1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
//! Provides types for building cubic splines for rendering curves and use with animation easing.

use glam::{Vec2, Vec3, Vec3A};

use std::{
    fmt::Debug,
    iter::Sum,
    ops::{Add, Mul, Sub},
};

/// A point in space of any dimension that supports the math ops needed for cubic spline
/// interpolation.
pub trait Point:
    Mul<f32, Output = Self>
    + Add<Self, Output = Self>
    + Sub<Self, Output = Self>
    + Add<f32, Output = Self>
    + Sum
    + Default
    + Debug
    + Clone
    + PartialEq
    + Copy
{
}
impl Point for Vec3 {}
impl Point for Vec3A {}
impl Point for Vec2 {}
impl Point for f32 {}

/// A spline composed of a single cubic Bezier curve.
///
/// Useful for user-drawn curves with local control, or animation easing. See
/// [`CubicSegment::new_bezier`] for use in easing.
///
/// ### Interpolation
/// The curve only passes through the first and last control point in each set of four points.
///
/// ### Tangency
/// Manually defined by the two intermediate control points within each set of four points.
///
/// ### Continuity
/// At minimum C0 continuous, up to C2. Continuity greater than C0 can result in a loss of local
/// control over the spline due to the curvature constraints.
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [[
///     vec2(-1.0, -20.0),
///     vec2(3.0, 2.0),
///     vec2(5.0, 3.0),
///     vec2(9.0, 8.0),
/// ]];
/// let bezier = CubicBezier::new(points).to_curve();
/// let positions: Vec<_> = bezier.iter_positions(100).collect();
/// ```
pub struct CubicBezier<P: Point> {
    control_points: Vec<[P; 4]>,
}

impl<P: Point> CubicBezier<P> {
    /// Create a new cubic Bezier curve from sets of control points.
    pub fn new(control_points: impl Into<Vec<[P; 4]>>) -> Self {
        Self {
            control_points: control_points.into(),
        }
    }
}
impl<P: Point> CubicGenerator<P> for CubicBezier<P> {
    #[inline]
    fn to_curve(&self) -> CubicCurve<P> {
        let char_matrix = [
            [1., 0., 0., 0.],
            [-3., 3., 0., 0.],
            [3., -6., 3., 0.],
            [-1., 3., -3., 1.],
        ];

        let segments = self
            .control_points
            .iter()
            .map(|p| CubicCurve::coefficients(*p, 1.0, char_matrix))
            .collect();

        CubicCurve { segments }
    }
}

/// A spline interpolated continuously between the nearest two control points, with the position and
/// velocity of the curve specified at both control points. This curve passes through all control
/// points, with the specified velocity which includes direction and parametric speed.
///
/// Useful for smooth interpolation when you know the position and velocity at two points in time,
/// such as network prediction.
///
/// ### Interpolation
/// The curve passes through every control point.
///
/// ### Tangency
/// Explicitly defined at each control point.
///
/// ### Continuity
/// At minimum C0 continuous, up to C1.
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [
///     vec2(-1.0, -20.0),
///     vec2(3.0, 2.0),
///     vec2(5.0, 3.0),
///     vec2(9.0, 8.0),
/// ];
/// let tangents = [
///     vec2(0.0, 1.0),
///     vec2(0.0, 1.0),
///     vec2(0.0, 1.0),
///     vec2(0.0, 1.0),
/// ];
/// let hermite = CubicHermite::new(points, tangents).to_curve();
/// let positions: Vec<_> = hermite.iter_positions(100).collect();
/// ```
pub struct CubicHermite<P: Point> {
    control_points: Vec<(P, P)>,
}
impl<P: Point> CubicHermite<P> {
    /// Create a new Hermite curve from sets of control points.
    pub fn new(
        control_points: impl IntoIterator<Item = P>,
        tangents: impl IntoIterator<Item = P>,
    ) -> Self {
        Self {
            control_points: control_points.into_iter().zip(tangents).collect(),
        }
    }
}
impl<P: Point> CubicGenerator<P> for CubicHermite<P> {
    #[inline]
    fn to_curve(&self) -> CubicCurve<P> {
        let char_matrix = [
            [1., 0., 0., 0.],
            [0., 1., 0., 0.],
            [-3., -2., 3., -1.],
            [2., 1., -2., 1.],
        ];

        let segments = self
            .control_points
            .windows(2)
            .map(|p| {
                let (p0, v0, p1, v1) = (p[0].0, p[0].1, p[1].0, p[1].1);
                CubicCurve::coefficients([p0, v0, p1, v1], 1.0, char_matrix)
            })
            .collect();

        CubicCurve { segments }
    }
}

/// A spline interpolated continuously across the nearest four control points, with the position of
/// the curve specified at every control point and the tangents computed automatically.
///
/// **Note** the Catmull-Rom spline is a special case of Cardinal spline where the tension is 0.5.
///
/// ### Interpolation
/// The curve passes through every control point.
///
/// ### Tangency
/// Automatically defined at each control point.
///
/// ### Continuity
/// C1 continuous.
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [
///     vec2(-1.0, -20.0),
///     vec2(3.0, 2.0),
///     vec2(5.0, 3.0),
///     vec2(9.0, 8.0),
/// ];
/// let cardinal = CubicCardinalSpline::new(0.3, points).to_curve();
/// let positions: Vec<_> = cardinal.iter_positions(100).collect();
/// ```
pub struct CubicCardinalSpline<P: Point> {
    tension: f32,
    control_points: Vec<P>,
}

impl<P: Point> CubicCardinalSpline<P> {
    /// Build a new Cardinal spline.
    pub fn new(tension: f32, control_points: impl Into<Vec<P>>) -> Self {
        Self {
            tension,
            control_points: control_points.into(),
        }
    }

    /// Build a new Catmull-Rom spline, the special case of a Cardinal spline where tension = 1/2.
    pub fn new_catmull_rom(control_points: impl Into<Vec<P>>) -> Self {
        Self {
            tension: 0.5,
            control_points: control_points.into(),
        }
    }
}
impl<P: Point> CubicGenerator<P> for CubicCardinalSpline<P> {
    #[inline]
    fn to_curve(&self) -> CubicCurve<P> {
        let s = self.tension;
        let char_matrix = [
            [0., 1., 0., 0.],
            [-s, 0., s, 0.],
            [2. * s, s - 3., 3. - 2. * s, -s],
            [-s, 2. - s, s - 2., s],
        ];

        let segments = self
            .control_points
            .windows(4)
            .map(|p| CubicCurve::coefficients([p[0], p[1], p[2], p[3]], 1.0, char_matrix))
            .collect();

        CubicCurve { segments }
    }
}

/// A spline interpolated continuously across the nearest four control points. The curve does not
/// pass through any of the control points.
///
/// ### Interpolation
/// The curve does not pass through control points.
///
/// ### Tangency
/// Automatically computed based on the position of control points.
///
/// ### Continuity
/// C2 continuous! The acceleration continuity of this spline makes it useful for camera paths.
///
/// ### Usage
///
/// ```
/// # use bevy_math::{*, prelude::*};
/// let points = [
///     vec2(-1.0, -20.0),
///     vec2(3.0, 2.0),
///     vec2(5.0, 3.0),
///     vec2(9.0, 8.0),
/// ];
/// let b_spline = CubicBSpline::new(points).to_curve();
/// let positions: Vec<_> = b_spline.iter_positions(100).collect();
/// ```
pub struct CubicBSpline<P: Point> {
    control_points: Vec<P>,
}
impl<P: Point> CubicBSpline<P> {
    /// Build a new Cardinal spline.
    pub fn new(control_points: impl Into<Vec<P>>) -> Self {
        Self {
            control_points: control_points.into(),
        }
    }
}
impl<P: Point> CubicGenerator<P> for CubicBSpline<P> {
    #[inline]
    fn to_curve(&self) -> CubicCurve<P> {
        let char_matrix = [
            [1., 4., 1., 0.],
            [-3., 0., 3., 0.],
            [3., -6., 3., 0.],
            [-1., 3., -3., 1.],
        ];

        let segments = self
            .control_points
            .windows(4)
            .map(|p| CubicCurve::coefficients([p[0], p[1], p[2], p[3]], 1.0 / 6.0, char_matrix))
            .collect();

        CubicCurve { segments }
    }
}

/// Implement this on cubic splines that can generate a curve from their spline parameters.
pub trait CubicGenerator<P: Point> {
    /// Build a [`CubicCurve`] by computing the interpolation coefficients for each curve segment.
    fn to_curve(&self) -> CubicCurve<P>;
}

/// A segment of a cubic curve, used to hold precomputed coefficients for fast interpolation.
///
/// Segments can be chained together to form a longer compound curve.
#[derive(Clone, Debug, Default, PartialEq)]
pub struct CubicSegment<P: Point> {
    coeff: [P; 4],
}

impl<P: Point> CubicSegment<P> {
    /// Instantaneous position of a point at parametric value `t`.
    #[inline]
    pub fn position(&self, t: f32) -> P {
        let [a, b, c, d] = self.coeff;
        a + b * t + c * t.powi(2) + d * t.powi(3)
    }

    /// Instantaneous velocity of a point at parametric value `t`.
    #[inline]
    pub fn velocity(&self, t: f32) -> P {
        let [_, b, c, d] = self.coeff;
        b + c * 2.0 * t + d * 3.0 * t.powi(2)
    }

    /// Instantaneous acceleration of a point at parametric value `t`.
    #[inline]
    pub fn acceleration(&self, t: f32) -> P {
        let [_, _, c, d] = self.coeff;
        c * 2.0 + d * 6.0 * t
    }
}

/// The `CubicSegment<Vec2>` can be used as a 2-dimensional easing curve for animation.
///
/// The x-axis of the curve is time, and the y-axis is the output value. This struct provides
/// methods for extremely fast solves for y given x.
impl CubicSegment<Vec2> {
    /// Construct a cubic Bezier curve for animation easing, with control points `p1` and `p2`. A
    /// cubic Bezier easing curve has control point `p0` at (0, 0) and `p3` at (1, 1), leaving only
    /// `p1` and `p2` as the remaining degrees of freedom. The first and last control points are
    /// fixed to ensure the animation begins at 0, and ends at 1.
    ///
    /// This is a very common tool for UI animations that accelerate and decelerate smoothly. For
    /// example, the ubiquitous "ease-in-out" is defined as `(0.25, 0.1), (0.25, 1.0)`.
    pub fn new_bezier(p1: impl Into<Vec2>, p2: impl Into<Vec2>) -> Self {
        let (p0, p3) = (Vec2::ZERO, Vec2::ONE);
        let bezier = CubicBezier::new([[p0, p1.into(), p2.into(), p3]]).to_curve();
        bezier.segments[0].clone()
    }

    /// Maximum allowable error for iterative Bezier solve
    const MAX_ERROR: f32 = 1e-5;

    /// Maximum number of iterations during Bezier solve
    const MAX_ITERS: u8 = 8;

    /// Given a `time` within `0..=1`, returns an eased value that follows the cubic curve instead
    /// of a straight line. This eased result may be outside the range `0..=1`, however it will
    /// always start at 0 and end at 1: `ease(0) = 0` and `ease(1) = 1`.
    ///
    /// ```
    /// # use bevy_math::prelude::*;
    /// let cubic_bezier = CubicSegment::new_bezier((0.25, 0.1), (0.25, 1.0));
    /// assert_eq!(cubic_bezier.ease(0.0), 0.0);
    /// assert_eq!(cubic_bezier.ease(1.0), 1.0);
    /// ```
    ///
    /// # How cubic easing works
    ///
    /// Easing is generally accomplished with the help of "shaping functions". These are curves that
    /// start at (0,0) and end at (1,1). The x-axis of this plot is the current `time` of the
    /// animation, from 0 to 1. The y-axis is how far along the animation is, also from 0 to 1. You
    /// can imagine that if the shaping function is a straight line, there is a 1:1 mapping between
    /// the `time` and how far along your animation is. If the `time` = 0.5, the animation is
    /// halfway through. This is known as linear interpolation, and results in objects animating
    /// with a constant velocity, and no smooth acceleration or deceleration at the start or end.
    ///
    /// ```text
    /// y
    /// │         ●
    /// │       ⬈
    /// │     ⬈    
    /// │   ⬈
    /// │ ⬈
    /// ●─────────── x (time)
    /// ```
    ///
    /// Using cubic Beziers, we have a curve that starts at (0,0), ends at (1,1), and follows a path
    /// determined by the two remaining control points (handles). These handles allow us to define a
    /// smooth curve. As `time` (x-axis) progresses, we now follow the curve, and use the `y` value
    /// to determine how far along the animation is.
    ///
    /// ```text
    /// y
    ///          ⬈➔●
    /// │      ⬈   
    /// │     ↑      
    /// │     ↑
    /// │    ⬈
    /// ●➔⬈───────── x (time)
    /// ```
    ///
    /// To accomplish this, we need to be able to find the position `y` on a curve, given the `x`
    /// value. Cubic curves are implicit parametric functions like B(t) = (x,y). To find `y`, we
    /// first solve for `t` that corresponds to the given `x` (`time`). We use the Newton-Raphson
    /// root-finding method to quickly find a value of `t` that is very near the desired value of
    /// `x`. Once we have this we can easily plug that `t` into our curve's `position` function, to
    /// find the `y` component, which is how far along our animation should be. In other words:
    ///
    /// > Given `time` in `0..=1`
    ///
    /// > Use Newton's method to find a value of `t` that results in B(t) = (x,y) where `x == time`
    ///
    /// > Once a solution is found, use the resulting `y` value as the final result
    #[inline]
    pub fn ease(&self, time: f32) -> f32 {
        let x = time.clamp(0.0, 1.0);
        self.find_y_given_x(x)
    }

    /// Find the `y` value of the curve at the given `x` value using the Newton-Raphson method.
    #[inline]
    fn find_y_given_x(&self, x: f32) -> f32 {
        let mut t_guess = x;
        let mut pos_guess = Vec2::ZERO;
        for _ in 0..Self::MAX_ITERS {
            pos_guess = self.position(t_guess);
            let error = pos_guess.x - x;
            if error.abs() <= Self::MAX_ERROR {
                break;
            }
            // Using Newton's method, use the tangent line to estimate a better guess value.
            let slope = self.velocity(t_guess).x; // dx/dt
            t_guess -= error / slope;
        }
        pos_guess.y
    }
}

/// A collection of [`CubicSegment`]s chained into a curve.
///
/// Use any struct that implements the [`CubicGenerator`] trait to create a new curve, such as
/// [`CubicBezier`].
#[derive(Clone, Debug, PartialEq)]
pub struct CubicCurve<P: Point> {
    segments: Vec<CubicSegment<P>>,
}

impl<P: Point> CubicCurve<P> {
    /// Compute the position of a point on the cubic curve at the parametric value `t`.
    ///
    /// Note that `t` varies from `0..=(n_points - 3)`.
    #[inline]
    pub fn position(&self, t: f32) -> P {
        let (segment, t) = self.segment(t);
        segment.position(t)
    }

    /// Compute the first derivative with respect to t at `t`. This is the instantaneous velocity of
    /// a point on the cubic curve at `t`.
    ///
    /// Note that `t` varies from `0..=(n_points - 3)`.
    #[inline]
    pub fn velocity(&self, t: f32) -> P {
        let (segment, t) = self.segment(t);
        segment.velocity(t)
    }

    /// Compute the second derivative with respect to t at `t`. This is the instantaneous
    /// acceleration of a point on the cubic curve at `t`.
    ///
    /// Note that `t` varies from `0..=(n_points - 3)`.
    #[inline]
    pub fn acceleration(&self, t: f32) -> P {
        let (segment, t) = self.segment(t);
        segment.acceleration(t)
    }

    /// A flexible iterator used to sample curves with arbitrary functions.
    ///
    /// This splits the curve into `subdivisions` of evenly spaced `t` values across the
    /// length of the curve from start (t = 0) to end (t = n), where `n = self.segment_count()`,
    /// returning an iterator evaluating the curve with the supplied `sample_function` at each `t`.
    ///
    /// For `subdivisions = 2`, this will split the curve into two lines, or three points, and
    /// return an iterator with 3 items, the three points, one at the start, middle, and end.
    #[inline]
    pub fn iter_samples<'a, 'b: 'a>(
        &'b self,
        subdivisions: usize,
        mut sample_function: impl FnMut(&Self, f32) -> P + 'a,
    ) -> impl Iterator<Item = P> + 'a {
        self.iter_uniformly(subdivisions)
            .map(move |t| sample_function(self, t))
    }

    /// An iterator that returns values of `t` uniformly spaced over `0..=subdivisions`.
    #[inline]
    fn iter_uniformly(&self, subdivisions: usize) -> impl Iterator<Item = f32> {
        let segments = self.segments.len() as f32;
        let step = segments / subdivisions as f32;
        (0..=subdivisions).map(move |i| i as f32 * step)
    }

    /// The list of segments contained in this `CubicCurve`.
    ///
    /// This spline's global `t` value is equal to how many segments it has.
    ///
    /// All method accepting `t` on `CubicCurve` depends on the global `t`.
    /// When sampling over the entire curve, you should either use one of the
    /// `iter_*` methods or account for the segment count using `curve.segments().len()`.
    #[inline]
    pub fn segments(&self) -> &[CubicSegment<P>] {
        &self.segments
    }

    /// Iterate over the curve split into `subdivisions`, sampling the position at each step.
    pub fn iter_positions(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
        self.iter_samples(subdivisions, Self::position)
    }

    /// Iterate over the curve split into `subdivisions`, sampling the velocity at each step.
    pub fn iter_velocities(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
        self.iter_samples(subdivisions, Self::velocity)
    }

    /// Iterate over the curve split into `subdivisions`, sampling the acceleration at each step.
    pub fn iter_accelerations(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
        self.iter_samples(subdivisions, Self::acceleration)
    }

    /// Returns the [`CubicSegment`] and local `t` value given a spline's global `t` value.
    #[inline]
    fn segment(&self, t: f32) -> (&CubicSegment<P>, f32) {
        if self.segments.len() == 1 {
            (&self.segments[0], t)
        } else {
            let i = (t.floor() as usize).clamp(0, self.segments.len() - 1);
            (&self.segments[i], t - i as f32)
        }
    }

    #[inline]
    fn coefficients(p: [P; 4], multiplier: f32, char_matrix: [[f32; 4]; 4]) -> CubicSegment<P> {
        let [c0, c1, c2, c3] = char_matrix;
        // These are the polynomial coefficients, computed by multiplying the characteristic
        // matrix by the point matrix.
        let mut coeff = [
            p[0] * c0[0] + p[1] * c0[1] + p[2] * c0[2] + p[3] * c0[3],
            p[0] * c1[0] + p[1] * c1[1] + p[2] * c1[2] + p[3] * c1[3],
            p[0] * c2[0] + p[1] * c2[1] + p[2] * c2[2] + p[3] * c2[3],
            p[0] * c3[0] + p[1] * c3[1] + p[2] * c3[2] + p[3] * c3[3],
        ];
        coeff.iter_mut().for_each(|c| *c = *c * multiplier);
        CubicSegment { coeff }
    }
}

#[cfg(test)]
mod tests {
    use glam::{vec2, Vec2};

    use crate::cubic_splines::{CubicBezier, CubicGenerator, CubicSegment};

    /// How close two floats can be and still be considered equal
    const FLOAT_EQ: f32 = 1e-5;

    /// Sweep along the full length of a 3D cubic Bezier, and manually check the position.
    #[test]
    fn cubic() {
        const N_SAMPLES: usize = 1000;
        let points = [[
            vec2(-1.0, -20.0),
            vec2(3.0, 2.0),
            vec2(5.0, 3.0),
            vec2(9.0, 8.0),
        ]];
        let bezier = CubicBezier::new(points).to_curve();
        for i in 0..=N_SAMPLES {
            let t = i as f32 / N_SAMPLES as f32; // Check along entire length
            assert!(bezier.position(t).distance(cubic_manual(t, points[0])) <= FLOAT_EQ);
        }
    }

    /// Manual, hardcoded function for computing the position along a cubic bezier.
    fn cubic_manual(t: f32, points: [Vec2; 4]) -> Vec2 {
        let p = points;
        p[0] * (1.0 - t).powi(3)
            + 3.0 * p[1] * t * (1.0 - t).powi(2)
            + 3.0 * p[2] * t.powi(2) * (1.0 - t)
            + p[3] * t.powi(3)
    }

    /// Basic cubic Bezier easing test to verify the shape of the curve.
    #[test]
    fn easing_simple() {
        // A curve similar to ease-in-out, but symmetric
        let bezier = CubicSegment::new_bezier([1.0, 0.0], [0.0, 1.0]);
        assert_eq!(bezier.ease(0.0), 0.0);
        assert!(bezier.ease(0.2) < 0.2); // tests curve
        assert_eq!(bezier.ease(0.5), 0.5); // true due to symmetry
        assert!(bezier.ease(0.8) > 0.8); // tests curve
        assert_eq!(bezier.ease(1.0), 1.0);
    }

    /// A curve that forms an upside-down "U", that should extend below 0.0. Useful for animations
    /// that go beyond the start and end positions, e.g. bouncing.
    #[test]
    fn easing_overshoot() {
        // A curve that forms an upside-down "U", that should extend above 1.0
        let bezier = CubicSegment::new_bezier([0.0, 2.0], [1.0, 2.0]);
        assert_eq!(bezier.ease(0.0), 0.0);
        assert!(bezier.ease(0.5) > 1.5);
        assert_eq!(bezier.ease(1.0), 1.0);
    }

    /// A curve that forms a "U", that should extend below 0.0. Useful for animations that go beyond
    /// the start and end positions, e.g. bouncing.
    #[test]
    fn easing_undershoot() {
        let bezier = CubicSegment::new_bezier([0.0, -2.0], [1.0, -2.0]);
        assert_eq!(bezier.ease(0.0), 0.0);
        assert!(bezier.ease(0.5) < -0.5);
        assert_eq!(bezier.ease(1.0), 1.0);
    }
}