automatically defined at each control point.
///
/// ### Continuity
/// C1 continuous.
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [
/// vec2(-1.0, -20.0),
/// vec2(3.0, 2.0),
/// vec2(5.0, 3.0),
/// vec2(9.0, 8.0),
/// ];
/// let cardinal = CubicCardinalSpline::new(0.3, points).to_curve();
/// let positions: Vec<_> = cardinal.iter_positions(100).collect();
/// ```
pub struct CubicCardinalSpline<P: Point> {
tension: f32,
control_points: Vec<P>,
}
impl<P: Point> CubicCardinalSpline<P> {
/// Build a new Cardinal spline.
pub fn new(tension: f32, control_points: impl Into<Vec<P>>) -> Self {
Self {
tension,
control_points: control_points.into(),
}
}
/// Build a new Catmull-Rom spline, the special case of a Cardinal spline where tension = 1/2.
pub fn new_catmull_rom(control_points: impl Into<Vec<P>>) -> Self {
Self {
tension: 0.5,
control_points: control_points.into(),
}
}
}
impl<P: Point> CubicGenerator<P> for CubicCardinalSpline<P> {
#[inline]
fn to_curve(&self) -> CubicCurve<P> {
let s = self.tension;
let char_matrix = [
[0., 1., 0., 0.],
[-s, 0., s, 0.],
[2. * s, s - 3., 3. - 2. * s, -s],
[-s, 2. - s, s - 2., s],
];
let segments = self
.control_points
.windows(4)
.map(|p| CubicCurve::coefficients([p[0], p[1], p[2], p[3]], 1.0, char_matrix))
.collect();
CubicCurve { segments }
}
}
/// A spline interpolated continuously across the nearest four control points. The curve does not
/// pass through any of the control points.
///
/// ### Interpolation
/// The curve does not pass through control points.
///
/// ### Tangency
/// Automatically computed based on the position of control points.
///
/// ### Continuity
/// C2 continuous! The acceleration continuity of this spline makes it useful for camera paths.
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [
/// vec2(-1.0, -20.0),
/// vec2(3.0, 2.0),
/// vec2(5.0, 3.0),
/// vec2(9.0, 8.0),
/// ];
/// let b_spline = CubicBSpline::new(points).to_curve();
/// let positions: Vec<_> = b_spline.iter_positions(100).collect();
/// ```
pub struct CubicBSpline<P: Point> {
control_points: Vec<P>,
}
impl<P: Point> CubicBSpline<P> {
/// Build a new Cardinal spline.
pub fn new(control_points: impl Into<Vec<P>>) -> Self {
Self {
control_points: control_points.into(),
}
}
}
impl<P: Point> CubicGenerator<P> for CubicBSpline<P> {
#[inline]
fn to_curve(&self) -> CubicCurve<P> {
let char_matrix = [
[1., 4., 1., 0.],
[-3., 0., 3., 0.],
[3., -6., 3., 0.],
[-1., 3., -3., 1.],
];
let segments = self
.control_points
.windows(4)
.map(|p| CubicCurve::coefficients([p[0], p[1], p[2], p[3]], 1.0 / 6.0, char_matrix))
.collect();
CubicCurve { segments }
}
}
/// Implement this on cubic splines that can generate a curve from their spline parameters.
pub trait CubicGenerator<P: Point> {
/// Build a [`CubicCurve`] by computing the interpolation coefficients for each curve segment.
fn to_curve(&self) -> CubicCurve<P>;
}
/// A segment of a cubic curve, used to hold precomputed coefficients for fast interpolation.
///
/// Segments can be chained together to form a longer compound curve.
#[derive(Clone, Debug, Default, PartialEq)]
pub struct CubicSegment<P: Point> {
coeff: [P; 4],
}
impl<P: Point> CubicSegment<P> {
/// Instantaneous position of a point at parametric value `t`.
#[inline]
pub fn position(&self, t: f32) -> P {
let [a, b, c, d] = self.coeff;
a + b * t + c * t.powi(2) + d * t.powi(3)
}
/// Instantaneous velocity of a point at parametric value `t`.
#[inline]
pub fn velocity(&self, t: f32) -> P {
let [_, b, c, d] = self.coeff;
b + c * 2.0 * t + d * 3.0 * t.powi(2)
}
/// Instantaneous acceleration of a point at parametric value `t`.
#[inline]
pub fn acceleration(&self, t: f32) -> P {
let [_, _, c, d] = self.coeff;
c * 2.0 + d * 6.0 * t
}
}
/// The `CubicSegment<Vec2>` can be used as a 2-dimensional easing curve for animation.
///
/// The x-axis of the curve is time, and the y-axis is the output value. This struct provides
/// methods for extremely fast solves for y given x.
impl CubicSegment<Vec2> {
/// Construct a cubic Bezier curve for animation easing, with control points `p1` and `p2`. A
/// cubic Bezier easing curve has control point `p0` at (0, 0) and `p3` at (1, 1), leaving only
/// `p1` and `p2` as the remaining degrees of freedom. The first and last control points are
/// fixed to ensure the animation begins at 0, and ends at 1.
///
/// This is a very common tool for UI animations that accelerate and decelerate smoothly. For
/// example, the ubiquitous "ease-in-out" is defined as `(0.25, 0.1), (0.25, 1.0)`.
pub fn new_bezier(p1: impl Into<Vec2>, p2: impl Into<Vec2>) -> Self {
let (p0, p3) = (Vec2::ZERO, Vec2::ONE);
let bezier = CubicBezier::new([[p0, p1.into(), p2.into(), p3]]).to_curve();
bezier.segments[0].clone()
}
/// Maximum allowable error for iterative Bezier solve
const MAX_ERROR: f32 = 1e-5;
/// Maximum number of iterations during Bezier solve
const MAX_ITERS: u8 = 8;
/// Given a `time` within `0..=1`, returns an eased value that follows the cubic curve instead
/// of a straight line. This eased result may be outside the range `0..=1`, however it will
/// always start at 0 and end at 1: `ease(0) = 0` and `ease(1) = 1`.
///
/// ```
/// # use bevy_math::prelude::*;
/// let cubic_bezier = CubicSegment::new_bezier((0.25, 0.1), (0.25, 1.0));
/// assert_eq!(cubic_bezier.ease(0.0), 0.0);
/// assert_eq!(cubic_bezier.ease(1.0), 1.0);
/// ```
///
/// # How cubic easing works
///
/// Easing is generally accomplished with the help of "shaping functions". These are curves that
/// start at (0,0) and end at (1,1). The x-axis of this plot is the current `time` of the
/// animation, from 0 to 1. The y-axis is how far along the animation is, also from 0 to 1. You
/// can imagine that if the shaping function is a straight line, there is a 1:1 mapping between
/// the `time` and how far along your animation is. If the `time` = 0.5, the animation is
/// halfway through. This is known as linear interpolation, and results in objects animating
/// with a constant velocity, and no smooth acceleration or deceleration at the start or end.
///
/// ```text
/// y
/// │ ●
/// │ ⬈
/// │ ⬈
/// │ ⬈
/// │ ⬈
/// ●─────────── x (time)
/// ```
///
/// Using cubic Beziers, we have a curve that starts at (0,0), ends at (1,1), and follows a path
/// determined by the two remaining control points (handles). These handles allow us to define a
/// smooth curve. As `time` (x-axis) progresses, we now follow the curve, and use the `y` value
/// to determine how far along the animation is.
///
/// ```text
/// y
/// ⬈➔●
/// │ ⬈
/// │ ↑
/// │ ↑
/// │ ⬈
/// ●➔⬈───────── x (time)
/// ```
///
/// To accomplish this, we need to be able to find the position `y` on a curve, given the `x`
/// value. Cubic curves are implicit parametric functions like B(t) = (x,y). To find `y`, we
/// first solve for `t` that corresponds to the given `x` (`time`). We use the Newton-Raphson
/// root-finding method to quickly find a value of `t` that is very near the desired value of
/// `x`. Once we have this we can easily plug that `t` into our curve's `position` function, to
/// find the `y` component, which is how far along our animation should be. In other words:
///
/// > Given `time` in `0..=1`
///
/// > Use Newton's method to find a value of `t` that results in B(t) = (x,y) where `x == time`
///
/// > Once a solution is found, use the resulting `y` value as the final result
#[inline]
pub fn ease(&self, time: f32) -> f32 {
let x = time.clamp(0.0, 1.0);
self.find_y_given_x(x)
}
/// Find the `y` value of the curve at the given `x` value using the Newton-Raphson method.
#[inline]
fn find_y_given_x(&self, x: f32) -> f32 {
let mut t_guess = x;
let mut pos_guess = Vec2::ZERO;
for _ in 0..Self::MAX_ITERS {
pos_guess = self.position(t_guess);
let error = pos_guess.x - x;
if error.abs() <= Self::MAX_ERROR {
break;
}
// Using Newton's method, use the tangent line to estimate a better guess value.
let slope = self.velocity(t_guess).x; // dx/dt
t_guess -= error / slope;
}
pos_guess.y
}
}
/// A collection of [`CubicSegment`]s chained into a curve.
///
/// Use any struct that implements the [`CubicGenerator`] trait to create a new curve, such as
/// [`CubicBezier`].
#[derive(Clone, Debug, PartialEq)]
pub struct CubicCurve<P: Point> {
segments: Vec<CubicSegment<P>>,
}
impl<P: Point> CubicCurve<P> {
/// Compute the position of a point on the cubic curve at the parametric value `t`.
///
/// Note that `t` varies from `0..=(n_points - 3)`.
#[inline]
pub fn position(&self, t: f32) -> P {
let (segment, t) = self.segment(t);
segment.position(t)
}
/// Compute the first derivative with respect to t at `t`. This is the instantaneous velocity of
/// a point on the cubic curve at `t`.
///
/// Note that `t` varies from `0..=(n_points - 3)`.
#[inline]
pub fn velocity(&self, t: f32) -> P {
let (segment, t) = self.segment(t);
segment.velocity(t)
}
/// Compute the second derivative with respect to t at `t`. This is the instantaneous
/// acceleration of a point on the cubic curve at `t`.
///
/// Note that `t` varies from `0..=(n_points - 3)`.
#[inline]
pub fn acceleration(&self, t: f32) -> P {
let (segment, t) = self.segment(t);
segment.acceleration(t)
}
/// A flexible iterator used to sample curves with arbitrary functions.
///
/// This splits the curve into `subdivisions` of evenly spaced `t` values across the
/// length of the curve from start (t = 0) to end (t = n), where `n = self.segment_count()`,
/// returning an iterator evaluating the curve with the supplied `sample_function` at each `t`.
///
/// For `subdivisions = 2`, this will split the curve into two lines, or three points, and
/// return an iterator with 3 items, the three points, one at the start, middle, and end.
#[inline]
pub fn iter_samples<'a, 'b: 'a>(
&'b self,
subdivisions: usize,
mut sample_function: impl FnMut(&Self, f32) -> P + 'a,
) -> impl Iterator<Item = P> + 'a {
self.iter_uniformly(subdivisions)
.map(move |t| sample_function(self, t))
}
/// An iterator that returns values of `t` uniformly spaced over `0..=subdivisions`.
#[inline]
fn iter_uniformly(&self, subdivisions: usize) -> impl Iterator<Item = f32> {
let segments = self.segments.len() as f32;
let step = segments / subdivisions as f32;
(0..=subdivisions).map(move |i| i as f32 * step)
}
/// The list of segments contained in this `CubicCurve`.
///
/// This spline's global `t` value is equal to how many segments it has.
///
/// All method accepting `t` on `CubicCurve` depends on the global `t`.
/// When sampling over the entire curve, you should either use one of the
/// `iter_*` methods or account for the segment count using `curve.segments().len()`.
#[inline]
pub fn segments(&self) -> &[CubicSegment<P>] {
&self.segments
}
/// Iterate over the curve split into `subdivisions`, sampling the position at each step.
pub fn iter_positions(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
self.iter_samples(subdivisions, Self::position)
}
/// Iterate over the curve split into `subdivisions`, sampling the velocity at each step.
pub fn iter_velocities(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
self.iter_samples(subdivisions, Self::velocity)
}
/// Iterate over the curve split into `subdivisions`, sampling the acceleration at each step.
pub fn iter_accelerations(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
self.iter_samples(subdivisions, Self::acceleration)
}
/// Returns the [`CubicSegment`] and local `t` value given a spline's global `t` value.
#[inline]
fn segment(&self, t: f32) -> (&CubicSegment<P>, f32) {
if self.segments.len() == 1 {
(&self.segments[0], t)
} else {
let i = (t.floor() as usize).clamp(0, self.segments.len() - 1);
(&self.segments[i], t - i as f32)
}
}
#[inline]
fn coefficients(p: [P; 4], multiplier: f32, char_matrix: [[f32; 4]; 4]) -> CubicSegment<P> {
let [c0, c1, c2, c3] = char_matrix;
// These are the polynomial coefficients, computed by multiplying the characteristic
// matrix by the point matrix.
let mut coeff = [
p[0] * c0[0] + p[1] * c0[1] + p[2] * c0[2] + p[3] * c0[3],
p[0] * c1[0] + p[1] * c1[1] + p[2] * c1[2] + p[3] * c1[3],
p[0] * c2[0] + p[1] * c2[1] + p[2] * c2[2] + p[3] * c2[3],
p[0] * c3[0] + p[1] * c3[1] + p[2] * c3[2] + p[3] * c3[3],
];
coeff.iter_mut().for_each(|c| *c = *c * multiplier);
CubicSegment { coeff }
}
}
#[cfg(test)]
mod tests {
use glam::{vec2, Vec2};
use crate::cubic_splines::{CubicBezier, CubicGenerator, CubicSegment};
/// How close two floats can be and still be considered equal
const FLOAT_EQ: f32 = 1e-5;
/// Sweep along the full length of a 3D cubic Bezier, and manually check the position.
#[test]
fn cubic() {
const N_SAMPLES: usize = 1000;
let points = [[
vec2(-1.0, -20.0),
vec2(3.0, 2.0),
vec2(5.0, 3.0),
vec2(9.0, 8.0),
]];
let bezier = CubicBezier::new(points).to_curve();
for i in 0..=N_SAMPLES {
let t = i as f32 / N_SAMPLES as f32; // Check along entire length
assert!(bezier.position(t).distance(cubic_manual(t, points[0])) <= FLOAT_EQ);
}
}
/// Manual, hardcoded function for computing the position along a cubic bezier.
fn cubic_manual(t: f32, points: [Vec2; 4]) -> Vec2 {
let p = points;
p[0] * (1.0 - t).powi(3)
+ 3.0 * p[1] * t * (1.0 - t).powi(2)
+ 3.0 * p[2] * t.powi(2) * (1.0 - t)
+ p[3] * t.powi(3)
}
/// Basic cubic Bezier easing test to verify the shape of the curve.
#[test]
fn easing_simple() {
// A curve similar to ease-in-out, but symmetric
let bezier = CubicSegment::new_bezier([1.0, 0.0], [0.0, 1.0]);
assert_eq!(bezier.ease(0.0), 0.0);
assert!(bezier.ease(0.2) < 0.2); // tests curve
assert_eq!(bezier.ease(0.5), 0.5); // true due to symmetry
assert!(bezier.ease(0.8) > 0.8); // tests curve
assert_eq!(bezier.ease(1.0), 1.0);
}
/// A curve that forms an upside-down "U", that should extend below 0.0. Useful for animations
/// that go beyond the start and end positions, e.g. bouncing.
#[test]
fn easing_overshoot() {
// A curve that forms an upside-down "U", that should extend above 1.0
let bezier = CubicSegment::new_bezier([0.0, 2.0], [1.0, 2.0]);
assert_eq!(bezier.ease(0.0), 0.0);
assert!(bezier.ease(0.5) > 1.5);
assert_eq!(bezier.ease(1.0), 1.0);
}
/// A curve that forms a "U", that should extend below 0.0. Useful for animations that go beyond
/// the start and end positions, e.g. bouncing.
#[test]
fn easing_undershoot() {
let bezier = CubicSegment::new_bezier([0.0, -2.0], [1.0, -2.0]);
assert_eq!(bezier.ease(0.0), 0.0);
assert!(bezier.ease(0.5) < -0.5);
assert_eq!(bezier.ease(1.0), 1.0);
}
}