1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
use std::f32::consts::PI;
use super::{InvalidDirectionError, Primitive2d, WindingOrder};
use crate::Vec2;
/// A normalized vector pointing in a direction in 2D space
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Direction2d(Vec2);
impl Primitive2d for Direction2d {}
impl Direction2d {
/// A unit vector pointing along the positive X axis.
pub const X: Self = Self(Vec2::X);
/// A unit vector pointing along the positive Y axis.
pub const Y: Self = Self(Vec2::Y);
/// A unit vector pointing along the negative X axis.
pub const NEG_X: Self = Self(Vec2::NEG_X);
/// A unit vector pointing along the negative Y axis.
pub const NEG_Y: Self = Self(Vec2::NEG_Y);
/// Create a direction from a finite, nonzero [`Vec2`].
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the given vector is zero (or very close to zero), infinite, or `NaN`.
pub fn new(value: Vec2) -> Result<Self, InvalidDirectionError> {
Self::new_and_length(value).map(|(dir, _)| dir)
}
/// Create a [`Direction2d`] from a [`Vec2`] that is already normalized.
///
/// # Warning
///
/// `value` must be normalized, i.e it's length must be `1.0`.
pub fn new_unchecked(value: Vec2) -> Self {
debug_assert!(value.is_normalized());
Self(value)
}
/// Create a direction from a finite, nonzero [`Vec2`], also returning its original length.
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the given vector is zero (or very close to zero), infinite, or `NaN`.
pub fn new_and_length(value: Vec2) -> Result<(Self, f32), InvalidDirectionError> {
let length = value.length();
let direction = (length.is_finite() && length > 0.0).then_some(value / length);
direction
.map(|dir| (Self(dir), length))
.ok_or(InvalidDirectionError::from_length(length))
}
/// Create a direction from its `x` and `y` components.
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the vector formed by the components is zero (or very close to zero), infinite, or `NaN`.
pub fn from_xy(x: f32, y: f32) -> Result<Self, InvalidDirectionError> {
Self::new(Vec2::new(x, y))
}
}
impl TryFrom<Vec2> for Direction2d {
type Error = InvalidDirectionError;
fn try_from(value: Vec2) -> Result<Self, Self::Error> {
Self::new(value)
}
}
impl std::ops::Deref for Direction2d {
type Target = Vec2;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl std::ops::Neg for Direction2d {
type Output = Self;
fn neg(self) -> Self::Output {
Self(-self.0)
}
}
#[cfg(feature = "approx")]
impl approx::AbsDiffEq for Direction2d {
type Epsilon = f32;
fn default_epsilon() -> f32 {
f32::EPSILON
}
fn abs_diff_eq(&self, other: &Self, epsilon: f32) -> bool {
self.as_ref().abs_diff_eq(other.as_ref(), epsilon)
}
}
#[cfg(feature = "approx")]
impl approx::RelativeEq for Direction2d {
fn default_max_relative() -> f32 {
f32::EPSILON
}
fn relative_eq(&self, other: &Self, epsilon: f32, max_relative: f32) -> bool {
self.as_ref()
.relative_eq(other.as_ref(), epsilon, max_relative)
}
}
#[cfg(feature = "approx")]
impl approx::UlpsEq for Direction2d {
fn default_max_ulps() -> u32 {
4
}
fn ulps_eq(&self, other: &Self, epsilon: f32, max_ulps: u32) -> bool {
self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps)
}
}
/// A circle primitive
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Circle {
/// The radius of the circle
pub radius: f32,
}
impl Primitive2d for Circle {}
impl Default for Circle {
/// Returns the default [`Circle`] with a radius of `0.5`.
fn default() -> Self {
Self { radius: 0.5 }
}
}
impl Circle {
/// Create a new [`Circle`] from a `radius`
#[inline(always)]
pub const fn new(radius: f32) -> Self {
Self { radius }
}
/// Get the diameter of the circle
#[inline(always)]
pub fn diameter(&self) -> f32 {
2.0 * self.radius
}
/// Get the area of the circle
#[inline(always)]
pub fn area(&self) -> f32 {
PI * self.radius.powi(2)
}
/// Get the perimeter or circumference of the circle
#[inline(always)]
#[doc(alias = "circumference")]
pub fn perimeter(&self) -> f32 {
2.0 * PI * self.radius
}
/// Finds the point on the circle that is closest to the given `point`.
///
/// If the point is outside the circle, the returned point will be on the perimeter of the circle.
/// Otherwise, it will be inside the circle and returned as is.
#[inline(always)]
pub fn closest_point(&self, point: Vec2) -> Vec2 {
let distance_squared = point.length_squared();
if distance_squared <= self.radius.powi(2) {
// The point is inside the circle.
point
} else {
// The point is outside the circle.
// Find the closest point on the perimeter of the circle.
let dir_to_point = point / distance_squared.sqrt();
self.radius * dir_to_point
}
}
}
/// An ellipse primitive
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Ellipse {
/// Half of the width and height of the ellipse.
///
/// This corresponds to the two perpendicular radii defining the ellipse.
pub half_size: Vec2,
}
impl Primitive2d for Ellipse {}
impl Default for Ellipse {
/// Returns the default [`Ellipse`] with a half-width of `1.0` and a half-height of `0.5`.
fn default() -> Self {
Self {
half_size: Vec2::new(1.0, 0.5),
}
}
}
impl Ellipse {
/// Create a new `Ellipse` from half of its width and height.
///
/// This corresponds to the two perpendicular radii defining the ellipse.
#[inline(always)]
pub const fn new(half_width: f32, half_height: f32) -> Self {
Self {
half_size: Vec2::new(half_width, half_height),
}
}
/// Create a new `Ellipse` from a given full size.
///
/// `size.x` is the diameter along the X axis, and `size.y` is the diameter along the Y axis.
#[inline(always)]
pub fn from_size(size: Vec2) -> Self {
Self {
half_size: size / 2.0,
}
}
/// Returns the length of the semi-major axis. This corresponds to the longest radius of the ellipse.
#[inline(always)]
pub fn semi_major(self) -> f32 {
self.half_size.max_element()
}
/// Returns the length of the semi-minor axis. This corresponds to the shortest radius of the ellipse.
#[inline(always)]
pub fn semi_minor(self) -> f32 {
self.half_size.min_element()
}
/// Get the area of the ellipse
#[inline(always)]
pub fn area(&self) -> f32 {
PI * self.half_size.x * self.half_size.y
}
}
/// An unbounded plane in 2D space. It forms a separating surface through the origin,
/// stretching infinitely far
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Plane2d {
/// The normal of the plane. The plane will be placed perpendicular to this direction
pub normal: Direction2d,
}
impl Primitive2d for Plane2d {}
impl Default for Plane2d {
/// Returns the default [`Plane2d`] with a normal pointing in the `+Y` direction.
fn default() -> Self {
Self {
normal: Direction2d::Y,
}
}
}
impl Plane2d {
/// Create a new `Plane2d` from a normal
///
/// # Panics
///
/// Panics if the given `normal` is zero (or very close to zero), or non-finite.
#[inline(always)]
pub fn new(normal: Vec2) -> Self {
Self {
normal: Direction2d::new(normal).expect("normal must be nonzero and finite"),
}
}
}
/// An infinite line along a direction in 2D space.
///
/// For a finite line: [`Segment2d`]
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Line2d {
/// The direction of the line. The line extends infinitely in both the given direction
/// and its opposite direction
pub direction: Direction2d,
}
impl Primitive2d for Line2d {}
/// A segment of a line along a direction in 2D space.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[doc(alias = "LineSegment2d")]
pub struct Segment2d {
/// The direction of the line segment
pub direction: Direction2d,
/// Half the length of the line segment. The segment extends by this amount in both
/// the given direction and its opposite direction
pub half_length: f32,
}
impl Primitive2d for Segment2d {}
impl Segment2d {
/// Create a new `Segment2d` from a direction and full length of the segment
#[inline(always)]
pub fn new(direction: Direction2d, length: f32) -> Self {
Self {
direction,
half_length: length / 2.0,
}
}
/// Create a new `Segment2d` from its endpoints and compute its geometric center
///
/// # Panics
///
/// Panics if `point1 == point2`
#[inline(always)]
pub fn from_points(point1: Vec2, point2: Vec2) -> (Self, Vec2) {
let diff = point2 - point1;
let length = diff.length();
(
// We are dividing by the length here, so the vector is normalized.
Self::new(Direction2d::new_unchecked(diff / length), length),
(point1 + point2) / 2.,
)
}
/// Get the position of the first point on the line segment
#[inline(always)]
pub fn point1(&self) -> Vec2 {
*self.direction * -self.half_length
}
/// Get the position of the second point on the line segment
#[inline(always)]
pub fn point2(&self) -> Vec2 {
*self.direction * self.half_length
}
}
/// A series of connected line segments in 2D space.
///
/// For a version without generics: [`BoxedPolyline2d`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Polyline2d<const N: usize> {
/// The vertices of the polyline
#[cfg_attr(feature = "serialize", serde(with = "super::serde::array"))]
pub vertices: [Vec2; N],
}
impl<const N: usize> Primitive2d for Polyline2d<N> {}
impl<const N: usize> FromIterator<Vec2> for Polyline2d<N> {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let mut vertices: [Vec2; N] = [Vec2::ZERO; N];
for (index, i) in iter.into_iter().take(N).enumerate() {
vertices[index] = i;
}
Self { vertices }
}
}
impl<const N: usize> Polyline2d<N> {
/// Create a new `Polyline2d` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
/// A series of connected line segments in 2D space, allocated on the heap
/// in a `Box<[Vec2]>`.
///
/// For a version without alloc: [`Polyline2d`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct BoxedPolyline2d {
/// The vertices of the polyline
pub vertices: Box<[Vec2]>,
}
impl Primitive2d for BoxedPolyline2d {}
impl FromIterator<Vec2> for BoxedPolyline2d {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let vertices: Vec<Vec2> = iter.into_iter().collect();
Self {
vertices: vertices.into_boxed_slice(),
}
}
}
impl BoxedPolyline2d {
/// Create a new `BoxedPolyline2d` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
/// A triangle in 2D space
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Triangle2d {
/// The vertices of the triangle
pub vertices: [Vec2; 3],
}
impl Primitive2d for Triangle2d {}
impl Default for Triangle2d {
/// Returns the default [`Triangle2d`] with the vertices `[0.0, 0.5]`, `[-0.5, -0.5]`, and `[0.5, -0.5]`.
fn default() -> Self {
Self {
vertices: [Vec2::Y * 0.5, Vec2::new(-0.5, -0.5), Vec2::new(0.5, -0.5)],
}
}
}
impl Triangle2d {
/// Create a new `Triangle2d` from points `a`, `b`, and `c`
#[inline(always)]
pub const fn new(a: Vec2, b: Vec2, c: Vec2) -> Self {
Self {
vertices: [a, b, c],
}
}
/// Get the area of the triangle
#[inline(always)]
pub fn area(&self) -> f32 {
let [a, b, c] = self.vertices;
(a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y)).abs() / 2.0
}
/// Get the perimeter of the triangle
#[inline(always)]
pub fn perimeter(&self) -> f32 {
let [a, b, c] = self.vertices;
let ab = a.distance(b);
let bc = b.distance(c);
let ca = c.distance(a);
ab + bc + ca
}
/// Get the [`WindingOrder`] of the triangle
#[inline(always)]
#[doc(alias = "orientation")]
pub fn winding_order(&self) -> WindingOrder {
let [a, b, c] = self.vertices;
let area = (b - a).perp_dot(c - a);
if area > f32::EPSILON {
WindingOrder::CounterClockwise
} else if area < -f32::EPSILON {
WindingOrder::Clockwise
} else {
WindingOrder::Invalid
}
}
/// Compute the circle passing through all three vertices of the triangle.
/// The vector in the returned tuple is the circumcenter.
pub fn circumcircle(&self) -> (Circle, Vec2) {
// We treat the triangle as translated so that vertex A is at the origin. This simplifies calculations.
//
// A = (0, 0)
// *
// / \
// / \
// / \
// / \
// / U \
// / \
// *-------------*
// B C
let a = self.vertices[0];
let (b, c) = (self.vertices[1] - a, self.vertices[2] - a);
let b_length_sq = b.length_squared();
let c_length_sq = c.length_squared();
// Reference: https://en.wikipedia.org/wiki/Circumcircle#Cartesian_coordinates_2
let inv_d = (2.0 * (b.x * c.y - b.y * c.x)).recip();
let ux = inv_d * (c.y * b_length_sq - b.y * c_length_sq);
let uy = inv_d * (b.x * c_length_sq - c.x * b_length_sq);
let u = Vec2::new(ux, uy);
// Compute true circumcenter and circumradius, adding the tip coordinate so that
// A is translated back to its actual coordinate.
let center = u + a;
let radius = u.length();
(Circle { radius }, center)
}
/// Reverse the [`WindingOrder`] of the triangle
/// by swapping the second and third vertices
#[inline(always)]
pub fn reverse(&mut self) {
self.vertices.swap(1, 2);
}
}
/// A rectangle primitive
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[doc(alias = "Quad")]
pub struct Rectangle {
/// Half of the width and height of the rectangle
pub half_size: Vec2,
}
impl Primitive2d for Rectangle {}
impl Default for Rectangle {
/// Returns the default [`Rectangle`] with a half-width and half-height of `0.5`.
fn default() -> Self {
Self {
half_size: Vec2::splat(0.5),
}
}
}
impl Rectangle {
/// Create a new `Rectangle` from a full width and height
#[inline(always)]
pub fn new(width: f32, height: f32) -> Self {
Self::from_size(Vec2::new(width, height))
}
/// Create a new `Rectangle` from a given full size
#[inline(always)]
pub fn from_size(size: Vec2) -> Self {
Self {
half_size: size / 2.0,
}
}
/// Create a new `Rectangle` from two corner points
#[inline(always)]
pub fn from_corners(point1: Vec2, point2: Vec2) -> Self {
Self {
half_size: (point2 - point1).abs() / 2.0,
}
}
/// Get the size of the rectangle
#[inline(always)]
pub fn size(&self) -> Vec2 {
2.0 * self.half_size
}
/// Get the area of the rectangle
#[inline(always)]
pub fn area(&self) -> f32 {
4.0 * self.half_size.x * self.half_size.y
}
/// Get the perimeter of the rectangle
#[inline(always)]
pub fn perimeter(&self) -> f32 {
4.0 * (self.half_size.x + self.half_size.y)
}
/// Finds the point on the rectangle that is closest to the given `point`.
///
/// If the point is outside the rectangle, the returned point will be on the perimeter of the rectangle.
/// Otherwise, it will be inside the rectangle and returned as is.
#[inline(always)]
pub fn closest_point(&self, point: Vec2) -> Vec2 {
// Clamp point coordinates to the rectangle
point.clamp(-self.half_size, self.half_size)
}
}
/// A polygon with N vertices.
///
/// For a version without generics: [`BoxedPolygon`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Polygon<const N: usize> {
/// The vertices of the `Polygon`
#[cfg_attr(feature = "serialize", serde(with = "super::serde::array"))]
pub vertices: [Vec2; N],
}
impl<const N: usize> Primitive2d for Polygon<N> {}
impl<const N: usize> FromIterator<Vec2> for Polygon<N> {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let mut vertices: [Vec2; N] = [Vec2::ZERO; N];
for (index, i) in iter.into_iter().take(N).enumerate() {
vertices[index] = i;
}
Self { vertices }
}
}
impl<const N: usize> Polygon<N> {
/// Create a new `Polygon` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
/// A polygon with a variable number of vertices, allocated on the heap
/// in a `Box<[Vec2]>`.
///
/// For a version without alloc: [`Polygon`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct BoxedPolygon {
/// The vertices of the `BoxedPolygon`
pub vertices: Box<[Vec2]>,
}
impl Primitive2d for BoxedPolygon {}
impl FromIterator<Vec2> for BoxedPolygon {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let vertices: Vec<Vec2> = iter.into_iter().collect();
Self {
vertices: vertices.into_boxed_slice(),
}
}
}
impl BoxedPolygon {
/// Create a new `BoxedPolygon` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
/// A polygon where all vertices lie on a circle, equally far apart.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct RegularPolygon {
/// The circumcircle on which all vertices lie
pub circumcircle: Circle,
/// The number of sides
pub sides: usize,
}
impl Primitive2d for RegularPolygon {}
impl Default for RegularPolygon {
/// Returns the default [`RegularPolygon`] with six sides (a hexagon) and a circumradius of `0.5`.
fn default() -> Self {
Self {
circumcircle: Circle { radius: 0.5 },
sides: 6,
}
}
}
impl RegularPolygon {
/// Create a new `RegularPolygon`
/// from the radius of the circumcircle and a number of sides
///
/// # Panics
///
/// Panics if `circumradius` is non-positive
#[inline(always)]
pub fn new(circumradius: f32, sides: usize) -> Self {
assert!(circumradius > 0.0, "polygon has a non-positive radius");
assert!(sides > 2, "polygon has less than 3 sides");
Self {
circumcircle: Circle {
radius: circumradius,
},
sides,
}
}
/// Get the radius of the circumcircle on which all vertices
/// of the regular polygon lie
#[inline(always)]
pub fn circumradius(&self) -> f32 {
self.circumcircle.radius
}
/// Get the inradius or apothem of the regular polygon.
/// This is the radius of the largest circle that can
/// be drawn within the polygon
#[inline(always)]
#[doc(alias = "apothem")]
pub fn inradius(&self) -> f32 {
self.circumradius() * (PI / self.sides as f32).cos()
}
/// Get the length of one side of the regular polygon
#[inline(always)]
pub fn side_length(&self) -> f32 {
2.0 * self.circumradius() * (PI / self.sides as f32).sin()
}
/// Get the area of the regular polygon
#[inline(always)]
pub fn area(&self) -> f32 {
let angle: f32 = 2.0 * PI / (self.sides as f32);
(self.sides as f32) * self.circumradius().powi(2) * angle.sin() / 2.0
}
/// Get the perimeter of the regular polygon.
/// This is the sum of its sides
#[inline(always)]
pub fn perimeter(&self) -> f32 {
self.sides as f32 * self.side_length()
}
/// Get the internal angle of the regular polygon in degrees.
///
/// This is the angle formed by two adjacent sides with points
/// within the angle being in the interior of the polygon
#[inline(always)]
pub fn internal_angle_degrees(&self) -> f32 {
(self.sides - 2) as f32 / self.sides as f32 * 180.0
}
/// Get the internal angle of the regular polygon in radians.
///
/// This is the angle formed by two adjacent sides with points
/// within the angle being in the interior of the polygon
#[inline(always)]
pub fn internal_angle_radians(&self) -> f32 {
(self.sides - 2) as f32 * PI / self.sides as f32
}
/// Get the external angle of the regular polygon in degrees.
///
/// This is the angle formed by two adjacent sides with points
/// within the angle being in the exterior of the polygon
#[inline(always)]
pub fn external_angle_degrees(&self) -> f32 {
360.0 / self.sides as f32
}
/// Get the external angle of the regular polygon in radians.
///
/// This is the angle formed by two adjacent sides with points
/// within the angle being in the exterior of the polygon
#[inline(always)]
pub fn external_angle_radians(&self) -> f32 {
2.0 * PI / self.sides as f32
}
/// Returns an iterator over the vertices of the regular polygon,
/// rotated counterclockwise by the given angle in radians.
///
/// With a rotation of 0, a vertex will be placed at the top `(0.0, circumradius)`.
pub fn vertices(self, rotation: f32) -> impl IntoIterator<Item = Vec2> {
// Add pi/2 so that the polygon has a vertex at the top (sin is 1.0 and cos is 0.0)
let start_angle = rotation + std::f32::consts::FRAC_PI_2;
let step = std::f32::consts::TAU / self.sides as f32;
(0..self.sides).map(move |i| {
let theta = start_angle + i as f32 * step;
let (sin, cos) = theta.sin_cos();
Vec2::new(cos, sin) * self.circumcircle.radius
})
}
}
/// A 2D capsule primitive, also known as a stadium or pill shape.
///
/// A two-dimensional capsule is defined as a neighborhood of points at a distance (radius) from a line
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[doc(alias = "stadium", alias = "pill")]
pub struct Capsule2d {
/// The radius of the capsule
pub radius: f32,
/// Half the height of the capsule, excluding the hemicircles
pub half_length: f32,
}
impl Primitive2d for Capsule2d {}
impl Default for Capsule2d {
/// Returns the default [`Capsule2d`] with a radius of `0.5` and a half-height of `0.5`,
/// excluding the hemicircles.
fn default() -> Self {
Self {
radius: 0.5,
half_length: 0.5,
}
}
}
impl Capsule2d {
/// Create a new `Capsule2d` from a radius and length
pub fn new(radius: f32, length: f32) -> Self {
Self {
radius,
half_length: length / 2.0,
}
}
}
#[cfg(test)]
mod tests {
// Reference values were computed by hand and/or with external tools
use super::*;
use approx::assert_relative_eq;
#[test]
fn direction_creation() {
assert_eq!(Direction2d::new(Vec2::X * 12.5), Ok(Direction2d::X));
assert_eq!(
Direction2d::new(Vec2::new(0.0, 0.0)),
Err(InvalidDirectionError::Zero)
);
assert_eq!(
Direction2d::new(Vec2::new(f32::INFINITY, 0.0)),
Err(InvalidDirectionError::Infinite)
);
assert_eq!(
Direction2d::new(Vec2::new(f32::NEG_INFINITY, 0.0)),
Err(InvalidDirectionError::Infinite)
);
assert_eq!(
Direction2d::new(Vec2::new(f32::NAN, 0.0)),
Err(InvalidDirectionError::NaN)
);
assert_eq!(
Direction2d::new_and_length(Vec2::X * 6.5),
Ok((Direction2d::X, 6.5))
);
}
#[test]
fn rectangle_closest_point() {
let rectangle = Rectangle::new(2.0, 2.0);
assert_eq!(rectangle.closest_point(Vec2::X * 10.0), Vec2::X);
assert_eq!(rectangle.closest_point(Vec2::NEG_ONE * 10.0), Vec2::NEG_ONE);
assert_eq!(
rectangle.closest_point(Vec2::new(0.25, 0.1)),
Vec2::new(0.25, 0.1)
);
}
#[test]
fn circle_closest_point() {
let circle = Circle { radius: 1.0 };
assert_eq!(circle.closest_point(Vec2::X * 10.0), Vec2::X);
assert_eq!(
circle.closest_point(Vec2::NEG_ONE * 10.0),
Vec2::NEG_ONE.normalize()
);
assert_eq!(
circle.closest_point(Vec2::new(0.25, 0.1)),
Vec2::new(0.25, 0.1)
);
}
#[test]
fn circle_math() {
let circle = Circle { radius: 3.0 };
assert_eq!(circle.diameter(), 6.0, "incorrect diameter");
assert_eq!(circle.area(), 28.274334, "incorrect area");
assert_eq!(circle.perimeter(), 18.849556, "incorrect perimeter");
}
#[test]
fn ellipse_math() {
let ellipse = Ellipse::new(3.0, 1.0);
assert_eq!(ellipse.area(), 9.424778, "incorrect area");
}
#[test]
fn triangle_math() {
let triangle = Triangle2d::new(
Vec2::new(-2.0, -1.0),
Vec2::new(1.0, 4.0),
Vec2::new(7.0, 0.0),
);
assert_eq!(triangle.area(), 21.0, "incorrect area");
assert_eq!(triangle.perimeter(), 22.097439, "incorrect perimeter");
}
#[test]
fn triangle_winding_order() {
let mut cw_triangle = Triangle2d::new(
Vec2::new(0.0, 2.0),
Vec2::new(-0.5, -1.2),
Vec2::new(-1.0, -1.0),
);
assert_eq!(cw_triangle.winding_order(), WindingOrder::Clockwise);
let ccw_triangle = Triangle2d::new(
Vec2::new(0.0, 2.0),
Vec2::new(-1.0, -1.0),
Vec2::new(-0.5, -1.2),
);
assert_eq!(ccw_triangle.winding_order(), WindingOrder::CounterClockwise);
// The clockwise triangle should be the same as the counterclockwise
// triangle when reversed
cw_triangle.reverse();
assert_eq!(cw_triangle, ccw_triangle);
let invalid_triangle = Triangle2d::new(
Vec2::new(0.0, 2.0),
Vec2::new(0.0, -1.0),
Vec2::new(0.0, -1.2),
);
assert_eq!(invalid_triangle.winding_order(), WindingOrder::Invalid);
}
#[test]
fn rectangle_math() {
let rectangle = Rectangle::new(3.0, 7.0);
assert_eq!(
rectangle,
Rectangle::from_corners(Vec2::new(-1.5, -3.5), Vec2::new(1.5, 3.5))
);
assert_eq!(rectangle.area(), 21.0, "incorrect area");
assert_eq!(rectangle.perimeter(), 20.0, "incorrect perimeter");
}
#[test]
fn regular_polygon_math() {
let polygon = RegularPolygon::new(3.0, 6);
assert_eq!(polygon.inradius(), 2.598076, "incorrect inradius");
assert_eq!(polygon.side_length(), 3.0, "incorrect side length");
assert_relative_eq!(polygon.area(), 23.38268, epsilon = 0.00001);
assert_eq!(polygon.perimeter(), 18.0, "incorrect perimeter");
assert_eq!(
polygon.internal_angle_degrees(),
120.0,
"incorrect internal angle"
);
assert_eq!(
polygon.internal_angle_radians(),
120_f32.to_radians(),
"incorrect internal angle"
);
assert_eq!(
polygon.external_angle_degrees(),
60.0,
"incorrect external angle"
);
assert_eq!(
polygon.external_angle_radians(),
60_f32.to_radians(),
"incorrect external angle"
);
}
#[test]
fn triangle_circumcenter() {
let triangle = Triangle2d::new(
Vec2::new(10.0, 2.0),
Vec2::new(-5.0, -3.0),
Vec2::new(2.0, -1.0),
);
let (Circle { radius }, circumcenter) = triangle.circumcircle();
// Calculated with external calculator
assert_eq!(radius, 98.34887);
assert_eq!(circumcenter, Vec2::new(-28.5, 92.5));
}
#[test]
fn regular_polygon_vertices() {
let polygon = RegularPolygon::new(1.0, 4);
// Regular polygons have a vertex at the top by default
let mut vertices = polygon.vertices(0.0).into_iter();
assert!((vertices.next().unwrap() - Vec2::Y).length() < 1e-7);
// Rotate by 45 degrees, forming an axis-aligned square
let mut rotated_vertices = polygon.vertices(std::f32::consts::FRAC_PI_4).into_iter();
// Distance from the origin to the middle of a side, derived using Pythagorean theorem
let side_sistance = std::f32::consts::FRAC_1_SQRT_2;
assert!(
(rotated_vertices.next().unwrap() - Vec2::new(-side_sistance, side_sistance)).length()
< 1e-7,
);
}
}