1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
use crate::{IRect, URect, Vec2};
/// A rectangle defined by two opposite corners.
///
/// The rectangle is axis aligned, and defined by its minimum and maximum coordinates,
/// stored in `Rect::min` and `Rect::max`, respectively. The minimum/maximum invariant
/// must be upheld by the user when directly assigning the fields, otherwise some methods
/// produce invalid results. It is generally recommended to use one of the constructor
/// methods instead, which will ensure this invariant is met, unless you already have
/// the minimum and maximum corners.
#[repr(C)]
#[derive(Default, Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Rect {
/// The minimum corner point of the rect.
pub min: Vec2,
/// The maximum corner point of the rect.
pub max: Vec2,
}
impl Rect {
/// Create a new rectangle from two corner points.
///
/// The two points do not need to be the minimum and/or maximum corners.
/// They only need to be two opposite corners.
///
/// # Examples
///
/// ```
/// # use bevy_math::Rect;
/// let r = Rect::new(0., 4., 10., 6.); // w=10 h=2
/// let r = Rect::new(2., 3., 5., -1.); // w=3 h=4
/// ```
#[inline]
pub fn new(x0: f32, y0: f32, x1: f32, y1: f32) -> Self {
Self::from_corners(Vec2::new(x0, y0), Vec2::new(x1, y1))
}
/// Create a new rectangle from two corner points.
///
/// The two points do not need to be the minimum and/or maximum corners.
/// They only need to be two opposite corners.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// // Unit rect from [0,0] to [1,1]
/// let r = Rect::from_corners(Vec2::ZERO, Vec2::ONE); // w=1 h=1
/// // Same; the points do not need to be ordered
/// let r = Rect::from_corners(Vec2::ONE, Vec2::ZERO); // w=1 h=1
/// ```
#[inline]
pub fn from_corners(p0: Vec2, p1: Vec2) -> Self {
Self {
min: p0.min(p1),
max: p0.max(p1),
}
}
/// Create a new rectangle from its center and size.
///
/// # Panics
///
/// This method panics if any of the components of the size is negative.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // w=1 h=1
/// assert!(r.min.abs_diff_eq(Vec2::splat(-0.5), 1e-5));
/// assert!(r.max.abs_diff_eq(Vec2::splat(0.5), 1e-5));
/// ```
#[inline]
pub fn from_center_size(origin: Vec2, size: Vec2) -> Self {
assert!(size.cmpge(Vec2::ZERO).all(), "Rect size must be positive");
let half_size = size / 2.;
Self::from_center_half_size(origin, half_size)
}
/// Create a new rectangle from its center and half-size.
///
/// # Panics
///
/// This method panics if any of the components of the half-size is negative.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::from_center_half_size(Vec2::ZERO, Vec2::ONE); // w=2 h=2
/// assert!(r.min.abs_diff_eq(Vec2::splat(-1.), 1e-5));
/// assert!(r.max.abs_diff_eq(Vec2::splat(1.), 1e-5));
/// ```
#[inline]
pub fn from_center_half_size(origin: Vec2, half_size: Vec2) -> Self {
assert!(
half_size.cmpge(Vec2::ZERO).all(),
"Rect half_size must be positive"
);
Self {
min: origin - half_size,
max: origin + half_size,
}
}
/// Check if the rectangle is empty.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::from_corners(Vec2::ZERO, Vec2::new(0., 1.)); // w=0 h=1
/// assert!(r.is_empty());
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
self.min.cmpge(self.max).any()
}
/// Rectangle width (max.x - min.x).
///
/// # Examples
///
/// ```
/// # use bevy_math::Rect;
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// assert!((r.width() - 5.).abs() <= 1e-5);
/// ```
#[inline]
pub fn width(&self) -> f32 {
self.max.x - self.min.x
}
/// Rectangle height (max.y - min.y).
///
/// # Examples
///
/// ```
/// # use bevy_math::Rect;
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// assert!((r.height() - 1.).abs() <= 1e-5);
/// ```
#[inline]
pub fn height(&self) -> f32 {
self.max.y - self.min.y
}
/// Rectangle size.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// assert!(r.size().abs_diff_eq(Vec2::new(5., 1.), 1e-5));
/// ```
#[inline]
pub fn size(&self) -> Vec2 {
self.max - self.min
}
/// Rectangle half-size.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// assert!(r.half_size().abs_diff_eq(Vec2::new(2.5, 0.5), 1e-5));
/// ```
#[inline]
pub fn half_size(&self) -> Vec2 {
self.size() * 0.5
}
/// The center point of the rectangle.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// assert!(r.center().abs_diff_eq(Vec2::new(2.5, 0.5), 1e-5));
/// ```
#[inline]
pub fn center(&self) -> Vec2 {
(self.min + self.max) * 0.5
}
/// Check if a point lies within this rectangle, inclusive of its edges.
///
/// # Examples
///
/// ```
/// # use bevy_math::Rect;
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// assert!(r.contains(r.center()));
/// assert!(r.contains(r.min));
/// assert!(r.contains(r.max));
/// ```
#[inline]
pub fn contains(&self, point: Vec2) -> bool {
(point.cmpge(self.min) & point.cmple(self.max)).all()
}
/// Build a new rectangle formed of the union of this rectangle and another rectangle.
///
/// The union is the smallest rectangle enclosing both rectangles.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r1 = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// let r2 = Rect::new(1., -1., 3., 3.); // w=2 h=4
/// let r = r1.union(r2);
/// assert!(r.min.abs_diff_eq(Vec2::new(0., -1.), 1e-5));
/// assert!(r.max.abs_diff_eq(Vec2::new(5., 3.), 1e-5));
/// ```
#[inline]
pub fn union(&self, other: Self) -> Self {
Self {
min: self.min.min(other.min),
max: self.max.max(other.max),
}
}
/// Build a new rectangle formed of the union of this rectangle and a point.
///
/// The union is the smallest rectangle enclosing both the rectangle and the point. If the
/// point is already inside the rectangle, this method returns a copy of the rectangle.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// let u = r.union_point(Vec2::new(3., 6.));
/// assert!(u.min.abs_diff_eq(Vec2::ZERO, 1e-5));
/// assert!(u.max.abs_diff_eq(Vec2::new(5., 6.), 1e-5));
/// ```
#[inline]
pub fn union_point(&self, other: Vec2) -> Self {
Self {
min: self.min.min(other),
max: self.max.max(other),
}
}
/// Build a new rectangle formed of the intersection of this rectangle and another rectangle.
///
/// The intersection is the largest rectangle enclosed in both rectangles. If the intersection
/// is empty, this method returns an empty rectangle ([`Rect::is_empty()`] returns `true`), but
/// the actual values of [`Rect::min`] and [`Rect::max`] are implementation-dependent.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r1 = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// let r2 = Rect::new(1., -1., 3., 3.); // w=2 h=4
/// let r = r1.intersect(r2);
/// assert!(r.min.abs_diff_eq(Vec2::new(1., 0.), 1e-5));
/// assert!(r.max.abs_diff_eq(Vec2::new(3., 1.), 1e-5));
/// ```
#[inline]
pub fn intersect(&self, other: Self) -> Self {
let mut r = Self {
min: self.min.max(other.min),
max: self.max.min(other.max),
};
// Collapse min over max to enforce invariants and ensure e.g. width() or
// height() never return a negative value.
r.min = r.min.min(r.max);
r
}
/// Create a new rectangle with a constant inset.
///
/// The inset is the extra border on all sides. A positive inset produces a larger rectangle,
/// while a negative inset is allowed and produces a smaller rectangle. If the inset is negative
/// and its absolute value is larger than the rectangle half-size, the created rectangle is empty.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::new(0., 0., 5., 1.); // w=5 h=1
/// let r2 = r.inset(3.); // w=11 h=7
/// assert!(r2.min.abs_diff_eq(Vec2::splat(-3.), 1e-5));
/// assert!(r2.max.abs_diff_eq(Vec2::new(8., 4.), 1e-5));
///
/// let r = Rect::new(0., -1., 6., 7.); // w=6 h=8
/// let r2 = r.inset(-2.); // w=11 h=7
/// assert!(r2.min.abs_diff_eq(Vec2::new(2., 1.), 1e-5));
/// assert!(r2.max.abs_diff_eq(Vec2::new(4., 5.), 1e-5));
/// ```
#[inline]
pub fn inset(&self, inset: f32) -> Self {
let mut r = Self {
min: self.min - inset,
max: self.max + inset,
};
// Collapse min over max to enforce invariants and ensure e.g. width() or
// height() never return a negative value.
r.min = r.min.min(r.max);
r
}
/// Build a new rectangle from this one with its coordinates expressed
/// relative to `other` in a normalized ([0..1] x [0..1]) coordinate system.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Rect, Vec2};
/// let r = Rect::new(2., 3., 4., 6.);
/// let s = Rect::new(0., 0., 10., 10.);
/// let n = r.normalize(s);
///
/// assert_eq!(n.min.x, 0.2);
/// assert_eq!(n.min.y, 0.3);
/// assert_eq!(n.max.x, 0.4);
/// assert_eq!(n.max.y, 0.6);
/// ```
pub fn normalize(&self, other: Self) -> Self {
let outer_size = other.size();
Self {
min: (self.min - other.min) / outer_size,
max: (self.max - other.min) / outer_size,
}
}
/// Returns self as [`IRect`] (i32)
#[inline]
pub fn as_irect(&self) -> IRect {
IRect::from_corners(self.min.as_ivec2(), self.max.as_ivec2())
}
/// Returns self as [`URect`] (u32)
#[inline]
pub fn as_urect(&self) -> URect {
URect::from_corners(self.min.as_uvec2(), self.max.as_uvec2())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn well_formed() {
let r = Rect::from_center_size(Vec2::new(3., -5.), Vec2::new(8., 11.));
assert!(r.min.abs_diff_eq(Vec2::new(-1., -10.5), 1e-5));
assert!(r.max.abs_diff_eq(Vec2::new(7., 0.5), 1e-5));
assert!(r.center().abs_diff_eq(Vec2::new(3., -5.), 1e-5));
assert!((r.width() - 8.).abs() <= 1e-5);
assert!((r.height() - 11.).abs() <= 1e-5);
assert!(r.size().abs_diff_eq(Vec2::new(8., 11.), 1e-5));
assert!(r.half_size().abs_diff_eq(Vec2::new(4., 5.5), 1e-5));
assert!(r.contains(Vec2::new(3., -5.)));
assert!(r.contains(Vec2::new(-1., -10.5)));
assert!(r.contains(Vec2::new(-1., 0.5)));
assert!(r.contains(Vec2::new(7., -10.5)));
assert!(r.contains(Vec2::new(7., 0.5)));
assert!(!r.contains(Vec2::new(50., -5.)));
}
#[test]
fn rect_union() {
let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // [-0.5,-0.5] - [0.5,0.5]
// overlapping
let r2 = Rect {
min: Vec2::new(-0.8, 0.3),
max: Vec2::new(0.1, 0.7),
};
let u = r.union(r2);
assert!(u.min.abs_diff_eq(Vec2::new(-0.8, -0.5), 1e-5));
assert!(u.max.abs_diff_eq(Vec2::new(0.5, 0.7), 1e-5));
// disjoint
let r2 = Rect {
min: Vec2::new(-1.8, -0.5),
max: Vec2::new(-1.5, 0.3),
};
let u = r.union(r2);
assert!(u.min.abs_diff_eq(Vec2::new(-1.8, -0.5), 1e-5));
assert!(u.max.abs_diff_eq(Vec2::new(0.5, 0.5), 1e-5));
// included
let r2 = Rect::from_center_size(Vec2::ZERO, Vec2::splat(0.5));
let u = r.union(r2);
assert!(u.min.abs_diff_eq(r.min, 1e-5));
assert!(u.max.abs_diff_eq(r.max, 1e-5));
// including
let r2 = Rect::from_center_size(Vec2::ZERO, Vec2::splat(1.5));
let u = r.union(r2);
assert!(u.min.abs_diff_eq(r2.min, 1e-5));
assert!(u.max.abs_diff_eq(r2.max, 1e-5));
}
#[test]
fn rect_union_pt() {
let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // [-0.5,-0.5] - [0.5,0.5]
// inside
let v = Vec2::new(0.3, -0.2);
let u = r.union_point(v);
assert!(u.min.abs_diff_eq(r.min, 1e-5));
assert!(u.max.abs_diff_eq(r.max, 1e-5));
// outside
let v = Vec2::new(10., -3.);
let u = r.union_point(v);
assert!(u.min.abs_diff_eq(Vec2::new(-0.5, -3.), 1e-5));
assert!(u.max.abs_diff_eq(Vec2::new(10., 0.5), 1e-5));
}
#[test]
fn rect_intersect() {
let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // [-0.5,-0.5] - [0.5,0.5]
// overlapping
let r2 = Rect {
min: Vec2::new(-0.8, 0.3),
max: Vec2::new(0.1, 0.7),
};
let u = r.intersect(r2);
assert!(u.min.abs_diff_eq(Vec2::new(-0.5, 0.3), 1e-5));
assert!(u.max.abs_diff_eq(Vec2::new(0.1, 0.5), 1e-5));
// disjoint
let r2 = Rect {
min: Vec2::new(-1.8, -0.5),
max: Vec2::new(-1.5, 0.3),
};
let u = r.intersect(r2);
assert!(u.is_empty());
assert!(u.width() <= 1e-5);
// included
let r2 = Rect::from_center_size(Vec2::ZERO, Vec2::splat(0.5));
let u = r.intersect(r2);
assert!(u.min.abs_diff_eq(r2.min, 1e-5));
assert!(u.max.abs_diff_eq(r2.max, 1e-5));
// including
let r2 = Rect::from_center_size(Vec2::ZERO, Vec2::splat(1.5));
let u = r.intersect(r2);
assert!(u.min.abs_diff_eq(r.min, 1e-5));
assert!(u.max.abs_diff_eq(r.max, 1e-5));
}
#[test]
fn rect_inset() {
let r = Rect::from_center_size(Vec2::ZERO, Vec2::ONE); // [-0.5,-0.5] - [0.5,0.5]
let r2 = r.inset(0.3);
assert!(r2.min.abs_diff_eq(Vec2::new(-0.8, -0.8), 1e-5));
assert!(r2.max.abs_diff_eq(Vec2::new(0.8, 0.8), 1e-5));
}
}