1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
use std::f32::consts::PI;

use super::{InvalidDirectionError, Primitive2d, WindingOrder};
use crate::Vec2;

/// A normalized vector pointing in a direction in 2D space
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Direction2d(Vec2);
impl Primitive2d for Direction2d {}

impl Direction2d {
    /// A unit vector pointing along the positive X axis.
    pub const X: Self = Self(Vec2::X);
    /// A unit vector pointing along the positive Y axis.
    pub const Y: Self = Self(Vec2::Y);
    /// A unit vector pointing along the negative X axis.
    pub const NEG_X: Self = Self(Vec2::NEG_X);
    /// A unit vector pointing along the negative Y axis.
    pub const NEG_Y: Self = Self(Vec2::NEG_Y);

    /// Create a direction from a finite, nonzero [`Vec2`].
    ///
    /// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
    /// of the given vector is zero (or very close to zero), infinite, or `NaN`.
    pub fn new(value: Vec2) -> Result<Self, InvalidDirectionError> {
        Self::new_and_length(value).map(|(dir, _)| dir)
    }

    /// Create a [`Direction2d`] from a [`Vec2`] that is already normalized.
    ///
    /// # Warning
    ///
    /// `value` must be normalized, i.e it's length must be `1.0`.
    pub fn new_unchecked(value: Vec2) -> Self {
        debug_assert!(value.is_normalized());

        Self(value)
    }

    /// Create a direction from a finite, nonzero [`Vec2`], also returning its original length.
    ///
    /// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
    /// of the given vector is zero (or very close to zero), infinite, or `NaN`.
    pub fn new_and_length(value: Vec2) -> Result<(Self, f32), InvalidDirectionError> {
        let length = value.length();
        let direction = (length.is_finite() && length > 0.0).then_some(value / length);

        direction
            .map(|dir| (Self(dir), length))
            .ok_or(InvalidDirectionError::from_length(length))
    }

    /// Create a direction from its `x` and `y` components.
    ///
    /// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
    /// of the vector formed by the components is zero (or very close to zero), infinite, or `NaN`.
    pub fn from_xy(x: f32, y: f32) -> Result<Self, InvalidDirectionError> {
        Self::new(Vec2::new(x, y))
    }
}

impl TryFrom<Vec2> for Direction2d {
    type Error = InvalidDirectionError;

    fn try_from(value: Vec2) -> Result<Self, Self::Error> {
        Self::new(value)
    }
}

impl std::ops::Deref for Direction2d {
    type Target = Vec2;
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl std::ops::Neg for Direction2d {
    type Output = Self;
    fn neg(self) -> Self::Output {
        Self(-self.0)
    }
}

#[cfg(feature = "approx")]
impl approx::AbsDiffEq for Direction2d {
    type Epsilon = f32;
    fn default_epsilon() -> f32 {
        f32::EPSILON
    }
    fn abs_diff_eq(&self, other: &Self, epsilon: f32) -> bool {
        self.as_ref().abs_diff_eq(other.as_ref(), epsilon)
    }
}

#[cfg(feature = "approx")]
impl approx::RelativeEq for Direction2d {
    fn default_max_relative() -> f32 {
        f32::EPSILON
    }
    fn relative_eq(&self, other: &Self, epsilon: f32, max_relative: f32) -> bool {
        self.as_ref()
            .relative_eq(other.as_ref(), epsilon, max_relative)
    }
}

#[cfg(feature = "approx")]
impl approx::UlpsEq for Direction2d {
    fn default_max_ulps() -> u32 {
        4
    }
    fn ulps_eq(&self, other: &Self, epsilon: f32, max_ulps: u32) -> bool {
        self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps)
    }
}

/// A circle primitive
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Circle {
    /// The radius of the circle
    pub radius: f32,
}
impl Primitive2d for Circle {}

impl Default for Circle {
    /// Returns the default [`Circle`] with a radius of `0.5`.
    fn default() -> Self {
        Self { radius: 0.5 }
    }
}

impl Circle {
    /// Create a new [`Circle`] from a `radius`
    #[inline(always)]
    pub const fn new(radius: f32) -> Self {
        Self { radius }
    }

    /// Get the diameter of the circle
    #[inline(always)]
    pub fn diameter(&self) -> f32 {
        2.0 * self.radius
    }

    /// Get the area of the circle
    #[inline(always)]
    pub fn area(&self) -> f32 {
        PI * self.radius.powi(2)
    }

    /// Get the perimeter or circumference of the circle
    #[inline(always)]
    #[doc(alias = "circumference")]
    pub fn perimeter(&self) -> f32 {
        2.0 * PI * self.radius
    }

    /// Finds the point on the circle that is closest to the given `point`.
    ///
    /// If the point is outside the circle, the returned point will be on the perimeter of the circle.
    /// Otherwise, it will be inside the circle and returned as is.
    #[inline(always)]
    pub fn closest_point(&self, point: Vec2) -> Vec2 {
        let distance_squared = point.length_squared();

        if distance_squared <= self.radius.powi(2) {
            // The point is inside the circle.
            point
        } else {
            // The point is outside the circle.
            // Find the closest point on the perimeter of the circle.
            let dir_to_point = point / distance_squared.sqrt();
            self.radius * dir_to_point
        }
    }
}

/// An ellipse primitive
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Ellipse {
    /// Half of the width and height of the ellipse.
    ///
    /// This corresponds to the two perpendicular radii defining the ellipse.
    pub half_size: Vec2,
}
impl Primitive2d for Ellipse {}

impl Default for Ellipse {
    /// Returns the default [`Ellipse`] with a half-width of `1.0` and a half-height of `0.5`.
    fn default() -> Self {
        Self {
            half_size: Vec2::new(1.0, 0.5),
        }
    }
}

impl Ellipse {
    /// Create a new `Ellipse` from half of its width and height.
    ///
    /// This corresponds to the two perpendicular radii defining the ellipse.
    #[inline(always)]
    pub const fn new(half_width: f32, half_height: f32) -> Self {
        Self {
            half_size: Vec2::new(half_width, half_height),
        }
    }

    /// Create a new `Ellipse` from a given full size.
    ///
    /// `size.x` is the diameter along the X axis, and `size.y` is the diameter along the Y axis.
    #[inline(always)]
    pub fn from_size(size: Vec2) -> Self {
        Self {
            half_size: size / 2.0,
        }
    }

    /// Returns the length of the semi-major axis. This corresponds to the longest radius of the ellipse.
    #[inline(always)]
    pub fn semi_major(self) -> f32 {
        self.half_size.max_element()
    }

    /// Returns the length of the semi-minor axis. This corresponds to the shortest radius of the ellipse.
    #[inline(always)]
    pub fn semi_minor(self) -> f32 {
        self.half_size.min_element()
    }

    /// Get the area of the ellipse
    #[inline(always)]
    pub fn area(&self) -> f32 {
        PI * self.half_size.x * self.half_size.y
    }
}

/// An unbounded plane in 2D space. It forms a separating surface through the origin,
/// stretching infinitely far
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Plane2d {
    /// The normal of the plane. The plane will be placed perpendicular to this direction
    pub normal: Direction2d,
}
impl Primitive2d for Plane2d {}

impl Default for Plane2d {
    /// Returns the default [`Plane2d`] with a normal pointing in the `+Y` direction.
    fn default() -> Self {
        Self {
            normal: Direction2d::Y,
        }
    }
}

impl Plane2d {
    /// Create a new `Plane2d` from a normal
    ///
    /// # Panics
    ///
    /// Panics if the given `normal` is zero (or very close to zero), or non-finite.
    #[inline(always)]
    pub fn new(normal: Vec2) -> Self {
        Self {
            normal: Direction2d::new(normal).expect("normal must be nonzero and finite"),
        }
    }
}

/// An infinite line along a direction in 2D space.
///
/// For a finite line: [`Segment2d`]
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Line2d {
    /// The direction of the line. The line extends infinitely in both the given direction
    /// and its opposite direction
    pub direction: Direction2d,
}
impl Primitive2d for Line2d {}

/// A segment of a line along a direction in 2D space.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[doc(alias = "LineSegment2d")]
pub struct Segment2d {
    /// The direction of the line segment
    pub direction: Direction2d,
    /// Half the length of the line segment. The segment extends by this amount in both
    /// the given direction and its opposite direction
    pub half_length: f32,
}
impl Primitive2d for Segment2d {}

impl Segment2d {
    /// Create a new `Segment2d` from a direction and full length of the segment
    #[inline(always)]
    pub fn new(direction: Direction2d, length: f32) -> Self {
        Self {
            direction,
            half_length: length / 2.0,
        }
    }

    /// Create a new `Segment2d` from its endpoints and compute its geometric center
    ///
    /// # Panics
    ///
    /// Panics if `point1 == point2`
    #[inline(always)]
    pub fn from_points(point1: Vec2, point2: Vec2) -> (Self, Vec2) {
        let diff = point2 - point1;
        let length = diff.length();

        (
            // We are dividing by the length here, so the vector is normalized.
            Self::new(Direction2d::new_unchecked(diff / length), length),
            (point1 + point2) / 2.,
        )
    }

    /// Get the position of the first point on the line segment
    #[inline(always)]
    pub fn point1(&self) -> Vec2 {
        *self.direction * -self.half_length
    }

    /// Get the position of the second point on the line segment
    #[inline(always)]
    pub fn point2(&self) -> Vec2 {
        *self.direction * self.half_length
    }
}

/// A series of connected line segments in 2D space.
///
/// For a version without generics: [`BoxedPolyline2d`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Polyline2d<const N: usize> {
    /// The vertices of the polyline
    #[cfg_attr(feature = "serialize", serde(with = "super::serde::array"))]
    pub vertices: [Vec2; N],
}
impl<const N: usize> Primitive2d for Polyline2d<N> {}

impl<const N: usize> FromIterator<Vec2> for Polyline2d<N> {
    fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
        let mut vertices: [Vec2; N] = [Vec2::ZERO; N];

        for (index, i) in iter.into_iter().take(N).enumerate() {
            vertices[index] = i;
        }
        Self { vertices }
    }
}

impl<const N: usize> Polyline2d<N> {
    /// Create a new `Polyline2d` from its vertices
    pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
        Self::from_iter(vertices)
    }
}

/// A series of connected line segments in 2D space, allocated on the heap
/// in a `Box<[Vec2]>`.
///
/// For a version without alloc: [`Polyline2d`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct BoxedPolyline2d {
    /// The vertices of the polyline
    pub vertices: Box<[Vec2]>,
}
impl Primitive2d for BoxedPolyline2d {}

impl FromIterator<Vec2> for BoxedPolyline2d {
    fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
        let vertices: Vec<Vec2> = iter.into_iter().collect();
        Self {
            vertices: vertices.into_boxed_slice(),
        }
    }
}

impl BoxedPolyline2d {
    /// Create a new `BoxedPolyline2d` from its vertices
    pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
        Self::from_iter(vertices)
    }
}

/// A triangle in 2D space
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Triangle2d {
    /// The vertices of the triangle
    pub vertices: [Vec2; 3],
}
impl Primitive2d for Triangle2d {}

impl Default for Triangle2d {
    /// Returns the default [`Triangle2d`] with the vertices `[0.0, 0.5]`, `[-0.5, -0.5]`, and `[0.5, -0.5]`.
    fn default() -> Self {
        Self {
            vertices: [Vec2::Y * 0.5, Vec2::new(-0.5, -0.5), Vec2::new(0.5, -0.5)],
        }
    }
}

impl Triangle2d {
    /// Create a new `Triangle2d` from points `a`, `b`, and `c`
    #[inline(always)]
    pub const fn new(a: Vec2, b: Vec2, c: Vec2) -> Self {
        Self {
            vertices: [a, b, c],
        }
    }

    /// Get the area of the triangle
    #[inline(always)]
    pub fn area(&self) -> f32 {
        let [a, b, c] = self.vertices;
        (a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y)).abs() / 2.0
    }

    /// Get the perimeter of the triangle
    #[inline(always)]
    pub fn perimeter(&self) -> f32 {
        let [a, b, c] = self.vertices;

        let ab = a.distance(b);
        let bc = b.distance(c);
        let ca = c.distance(a);

        ab + bc + ca
    }

    /// Get the [`WindingOrder`] of the triangle
    #[inline(always)]
    #[doc(alias = "orientation")]
    pub fn winding_order(&self) -> WindingOrder {
        let [a, b, c] = self.vertices;
        let area = (b - a).perp_dot(c - a);
        if area > f32::EPSILON {
            WindingOrder::CounterClockwise
        } else if area < -f32::EPSILON {
            WindingOrder::Clockwise
        } else {
            WindingOrder::Invalid
        }
    }

    /// Compute the circle passing through all three vertices of the triangle.
    /// The vector in the returned tuple is the circumcenter.
    pub fn circumcircle(&self) -> (Circle, Vec2) {
        // We treat the triangle as translated so that vertex A is at the origin. This simplifies calculations.
        //
        //     A = (0, 0)
        //        *
        //       / \
        //      /   \
        //     /     \
        //    /       \
        //   /    U    \
        //  /           \
        // *-------------*
        // B             C

        let a = self.vertices[0];
        let (b, c) = (self.vertices[1] - a, self.vertices[2] - a);
        let b_length_sq = b.length_squared();
        let c_length_sq = c.length_squared();

        // Reference: https://en.wikipedia.org/wiki/Circumcircle#Cartesian_coordinates_2
        let inv_d = (2.0 * (b.x * c.y - b.y * c.x)).recip();
        let ux = inv_d * (c.y * b_length_sq - b.y * c_length_sq);
        let uy = inv_d * (b.x * c_length_sq - c.x * b_length_sq);
        let u = Vec2::new(ux, uy);

        // Compute true circumcenter and circumradius, adding the tip coordinate so that
        // A is translated back to its actual coordinate.
        let center = u + a;
        let radius = u.length();

        (Circle { radius }, center)
    }

    /// Reverse the [`WindingOrder`] of the triangle
    /// by swapping the second and third vertices
    #[inline(always)]
    pub fn reverse(&mut self) {
        self.vertices.swap(1, 2);
    }
}

/// A rectangle primitive
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[doc(alias = "Quad")]
pub struct Rectangle {
    /// Half of the width and height of the rectangle
    pub half_size: Vec2,
}
impl Primitive2d for Rectangle {}

impl Default for Rectangle {
    /// Returns the default [`Rectangle`] with a half-width and half-height of `0.5`.
    fn default() -> Self {
        Self {
            half_size: Vec2::splat(0.5),
        }
    }
}

impl Rectangle {
    /// Create a new `Rectangle` from a full width and height
    #[inline(always)]
    pub fn new(width: f32, height: f32) -> Self {
        Self::from_size(Vec2::new(width, height))
    }

    /// Create a new `Rectangle` from a given full size
    #[inline(always)]
    pub fn from_size(size: Vec2) -> Self {
        Self {
            half_size: size / 2.0,
        }
    }

    /// Create a new `Rectangle` from two corner points
    #[inline(always)]
    pub fn from_corners(point1: Vec2, point2: Vec2) -> Self {
        Self {
            half_size: (point2 - point1).abs() / 2.0,
        }
    }

    /// Get the size of the rectangle
    #[inline(always)]
    pub fn size(&self) -> Vec2 {
        2.0 * self.half_size
    }

    /// Get the area of the rectangle
    #[inline(always)]
    pub fn area(&self) -> f32 {
        4.0 * self.half_size.x * self.half_size.y
    }

    /// Get the perimeter of the rectangle
    #[inline(always)]
    pub fn perimeter(&self) -> f32 {
        4.0 * (self.half_size.x + self.half_size.y)
    }

    /// Finds the point on the rectangle that is closest to the given `point`.
    ///
    /// If the point is outside the rectangle, the returned point will be on the perimeter of the rectangle.
    /// Otherwise, it will be inside the rectangle and returned as is.
    #[inline(always)]
    pub fn closest_point(&self, point: Vec2) -> Vec2 {
        // Clamp point coordinates to the rectangle
        point.clamp(-self.half_size, self.half_size)
    }
}

/// A polygon with N vertices.
///
/// For a version without generics: [`BoxedPolygon`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Polygon<const N: usize> {
    /// The vertices of the `Polygon`
    #[cfg_attr(feature = "serialize", serde(with = "super::serde::array"))]
    pub vertices: [Vec2; N],
}
impl<const N: usize> Primitive2d for Polygon<N> {}

impl<const N: usize> FromIterator<Vec2> for Polygon<N> {
    fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
        let mut vertices: [Vec2; N] = [Vec2::ZERO; N];

        for (index, i) in iter.into_iter().take(N).enumerate() {
            vertices[index] = i;
        }
        Self { vertices }
    }
}

impl<const N: usize> Polygon<N> {
    /// Create a new `Polygon` from its vertices
    pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
        Self::from_iter(vertices)
    }
}

/// A polygon with a variable number of vertices, allocated on the heap
/// in a `Box<[Vec2]>`.
///
/// For a version without alloc: [`Polygon`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct BoxedPolygon {
    /// The vertices of the `BoxedPolygon`
    pub vertices: Box<[Vec2]>,
}
impl Primitive2d for BoxedPolygon {}

impl FromIterator<Vec2> for BoxedPolygon {
    fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
        let vertices: Vec<Vec2> = iter.into_iter().collect();
        Self {
            vertices: vertices.into_boxed_slice(),
        }
    }
}

impl BoxedPolygon {
    /// Create a new `BoxedPolygon` from its vertices
    pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
        Self::from_iter(vertices)
    }
}

/// A polygon where all vertices lie on a circle, equally far apart.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct RegularPolygon {
    /// The circumcircle on which all vertices lie
    pub circumcircle: Circle,
    /// The number of sides
    pub sides: usize,
}
impl Primitive2d for RegularPolygon {}

impl Default for RegularPolygon {
    /// Returns the default [`RegularPolygon`] with six sides (a hexagon) and a circumradius of `0.5`.
    fn default() -> Self {
        Self {
            circumcircle: Circle { radius: 0.5 },
            sides: 6,
        }
    }
}

impl RegularPolygon {
    /// Create a new `RegularPolygon`
    /// from the radius of the circumcircle and a number of sides
    ///
    /// # Panics
    ///
    /// Panics if `circumradius` is non-positive
    #[inline(always)]
    pub fn new(circumradius: f32, sides: usize) -> Self {
        assert!(circumradius > 0.0, "polygon has a non-positive radius");
        assert!(sides > 2, "polygon has less than 3 sides");

        Self {
            circumcircle: Circle {
                radius: circumradius,
            },
            sides,
        }
    }

    /// Get the radius of the circumcircle on which all vertices
    /// of the regular polygon lie
    #[inline(always)]
    pub fn circumradius(&self) -> f32 {
        self.circumcircle.radius
    }

    /// Get the inradius or apothem of the regular polygon.
    /// This is the radius of the largest circle that can
    /// be drawn within the polygon
    #[inline(always)]
    #[doc(alias = "apothem")]
    pub fn inradius(&self) -> f32 {
        self.circumradius() * (PI / self.sides as f32).cos()
    }

    /// Get the length of one side of the regular polygon
    #[inline(always)]
    pub fn side_length(&self) -> f32 {
        2.0 * self.circumradius() * (PI / self.sides as f32).sin()
    }

    /// Get the area of the regular polygon
    #[inline(always)]
    pub fn area(&self) -> f32 {
        let angle: f32 = 2.0 * PI / (self.sides as f32);
        (self.sides as f32) * self.circumradius().powi(2) * angle.sin() / 2.0
    }

    /// Get the perimeter of the regular polygon.
    /// This is the sum of its sides
    #[inline(always)]
    pub fn perimeter(&self) -> f32 {
        self.sides as f32 * self.side_length()
    }

    /// Get the internal angle of the regular polygon in degrees.
    ///
    /// This is the angle formed by two adjacent sides with points
    /// within the angle being in the interior of the polygon
    #[inline(always)]
    pub fn internal_angle_degrees(&self) -> f32 {
        (self.sides - 2) as f32 / self.sides as f32 * 180.0
    }

    /// Get the internal angle of the regular polygon in radians.
    ///
    /// This is the angle formed by two adjacent sides with points
    /// within the angle being in the interior of the polygon
    #[inline(always)]
    pub fn internal_angle_radians(&self) -> f32 {
        (self.sides - 2) as f32 * PI / self.sides as f32
    }

    /// Get the external angle of the regular polygon in degrees.
    ///
    /// This is the angle formed by two adjacent sides with points
    /// within the angle being in the exterior of the polygon
    #[inline(always)]
    pub fn external_angle_degrees(&self) -> f32 {
        360.0 / self.sides as f32
    }

    /// Get the external angle of the regular polygon in radians.
    ///
    /// This is the angle formed by two adjacent sides with points
    /// within the angle being in the exterior of the polygon
    #[inline(always)]
    pub fn external_angle_radians(&self) -> f32 {
        2.0 * PI / self.sides as f32
    }

    /// Returns an iterator over the vertices of the regular polygon,
    /// rotated counterclockwise by the given angle in radians.
    ///
    /// With a rotation of 0, a vertex will be placed at the top `(0.0, circumradius)`.
    pub fn vertices(self, rotation: f32) -> impl IntoIterator<Item = Vec2> {
        // Add pi/2 so that the polygon has a vertex at the top (sin is 1.0 and cos is 0.0)
        let start_angle = rotation + std::f32::consts::FRAC_PI_2;
        let step = std::f32::consts::TAU / self.sides as f32;

        (0..self.sides).map(move |i| {
            let theta = start_angle + i as f32 * step;
            let (sin, cos) = theta.sin_cos();
            Vec2::new(cos, sin) * self.circumcircle.radius
        })
    }
}

/// A 2D capsule primitive, also known as a stadium or pill shape.
///
/// A two-dimensional capsule is defined as a neighborhood of points at a distance (radius) from a line
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[doc(alias = "stadium", alias = "pill")]
pub struct Capsule2d {
    /// The radius of the capsule
    pub radius: f32,
    /// Half the height of the capsule, excluding the hemicircles
    pub half_length: f32,
}
impl Primitive2d for Capsule2d {}

impl Default for Capsule2d {
    /// Returns the default [`Capsule2d`] with a radius of `0.5` and a half-height of `0.5`,
    /// excluding the hemicircles.
    fn default() -> Self {
        Self {
            radius: 0.5,
            half_length: 0.5,
        }
    }
}

impl Capsule2d {
    /// Create a new `Capsule2d` from a radius and length
    pub fn new(radius: f32, length: f32) -> Self {
        Self {
            radius,
            half_length: length / 2.0,
        }
    }
}

#[cfg(test)]
mod tests {
    // Reference values were computed by hand and/or with external tools

    use super::*;
    use approx::assert_relative_eq;

    #[test]
    fn direction_creation() {
        assert_eq!(Direction2d::new(Vec2::X * 12.5), Ok(Direction2d::X));
        assert_eq!(
            Direction2d::new(Vec2::new(0.0, 0.0)),
            Err(InvalidDirectionError::Zero)
        );
        assert_eq!(
            Direction2d::new(Vec2::new(f32::INFINITY, 0.0)),
            Err(InvalidDirectionError::Infinite)
        );
        assert_eq!(
            Direction2d::new(Vec2::new(f32::NEG_INFINITY, 0.0)),
            Err(InvalidDirectionError::Infinite)
        );
        assert_eq!(
            Direction2d::new(Vec2::new(f32::NAN, 0.0)),
            Err(InvalidDirectionError::NaN)
        );
        assert_eq!(
            Direction2d::new_and_length(Vec2::X * 6.5),
            Ok((Direction2d::X, 6.5))
        );
    }

    #[test]
    fn rectangle_closest_point() {
        let rectangle = Rectangle::new(2.0, 2.0);
        assert_eq!(rectangle.closest_point(Vec2::X * 10.0), Vec2::X);
        assert_eq!(rectangle.closest_point(Vec2::NEG_ONE * 10.0), Vec2::NEG_ONE);
        assert_eq!(
            rectangle.closest_point(Vec2::new(0.25, 0.1)),
            Vec2::new(0.25, 0.1)
        );
    }

    #[test]
    fn circle_closest_point() {
        let circle = Circle { radius: 1.0 };
        assert_eq!(circle.closest_point(Vec2::X * 10.0), Vec2::X);
        assert_eq!(
            circle.closest_point(Vec2::NEG_ONE * 10.0),
            Vec2::NEG_ONE.normalize()
        );
        assert_eq!(
            circle.closest_point(Vec2::new(0.25, 0.1)),
            Vec2::new(0.25, 0.1)
        );
    }

    #[test]
    fn circle_math() {
        let circle = Circle { radius: 3.0 };
        assert_eq!(circle.diameter(), 6.0, "incorrect diameter");
        assert_eq!(circle.area(), 28.274334, "incorrect area");
        assert_eq!(circle.perimeter(), 18.849556, "incorrect perimeter");
    }

    #[test]
    fn ellipse_math() {
        let ellipse = Ellipse::new(3.0, 1.0);
        assert_eq!(ellipse.area(), 9.424778, "incorrect area");
    }

    #[test]
    fn triangle_math() {
        let triangle = Triangle2d::new(
            Vec2::new(-2.0, -1.0),
            Vec2::new(1.0, 4.0),
            Vec2::new(7.0, 0.0),
        );
        assert_eq!(triangle.area(), 21.0, "incorrect area");
        assert_eq!(triangle.perimeter(), 22.097439, "incorrect perimeter");
    }

    #[test]
    fn triangle_winding_order() {
        let mut cw_triangle = Triangle2d::new(
            Vec2::new(0.0, 2.0),
            Vec2::new(-0.5, -1.2),
            Vec2::new(-1.0, -1.0),
        );
        assert_eq!(cw_triangle.winding_order(), WindingOrder::Clockwise);

        let ccw_triangle = Triangle2d::new(
            Vec2::new(0.0, 2.0),
            Vec2::new(-1.0, -1.0),
            Vec2::new(-0.5, -1.2),
        );
        assert_eq!(ccw_triangle.winding_order(), WindingOrder::CounterClockwise);

        // The clockwise triangle should be the same as the counterclockwise
        // triangle when reversed
        cw_triangle.reverse();
        assert_eq!(cw_triangle, ccw_triangle);

        let invalid_triangle = Triangle2d::new(
            Vec2::new(0.0, 2.0),
            Vec2::new(0.0, -1.0),
            Vec2::new(0.0, -1.2),
        );
        assert_eq!(invalid_triangle.winding_order(), WindingOrder::Invalid);
    }

    #[test]
    fn rectangle_math() {
        let rectangle = Rectangle::new(3.0, 7.0);
        assert_eq!(
            rectangle,
            Rectangle::from_corners(Vec2::new(-1.5, -3.5), Vec2::new(1.5, 3.5))
        );
        assert_eq!(rectangle.area(), 21.0, "incorrect area");
        assert_eq!(rectangle.perimeter(), 20.0, "incorrect perimeter");
    }

    #[test]
    fn regular_polygon_math() {
        let polygon = RegularPolygon::new(3.0, 6);
        assert_eq!(polygon.inradius(), 2.598076, "incorrect inradius");
        assert_eq!(polygon.side_length(), 3.0, "incorrect side length");
        assert_relative_eq!(polygon.area(), 23.38268, epsilon = 0.00001);
        assert_eq!(polygon.perimeter(), 18.0, "incorrect perimeter");
        assert_eq!(
            polygon.internal_angle_degrees(),
            120.0,
            "incorrect internal angle"
        );
        assert_eq!(
            polygon.internal_angle_radians(),
            120_f32.to_radians(),
            "incorrect internal angle"
        );
        assert_eq!(
            polygon.external_angle_degrees(),
            60.0,
            "incorrect external angle"
        );
        assert_eq!(
            polygon.external_angle_radians(),
            60_f32.to_radians(),
            "incorrect external angle"
        );
    }

    #[test]
    fn triangle_circumcenter() {
        let triangle = Triangle2d::new(
            Vec2::new(10.0, 2.0),
            Vec2::new(-5.0, -3.0),
            Vec2::new(2.0, -1.0),
        );
        let (Circle { radius }, circumcenter) = triangle.circumcircle();

        // Calculated with external calculator
        assert_eq!(radius, 98.34887);
        assert_eq!(circumcenter, Vec2::new(-28.5, 92.5));
    }

    #[test]
    fn regular_polygon_vertices() {
        let polygon = RegularPolygon::new(1.0, 4);

        // Regular polygons have a vertex at the top by default
        let mut vertices = polygon.vertices(0.0).into_iter();
        assert!((vertices.next().unwrap() - Vec2::Y).length() < 1e-7);

        // Rotate by 45 degrees, forming an axis-aligned square
        let mut rotated_vertices = polygon.vertices(std::f32::consts::FRAC_PI_4).into_iter();

        // Distance from the origin to the middle of a side, derived using Pythagorean theorem
        let side_sistance = std::f32::consts::FRAC_1_SQRT_2;
        assert!(
            (rotated_vertices.next().unwrap() - Vec2::new(-side_sistance, side_sistance)).length()
                < 1e-7,
        );
    }
}