1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
//! Lightmaps, baked lighting textures that can be applied at runtime to provide
//! diffuse global illumination.
//!
//! Bevy doesn't currently have any way to actually bake lightmaps, but they can
//! be baked in an external tool like [Blender](http://blender.org), for example
//! with an addon like [The Lightmapper]. The tools in the [`bevy-baked-gi`]
//! project support other lightmap baking methods.
//!
//! When a [`Lightmap`] component is added to an entity with a [`Mesh`] and a
//! [`StandardMaterial`](crate::StandardMaterial), Bevy applies the lightmap when rendering. The brightness
//! of the lightmap may be controlled with the `lightmap_exposure` field on
//! `StandardMaterial`.
//!
//! During the rendering extraction phase, we extract all lightmaps into the
//! [`RenderLightmaps`] table, which lives in the render world. Mesh bindgroup
//! and mesh uniform creation consults this table to determine which lightmap to
//! supply to the shader. Essentially, the lightmap is a special type of texture
//! that is part of the mesh instance rather than part of the material (because
//! multiple meshes can share the same material, whereas sharing lightmaps is
//! nonsensical).
//!
//! Note that meshes can't be instanced if they use different lightmap textures.
//! If you want to instance a lightmapped mesh, combine the lightmap textures
//! into a single atlas, and set the `uv_rect` field on [`Lightmap`]
//! appropriately.
//!
//! [The Lightmapper]: https://github.com/Naxela/The_Lightmapper
//!
//! [`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi
use bevy_app::{App, Plugin};
use bevy_asset::{load_internal_asset, AssetId, Handle};
use bevy_ecs::entity::EntityHashMap;
use bevy_ecs::{
component::Component,
entity::Entity,
reflect::ReflectComponent,
schedule::IntoSystemConfigs,
system::{Query, Res, ResMut, Resource},
};
use bevy_math::{uvec2, vec4, Rect, UVec2};
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
use bevy_render::{
mesh::Mesh, render_asset::RenderAssets, render_resource::Shader, texture::Image,
view::ViewVisibility, Extract, ExtractSchedule, RenderApp,
};
use bevy_utils::HashSet;
use crate::RenderMeshInstances;
/// The ID of the lightmap shader.
pub const LIGHTMAP_SHADER_HANDLE: Handle<Shader> =
Handle::weak_from_u128(285484768317531991932943596447919767152);
/// A plugin that provides an implementation of lightmaps.
pub struct LightmapPlugin;
/// A component that applies baked indirect diffuse global illumination from a
/// lightmap.
///
/// When assigned to an entity that contains a [`Mesh`] and a
/// [`StandardMaterial`](crate::StandardMaterial), if the mesh has a second UV
/// layer ([`ATTRIBUTE_UV_1`](bevy_render::mesh::Mesh::ATTRIBUTE_UV_1)), then
/// the lightmap will render using those UVs.
#[derive(Component, Clone, Reflect)]
#[reflect(Component, Default)]
pub struct Lightmap {
/// The lightmap texture.
pub image: Handle<Image>,
/// The rectangle within the lightmap texture that the UVs are relative to.
///
/// The top left coordinate is the `min` part of the rect, and the bottom
/// right coordinate is the `max` part of the rect. The rect ranges from (0,
/// 0) to (1, 1).
///
/// This field allows lightmaps for a variety of meshes to be packed into a
/// single atlas.
pub uv_rect: Rect,
}
/// Lightmap data stored in the render world.
///
/// There is one of these per visible lightmapped mesh instance.
#[derive(Debug)]
pub(crate) struct RenderLightmap {
/// The ID of the lightmap texture.
pub(crate) image: AssetId<Image>,
/// The rectangle within the lightmap texture that the UVs are relative to.
///
/// The top left coordinate is the `min` part of the rect, and the bottom
/// right coordinate is the `max` part of the rect. The rect ranges from (0,
/// 0) to (1, 1).
pub(crate) uv_rect: Rect,
}
/// Stores data for all lightmaps in the render world.
///
/// This is cleared and repopulated each frame during the `extract_lightmaps`
/// system.
#[derive(Default, Resource)]
pub struct RenderLightmaps {
/// The mapping from every lightmapped entity to its lightmap info.
///
/// Entities without lightmaps, or for which the mesh or lightmap isn't
/// loaded, won't have entries in this table.
pub(crate) render_lightmaps: EntityHashMap<RenderLightmap>,
/// All active lightmap images in the scene.
///
/// Gathering all lightmap images into a set makes mesh bindgroup
/// preparation slightly more efficient, because only one bindgroup needs to
/// be created per lightmap texture.
pub(crate) all_lightmap_images: HashSet<AssetId<Image>>,
}
impl Plugin for LightmapPlugin {
fn build(&self, app: &mut App) {
load_internal_asset!(
app,
LIGHTMAP_SHADER_HANDLE,
"lightmap.wgsl",
Shader::from_wgsl
);
}
fn finish(&self, app: &mut App) {
let Ok(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
render_app.init_resource::<RenderLightmaps>().add_systems(
ExtractSchedule,
extract_lightmaps.after(crate::extract_meshes),
);
}
}
/// Extracts all lightmaps from the scene and populates the [`RenderLightmaps`]
/// resource.
fn extract_lightmaps(
mut render_lightmaps: ResMut<RenderLightmaps>,
lightmaps: Extract<Query<(Entity, &ViewVisibility, &Lightmap)>>,
render_mesh_instances: Res<RenderMeshInstances>,
images: Res<RenderAssets<Image>>,
meshes: Res<RenderAssets<Mesh>>,
) {
// Clear out the old frame's data.
render_lightmaps.render_lightmaps.clear();
render_lightmaps.all_lightmap_images.clear();
// Loop over each entity.
for (entity, view_visibility, lightmap) in lightmaps.iter() {
// Only process visible entities for which the mesh and lightmap are
// both loaded.
if !view_visibility.get()
|| images.get(&lightmap.image).is_none()
|| !render_mesh_instances
.get(&entity)
.and_then(|mesh_instance| meshes.get(mesh_instance.mesh_asset_id))
.is_some_and(|mesh| mesh.layout.contains(Mesh::ATTRIBUTE_UV_1.id))
{
continue;
}
// Store information about the lightmap in the render world.
render_lightmaps.render_lightmaps.insert(
entity,
RenderLightmap::new(lightmap.image.id(), lightmap.uv_rect),
);
// Make a note of the loaded lightmap image so we can efficiently
// process them later during mesh bindgroup creation.
render_lightmaps
.all_lightmap_images
.insert(lightmap.image.id());
}
}
impl RenderLightmap {
/// Creates a new lightmap from a texture and a UV rect.
fn new(image: AssetId<Image>, uv_rect: Rect) -> Self {
Self { image, uv_rect }
}
}
/// Packs the lightmap UV rect into 64 bits (4 16-bit unsigned integers).
pub(crate) fn pack_lightmap_uv_rect(maybe_rect: Option<Rect>) -> UVec2 {
match maybe_rect {
Some(rect) => {
let rect_uvec4 = (vec4(rect.min.x, rect.min.y, rect.max.x, rect.max.y) * 65535.0)
.round()
.as_uvec4();
uvec2(
rect_uvec4.x | (rect_uvec4.y << 16),
rect_uvec4.z | (rect_uvec4.w << 16),
)
}
None => UVec2::ZERO,
}
}
impl Default for Lightmap {
fn default() -> Self {
Self {
image: Default::default(),
uv_rect: Rect::new(0.0, 0.0, 1.0, 1.0),
}
}
}