1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
use std::f32::consts::{FRAC_PI_3, PI};
use super::{Circle, InvalidDirectionError, Primitive3d};
use crate::{Quat, Vec3};
/// A normalized vector pointing in a direction in 3D space
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Direction3d(Vec3);
impl Primitive3d for Direction3d {}
impl Direction3d {
/// A unit vector pointing along the positive X axis.
pub const X: Self = Self(Vec3::X);
/// A unit vector pointing along the positive Y axis.
pub const Y: Self = Self(Vec3::Y);
/// A unit vector pointing along the positive Z axis.
pub const Z: Self = Self(Vec3::Z);
/// A unit vector pointing along the negative X axis.
pub const NEG_X: Self = Self(Vec3::NEG_X);
/// A unit vector pointing along the negative Y axis.
pub const NEG_Y: Self = Self(Vec3::NEG_Y);
/// A unit vector pointing along the negative Z axis.
pub const NEG_Z: Self = Self(Vec3::NEG_Z);
/// Create a direction from a finite, nonzero [`Vec3`].
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the given vector is zero (or very close to zero), infinite, or `NaN`.
pub fn new(value: Vec3) -> Result<Self, InvalidDirectionError> {
Self::new_and_length(value).map(|(dir, _)| dir)
}
/// Create a [`Direction3d`] from a [`Vec3`] that is already normalized.
///
/// # Warning
///
/// `value` must be normalized, i.e it's length must be `1.0`.
pub fn new_unchecked(value: Vec3) -> Self {
debug_assert!(value.is_normalized());
Self(value)
}
/// Create a direction from a finite, nonzero [`Vec3`], also returning its original length.
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the given vector is zero (or very close to zero), infinite, or `NaN`.
pub fn new_and_length(value: Vec3) -> Result<(Self, f32), InvalidDirectionError> {
let length = value.length();
let direction = (length.is_finite() && length > 0.0).then_some(value / length);
direction
.map(|dir| (Self(dir), length))
.ok_or(InvalidDirectionError::from_length(length))
}
/// Create a direction from its `x`, `y`, and `z` components.
///
/// Returns [`Err(InvalidDirectionError)`](InvalidDirectionError) if the length
/// of the vector formed by the components is zero (or very close to zero), infinite, or `NaN`.
pub fn from_xyz(x: f32, y: f32, z: f32) -> Result<Self, InvalidDirectionError> {
Self::new(Vec3::new(x, y, z))
}
}
impl TryFrom<Vec3> for Direction3d {
type Error = InvalidDirectionError;
fn try_from(value: Vec3) -> Result<Self, Self::Error> {
Self::new(value)
}
}
impl From<Direction3d> for Vec3 {
fn from(value: Direction3d) -> Self {
value.0
}
}
impl std::ops::Deref for Direction3d {
type Target = Vec3;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl std::ops::Neg for Direction3d {
type Output = Self;
fn neg(self) -> Self::Output {
Self(-self.0)
}
}
impl std::ops::Mul<f32> for Direction3d {
type Output = Vec3;
fn mul(self, rhs: f32) -> Self::Output {
self.0 * rhs
}
}
impl std::ops::Mul<Direction3d> for Quat {
type Output = Direction3d;
/// Rotates the [`Direction3d`] using a [`Quat`].
fn mul(self, direction: Direction3d) -> Self::Output {
let rotated = self * *direction;
// Make sure the result is normalized.
// This can fail for non-unit quaternions.
debug_assert!(rotated.is_normalized());
Direction3d::new_unchecked(rotated)
}
}
#[cfg(feature = "approx")]
impl approx::AbsDiffEq for Direction3d {
type Epsilon = f32;
fn default_epsilon() -> f32 {
f32::EPSILON
}
fn abs_diff_eq(&self, other: &Self, epsilon: f32) -> bool {
self.as_ref().abs_diff_eq(other.as_ref(), epsilon)
}
}
#[cfg(feature = "approx")]
impl approx::RelativeEq for Direction3d {
fn default_max_relative() -> f32 {
f32::EPSILON
}
fn relative_eq(&self, other: &Self, epsilon: f32, max_relative: f32) -> bool {
self.as_ref()
.relative_eq(other.as_ref(), epsilon, max_relative)
}
}
#[cfg(feature = "approx")]
impl approx::UlpsEq for Direction3d {
fn default_max_ulps() -> u32 {
4
}
fn ulps_eq(&self, other: &Self, epsilon: f32, max_ulps: u32) -> bool {
self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps)
}
}
/// A sphere primitive
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Sphere {
/// The radius of the sphere
pub radius: f32,
}
impl Primitive3d for Sphere {}
impl Default for Sphere {
/// Returns the default [`Sphere`] with a radius of `0.5`.
fn default() -> Self {
Self { radius: 0.5 }
}
}
impl Sphere {
/// Create a new [`Sphere`] from a `radius`
#[inline(always)]
pub const fn new(radius: f32) -> Self {
Self { radius }
}
/// Get the diameter of the sphere
#[inline(always)]
pub fn diameter(&self) -> f32 {
2.0 * self.radius
}
/// Get the surface area of the sphere
#[inline(always)]
pub fn area(&self) -> f32 {
4.0 * PI * self.radius.powi(2)
}
/// Get the volume of the sphere
#[inline(always)]
pub fn volume(&self) -> f32 {
4.0 * FRAC_PI_3 * self.radius.powi(3)
}
/// Finds the point on the sphere that is closest to the given `point`.
///
/// If the point is outside the sphere, the returned point will be on the surface of the sphere.
/// Otherwise, it will be inside the sphere and returned as is.
#[inline(always)]
pub fn closest_point(&self, point: Vec3) -> Vec3 {
let distance_squared = point.length_squared();
if distance_squared <= self.radius.powi(2) {
// The point is inside the sphere.
point
} else {
// The point is outside the sphere.
// Find the closest point on the surface of the sphere.
let dir_to_point = point / distance_squared.sqrt();
self.radius * dir_to_point
}
}
}
/// An unbounded plane in 3D space. It forms a separating surface through the origin,
/// stretching infinitely far
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Plane3d {
/// The normal of the plane. The plane will be placed perpendicular to this direction
pub normal: Direction3d,
}
impl Primitive3d for Plane3d {}
impl Default for Plane3d {
/// Returns the default [`Plane3d`] with a normal pointing in the `+Y` direction.
fn default() -> Self {
Self {
normal: Direction3d::Y,
}
}
}
impl Plane3d {
/// Create a new `Plane3d` from a normal
///
/// # Panics
///
/// Panics if the given `normal` is zero (or very close to zero), or non-finite.
#[inline(always)]
pub fn new(normal: Vec3) -> Self {
Self {
normal: Direction3d::new(normal).expect("normal must be nonzero and finite"),
}
}
/// Create a new `Plane3d` based on three points and compute the geometric center
/// of those points.
///
/// The direction of the plane normal is determined by the winding order
/// of the triangular shape formed by the points.
///
/// # Panics
///
/// Panics if a valid normal can not be computed, for example when the points
/// are *collinear* and lie on the same line.
#[inline(always)]
pub fn from_points(a: Vec3, b: Vec3, c: Vec3) -> (Self, Vec3) {
let normal = Direction3d::new((b - a).cross(c - a))
.expect("plane must be defined by three finite points that don't lie on the same line");
let translation = (a + b + c) / 3.0;
(Self { normal }, translation)
}
}
/// An infinite line along a direction in 3D space.
///
/// For a finite line: [`Segment3d`]
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Line3d {
/// The direction of the line
pub direction: Direction3d,
}
impl Primitive3d for Line3d {}
/// A segment of a line along a direction in 3D space.
#[doc(alias = "LineSegment3d")]
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Segment3d {
/// The direction of the line
pub direction: Direction3d,
/// Half the length of the line segment. The segment extends by this amount in both
/// the given direction and its opposite direction
pub half_length: f32,
}
impl Primitive3d for Segment3d {}
impl Segment3d {
/// Create a new `Segment3d` from a direction and full length of the segment
#[inline(always)]
pub fn new(direction: Direction3d, length: f32) -> Self {
Self {
direction,
half_length: length / 2.0,
}
}
/// Create a new `Segment3d` from its endpoints and compute its geometric center
///
/// # Panics
///
/// Panics if `point1 == point2`
#[inline(always)]
pub fn from_points(point1: Vec3, point2: Vec3) -> (Self, Vec3) {
let diff = point2 - point1;
let length = diff.length();
(
// We are dividing by the length here, so the vector is normalized.
Self::new(Direction3d::new_unchecked(diff / length), length),
(point1 + point2) / 2.,
)
}
/// Get the position of the first point on the line segment
#[inline(always)]
pub fn point1(&self) -> Vec3 {
*self.direction * -self.half_length
}
/// Get the position of the second point on the line segment
#[inline(always)]
pub fn point2(&self) -> Vec3 {
*self.direction * self.half_length
}
}
/// A series of connected line segments in 3D space.
///
/// For a version without generics: [`BoxedPolyline3d`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Polyline3d<const N: usize> {
/// The vertices of the polyline
#[cfg_attr(feature = "serialize", serde(with = "super::serde::array"))]
pub vertices: [Vec3; N],
}
impl<const N: usize> Primitive3d for Polyline3d<N> {}
impl<const N: usize> FromIterator<Vec3> for Polyline3d<N> {
fn from_iter<I: IntoIterator<Item = Vec3>>(iter: I) -> Self {
let mut vertices: [Vec3; N] = [Vec3::ZERO; N];
for (index, i) in iter.into_iter().take(N).enumerate() {
vertices[index] = i;
}
Self { vertices }
}
}
impl<const N: usize> Polyline3d<N> {
/// Create a new `Polyline3d` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec3>) -> Self {
Self::from_iter(vertices)
}
}
/// A series of connected line segments in 3D space, allocated on the heap
/// in a `Box<[Vec3]>`.
///
/// For a version without alloc: [`Polyline3d`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct BoxedPolyline3d {
/// The vertices of the polyline
pub vertices: Box<[Vec3]>,
}
impl Primitive3d for BoxedPolyline3d {}
impl FromIterator<Vec3> for BoxedPolyline3d {
fn from_iter<I: IntoIterator<Item = Vec3>>(iter: I) -> Self {
let vertices: Vec<Vec3> = iter.into_iter().collect();
Self {
vertices: vertices.into_boxed_slice(),
}
}
}
impl BoxedPolyline3d {
/// Create a new `BoxedPolyline3d` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec3>) -> Self {
Self::from_iter(vertices)
}
}
/// A cuboid primitive, more commonly known as a box.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Cuboid {
/// Half of the width, height and depth of the cuboid
pub half_size: Vec3,
}
impl Primitive3d for Cuboid {}
impl Default for Cuboid {
/// Returns the default [`Cuboid`] with a width, height, and depth of `1.0`.
fn default() -> Self {
Self {
half_size: Vec3::splat(0.5),
}
}
}
impl Cuboid {
/// Create a new `Cuboid` from a full x, y, and z length
#[inline(always)]
pub fn new(x_length: f32, y_length: f32, z_length: f32) -> Self {
Self::from_size(Vec3::new(x_length, y_length, z_length))
}
/// Create a new `Cuboid` from a given full size
#[inline(always)]
pub fn from_size(size: Vec3) -> Self {
Self {
half_size: size / 2.0,
}
}
/// Create a new `Cuboid` from two corner points
#[inline(always)]
pub fn from_corners(point1: Vec3, point2: Vec3) -> Self {
Self {
half_size: (point2 - point1).abs() / 2.0,
}
}
/// Get the size of the cuboid
#[inline(always)]
pub fn size(&self) -> Vec3 {
2.0 * self.half_size
}
/// Get the surface area of the cuboid
#[inline(always)]
pub fn area(&self) -> f32 {
8.0 * (self.half_size.x * self.half_size.y
+ self.half_size.y * self.half_size.z
+ self.half_size.x * self.half_size.z)
}
/// Get the volume of the cuboid
#[inline(always)]
pub fn volume(&self) -> f32 {
8.0 * self.half_size.x * self.half_size.y * self.half_size.z
}
/// Finds the point on the cuboid that is closest to the given `point`.
///
/// If the point is outside the cuboid, the returned point will be on the surface of the cuboid.
/// Otherwise, it will be inside the cuboid and returned as is.
#[inline(always)]
pub fn closest_point(&self, point: Vec3) -> Vec3 {
// Clamp point coordinates to the cuboid
point.clamp(-self.half_size, self.half_size)
}
}
/// A cylinder primitive
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Cylinder {
/// The radius of the cylinder
pub radius: f32,
/// The half height of the cylinder
pub half_height: f32,
}
impl Primitive3d for Cylinder {}
impl Default for Cylinder {
/// Returns the default [`Cylinder`] with a radius of `0.5` and a height of `1.0`.
fn default() -> Self {
Self {
radius: 0.5,
half_height: 0.5,
}
}
}
impl Cylinder {
/// Create a new `Cylinder` from a radius and full height
#[inline(always)]
pub fn new(radius: f32, height: f32) -> Self {
Self {
radius,
half_height: height / 2.0,
}
}
/// Get the base of the cylinder as a [`Circle`]
#[inline(always)]
pub fn base(&self) -> Circle {
Circle {
radius: self.radius,
}
}
/// Get the surface area of the side of the cylinder,
/// also known as the lateral area
#[inline(always)]
#[doc(alias = "side_area")]
pub fn lateral_area(&self) -> f32 {
4.0 * PI * self.radius * self.half_height
}
/// Get the surface area of one base of the cylinder
#[inline(always)]
pub fn base_area(&self) -> f32 {
PI * self.radius.powi(2)
}
/// Get the total surface area of the cylinder
#[inline(always)]
pub fn area(&self) -> f32 {
2.0 * PI * self.radius * (self.radius + 2.0 * self.half_height)
}
/// Get the volume of the cylinder
#[inline(always)]
pub fn volume(&self) -> f32 {
self.base_area() * 2.0 * self.half_height
}
}
/// A 3D capsule primitive.
/// A three-dimensional capsule is defined as a surface at a distance (radius) from a line
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Capsule3d {
/// The radius of the capsule
pub radius: f32,
/// Half the height of the capsule, excluding the hemispheres
pub half_length: f32,
}
impl Primitive3d for Capsule3d {}
impl Default for Capsule3d {
/// Returns the default [`Capsule3d`] with a radius of `0.5` and a segment length of `1.0`.
/// The total height is `2.0`.
fn default() -> Self {
Self {
radius: 0.5,
half_length: 0.5,
}
}
}
impl Capsule3d {
/// Create a new `Capsule3d` from a radius and length
pub fn new(radius: f32, length: f32) -> Self {
Self {
radius,
half_length: length / 2.0,
}
}
/// Get the part connecting the hemispherical ends
/// of the capsule as a [`Cylinder`]
#[inline(always)]
pub fn to_cylinder(&self) -> Cylinder {
Cylinder {
radius: self.radius,
half_height: self.half_length,
}
}
/// Get the surface area of the capsule
#[inline(always)]
pub fn area(&self) -> f32 {
// Modified version of 2pi * r * (2r + h)
4.0 * PI * self.radius * (self.radius + self.half_length)
}
/// Get the volume of the capsule
#[inline(always)]
pub fn volume(&self) -> f32 {
// Modified version of pi * r^2 * (4/3 * r + a)
let diameter = self.radius * 2.0;
PI * self.radius * diameter * (diameter / 3.0 + self.half_length)
}
}
/// A cone primitive.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Cone {
/// The radius of the base
pub radius: f32,
/// The height of the cone
pub height: f32,
}
impl Primitive3d for Cone {}
impl Cone {
/// Get the base of the cone as a [`Circle`]
#[inline(always)]
pub fn base(&self) -> Circle {
Circle {
radius: self.radius,
}
}
/// Get the slant height of the cone, the length of the line segment
/// connecting a point on the base to the apex
#[inline(always)]
#[doc(alias = "side_length")]
pub fn slant_height(&self) -> f32 {
self.radius.hypot(self.height)
}
/// Get the surface area of the side of the cone,
/// also known as the lateral area
#[inline(always)]
#[doc(alias = "side_area")]
pub fn lateral_area(&self) -> f32 {
PI * self.radius * self.slant_height()
}
/// Get the surface area of the base of the cone
#[inline(always)]
pub fn base_area(&self) -> f32 {
PI * self.radius.powi(2)
}
/// Get the total surface area of the cone
#[inline(always)]
pub fn area(&self) -> f32 {
self.base_area() + self.lateral_area()
}
/// Get the volume of the cone
#[inline(always)]
pub fn volume(&self) -> f32 {
(self.base_area() * self.height) / 3.0
}
}
/// A conical frustum primitive.
/// A conical frustum can be created
/// by slicing off a section of a cone.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct ConicalFrustum {
/// The radius of the top of the frustum
pub radius_top: f32,
/// The radius of the base of the frustum
pub radius_bottom: f32,
/// The height of the frustum
pub height: f32,
}
impl Primitive3d for ConicalFrustum {}
/// The type of torus determined by the minor and major radii
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum TorusKind {
/// A torus that has a ring.
/// The major radius is greater than the minor radius
Ring,
/// A torus that has no hole but also doesn't intersect itself.
/// The major radius is equal to the minor radius
Horn,
/// A self-intersecting torus.
/// The major radius is less than the minor radius
Spindle,
/// A torus with non-geometric properties like
/// a minor or major radius that is non-positive,
/// infinite, or `NaN`
Invalid,
}
/// A torus primitive, often representing a ring or donut shape
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Torus {
/// The radius of the tube of the torus
#[doc(
alias = "ring_radius",
alias = "tube_radius",
alias = "cross_section_radius"
)]
pub minor_radius: f32,
/// The distance from the center of the torus to the center of the tube
#[doc(alias = "radius_of_revolution")]
pub major_radius: f32,
}
impl Primitive3d for Torus {}
impl Default for Torus {
/// Returns the default [`Torus`] with a minor radius of `0.25` and a major radius of `0.75`.
fn default() -> Self {
Self {
minor_radius: 0.25,
major_radius: 0.75,
}
}
}
impl Torus {
/// Create a new `Torus` from an inner and outer radius.
///
/// The inner radius is the radius of the hole, and the outer radius
/// is the radius of the entire object
#[inline(always)]
pub fn new(inner_radius: f32, outer_radius: f32) -> Self {
let minor_radius = (outer_radius - inner_radius) / 2.0;
let major_radius = outer_radius - minor_radius;
Self {
minor_radius,
major_radius,
}
}
/// Get the inner radius of the torus.
/// For a ring torus, this corresponds to the radius of the hole,
/// or `major_radius - minor_radius`
#[inline(always)]
pub fn inner_radius(&self) -> f32 {
self.major_radius - self.minor_radius
}
/// Get the outer radius of the torus.
/// This corresponds to the overall radius of the entire object,
/// or `major_radius + minor_radius`
#[inline(always)]
pub fn outer_radius(&self) -> f32 {
self.major_radius + self.minor_radius
}
/// Get the [`TorusKind`] determined by the minor and major radii.
///
/// The torus can either be a *ring torus* that has a hole,
/// a *horn torus* that doesn't have a hole but also isn't self-intersecting,
/// or a *spindle torus* that is self-intersecting.
///
/// If the minor or major radius is non-positive, infinite, or `NaN`,
/// [`TorusKind::Invalid`] is returned
#[inline(always)]
pub fn kind(&self) -> TorusKind {
// Invalid if minor or major radius is non-positive, infinite, or NaN
if self.minor_radius <= 0.0
|| !self.minor_radius.is_finite()
|| self.major_radius <= 0.0
|| !self.major_radius.is_finite()
{
return TorusKind::Invalid;
}
match self.major_radius.partial_cmp(&self.minor_radius).unwrap() {
std::cmp::Ordering::Greater => TorusKind::Ring,
std::cmp::Ordering::Equal => TorusKind::Horn,
std::cmp::Ordering::Less => TorusKind::Spindle,
}
}
/// Get the surface area of the torus. Note that this only produces
/// the expected result when the torus has a ring and isn't self-intersecting
#[inline(always)]
pub fn area(&self) -> f32 {
4.0 * PI.powi(2) * self.major_radius * self.minor_radius
}
/// Get the volume of the torus. Note that this only produces
/// the expected result when the torus has a ring and isn't self-intersecting
#[inline(always)]
pub fn volume(&self) -> f32 {
2.0 * PI.powi(2) * self.major_radius * self.minor_radius.powi(2)
}
}
#[cfg(test)]
mod tests {
// Reference values were computed by hand and/or with external tools
use super::*;
use approx::assert_relative_eq;
#[test]
fn direction_creation() {
assert_eq!(Direction3d::new(Vec3::X * 12.5), Ok(Direction3d::X));
assert_eq!(
Direction3d::new(Vec3::new(0.0, 0.0, 0.0)),
Err(InvalidDirectionError::Zero)
);
assert_eq!(
Direction3d::new(Vec3::new(f32::INFINITY, 0.0, 0.0)),
Err(InvalidDirectionError::Infinite)
);
assert_eq!(
Direction3d::new(Vec3::new(f32::NEG_INFINITY, 0.0, 0.0)),
Err(InvalidDirectionError::Infinite)
);
assert_eq!(
Direction3d::new(Vec3::new(f32::NAN, 0.0, 0.0)),
Err(InvalidDirectionError::NaN)
);
assert_eq!(
Direction3d::new_and_length(Vec3::X * 6.5),
Ok((Direction3d::X, 6.5))
);
// Test rotation
assert!(
(Quat::from_rotation_z(std::f32::consts::FRAC_PI_2) * Direction3d::X)
.abs_diff_eq(Vec3::Y, 10e-6)
);
}
#[test]
fn cuboid_closest_point() {
let cuboid = Cuboid::new(2.0, 2.0, 2.0);
assert_eq!(cuboid.closest_point(Vec3::X * 10.0), Vec3::X);
assert_eq!(cuboid.closest_point(Vec3::NEG_ONE * 10.0), Vec3::NEG_ONE);
assert_eq!(
cuboid.closest_point(Vec3::new(0.25, 0.1, 0.3)),
Vec3::new(0.25, 0.1, 0.3)
);
}
#[test]
fn sphere_closest_point() {
let sphere = Sphere { radius: 1.0 };
assert_eq!(sphere.closest_point(Vec3::X * 10.0), Vec3::X);
assert_eq!(
sphere.closest_point(Vec3::NEG_ONE * 10.0),
Vec3::NEG_ONE.normalize()
);
assert_eq!(
sphere.closest_point(Vec3::new(0.25, 0.1, 0.3)),
Vec3::new(0.25, 0.1, 0.3)
);
}
#[test]
fn sphere_math() {
let sphere = Sphere { radius: 4.0 };
assert_eq!(sphere.diameter(), 8.0, "incorrect diameter");
assert_eq!(sphere.area(), 201.06193, "incorrect area");
assert_eq!(sphere.volume(), 268.08257, "incorrect volume");
}
#[test]
fn plane_from_points() {
let (plane, translation) = Plane3d::from_points(Vec3::X, Vec3::Z, Vec3::NEG_X);
assert_eq!(*plane.normal, Vec3::NEG_Y, "incorrect normal");
assert_eq!(translation, Vec3::Z * 0.33333334, "incorrect translation");
}
#[test]
fn cuboid_math() {
let cuboid = Cuboid::new(3.0, 7.0, 2.0);
assert_eq!(
cuboid,
Cuboid::from_corners(Vec3::new(-1.5, -3.5, -1.0), Vec3::new(1.5, 3.5, 1.0)),
"incorrect dimensions when created from corners"
);
assert_eq!(cuboid.area(), 82.0, "incorrect area");
assert_eq!(cuboid.volume(), 42.0, "incorrect volume");
}
#[test]
fn cylinder_math() {
let cylinder = Cylinder::new(2.0, 9.0);
assert_eq!(
cylinder.base(),
Circle { radius: 2.0 },
"base produces incorrect circle"
);
assert_eq!(
cylinder.lateral_area(),
113.097336,
"incorrect lateral area"
);
assert_eq!(cylinder.base_area(), 12.566371, "incorrect base area");
assert_relative_eq!(cylinder.area(), 138.23007);
assert_eq!(cylinder.volume(), 113.097336, "incorrect volume");
}
#[test]
fn capsule_math() {
let capsule = Capsule3d::new(2.0, 9.0);
assert_eq!(
capsule.to_cylinder(),
Cylinder::new(2.0, 9.0),
"cylinder wasn't created correctly from a capsule"
);
assert_eq!(capsule.area(), 163.36282, "incorrect area");
assert_relative_eq!(capsule.volume(), 146.60765);
}
#[test]
fn cone_math() {
let cone = Cone {
radius: 2.0,
height: 9.0,
};
assert_eq!(
cone.base(),
Circle { radius: 2.0 },
"base produces incorrect circle"
);
assert_eq!(cone.slant_height(), 9.219544, "incorrect slant height");
assert_eq!(cone.lateral_area(), 57.92811, "incorrect lateral area");
assert_eq!(cone.base_area(), 12.566371, "incorrect base area");
assert_relative_eq!(cone.area(), 70.49447);
assert_eq!(cone.volume(), 37.699111, "incorrect volume");
}
#[test]
fn torus_math() {
let torus = Torus {
minor_radius: 0.3,
major_radius: 2.8,
};
assert_eq!(torus.inner_radius(), 2.5, "incorrect inner radius");
assert_eq!(torus.outer_radius(), 3.1, "incorrect outer radius");
assert_eq!(torus.kind(), TorusKind::Ring, "incorrect torus kind");
assert_eq!(
Torus::new(0.0, 1.0).kind(),
TorusKind::Horn,
"incorrect torus kind"
);
assert_eq!(
Torus::new(-0.5, 1.0).kind(),
TorusKind::Spindle,
"incorrect torus kind"
);
assert_eq!(
Torus::new(1.5, 1.0).kind(),
TorusKind::Invalid,
"torus should be invalid"
);
assert_relative_eq!(torus.area(), 33.16187);
assert_relative_eq!(torus.volume(), 4.97428, epsilon = 0.00001);
}
}