1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
use crate::*;
use bevy_app::{App, Plugin};
use bevy_asset::{Asset, AssetApp, AssetEvent, AssetId, AssetServer, Assets, Handle};
use bevy_core_pipeline::{
    core_3d::{
        AlphaMask3d, Camera3d, Opaque3d, ScreenSpaceTransmissionQuality, Transmissive3d,
        Transparent3d,
    },
    prepass::{DeferredPrepass, DepthPrepass, MotionVectorPrepass, NormalPrepass},
    tonemapping::{DebandDither, Tonemapping},
};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
    prelude::*,
    system::{lifetimeless::SRes, SystemParamItem},
};
use bevy_reflect::Reflect;
use bevy_render::{
    camera::Projection,
    camera::TemporalJitter,
    extract_instances::{ExtractInstancesPlugin, ExtractedInstances},
    extract_resource::ExtractResource,
    mesh::{Mesh, MeshVertexBufferLayout},
    prelude::Image,
    render_asset::{prepare_assets, RenderAssets},
    render_phase::*,
    render_resource::*,
    renderer::RenderDevice,
    texture::FallbackImage,
    view::{ExtractedView, Msaa, VisibleEntities},
    Extract, ExtractSchedule, Render, RenderApp, RenderSet,
};
use bevy_utils::{tracing::error, HashMap, HashSet};
use std::hash::Hash;
use std::marker::PhantomData;

use self::{irradiance_volume::IrradianceVolume, prelude::EnvironmentMapLight};

/// Materials are used alongside [`MaterialPlugin`] and [`MaterialMeshBundle`]
/// to spawn entities that are rendered with a specific [`Material`] type. They serve as an easy to use high level
/// way to render [`Mesh`] entities with custom shader logic.
///
/// Materials must implement [`AsBindGroup`] to define how data will be transferred to the GPU and bound in shaders.
/// [`AsBindGroup`] can be derived, which makes generating bindings straightforward. See the [`AsBindGroup`] docs for details.
///
/// # Example
///
/// Here is a simple Material implementation. The [`AsBindGroup`] derive has many features. To see what else is available,
/// check out the [`AsBindGroup`] documentation.
/// ```
/// # use bevy_pbr::{Material, MaterialMeshBundle};
/// # use bevy_ecs::prelude::*;
/// # use bevy_reflect::TypePath;
/// # use bevy_render::{render_resource::{AsBindGroup, ShaderRef}, texture::Image, color::Color};
/// # use bevy_asset::{Handle, AssetServer, Assets, Asset};
///
/// #[derive(AsBindGroup, Debug, Clone, Asset, TypePath)]
/// pub struct CustomMaterial {
///     // Uniform bindings must implement `ShaderType`, which will be used to convert the value to
///     // its shader-compatible equivalent. Most core math types already implement `ShaderType`.
///     #[uniform(0)]
///     color: Color,
///     // Images can be bound as textures in shaders. If the Image's sampler is also needed, just
///     // add the sampler attribute with a different binding index.
///     #[texture(1)]
///     #[sampler(2)]
///     color_texture: Handle<Image>,
/// }
///
/// // All functions on `Material` have default impls. You only need to implement the
/// // functions that are relevant for your material.
/// impl Material for CustomMaterial {
///     fn fragment_shader() -> ShaderRef {
///         "shaders/custom_material.wgsl".into()
///     }
/// }
///
/// // Spawn an entity using `CustomMaterial`.
/// fn setup(mut commands: Commands, mut materials: ResMut<Assets<CustomMaterial>>, asset_server: Res<AssetServer>) {
///     commands.spawn(MaterialMeshBundle {
///         material: materials.add(CustomMaterial {
///             color: Color::RED,
///             color_texture: asset_server.load("some_image.png"),
///         }),
///         ..Default::default()
///     });
/// }
/// ```
/// In WGSL shaders, the material's binding would look like this:
///
/// ```wgsl
/// @group(2) @binding(0) var<uniform> color: vec4<f32>;
/// @group(2) @binding(1) var color_texture: texture_2d<f32>;
/// @group(2) @binding(2) var color_sampler: sampler;
/// ```
pub trait Material: Asset + AsBindGroup + Clone + Sized {
    /// Returns this material's vertex shader. If [`ShaderRef::Default`] is returned, the default mesh vertex shader
    /// will be used.
    fn vertex_shader() -> ShaderRef {
        ShaderRef::Default
    }

    /// Returns this material's fragment shader. If [`ShaderRef::Default`] is returned, the default mesh fragment shader
    /// will be used.
    #[allow(unused_variables)]
    fn fragment_shader() -> ShaderRef {
        ShaderRef::Default
    }

    /// Returns this material's [`AlphaMode`]. Defaults to [`AlphaMode::Opaque`].
    #[inline]
    fn alpha_mode(&self) -> AlphaMode {
        AlphaMode::Opaque
    }

    /// Returns if this material should be rendered by the deferred or forward renderer.
    /// for `AlphaMode::Opaque` or `AlphaMode::Mask` materials.
    /// If `OpaqueRendererMethod::Auto`, it will default to what is selected in the `DefaultOpaqueRendererMethod` resource.
    #[inline]
    fn opaque_render_method(&self) -> OpaqueRendererMethod {
        OpaqueRendererMethod::Forward
    }

    #[inline]
    /// Add a bias to the view depth of the mesh which can be used to force a specific render order.
    /// for meshes with similar depth, to avoid z-fighting.
    /// The bias is in depth-texture units so large values may be needed to overcome small depth differences.
    fn depth_bias(&self) -> f32 {
        0.0
    }

    #[inline]
    /// Returns whether the material would like to read from [`ViewTransmissionTexture`](bevy_core_pipeline::core_3d::ViewTransmissionTexture).
    ///
    /// This allows taking color output from the [`Opaque3d`] pass as an input, (for screen-space transmission) but requires
    /// rendering to take place in a separate [`Transmissive3d`] pass.
    fn reads_view_transmission_texture(&self) -> bool {
        false
    }

    /// Returns this material's prepass vertex shader. If [`ShaderRef::Default`] is returned, the default prepass vertex shader
    /// will be used.
    ///
    /// This is used for the various [prepasses](bevy_core_pipeline::prepass) as well as for generating the depth maps
    /// required for shadow mapping.
    fn prepass_vertex_shader() -> ShaderRef {
        ShaderRef::Default
    }

    /// Returns this material's prepass fragment shader. If [`ShaderRef::Default`] is returned, the default prepass fragment shader
    /// will be used.
    ///
    /// This is used for the various [prepasses](bevy_core_pipeline::prepass) as well as for generating the depth maps
    /// required for shadow mapping.
    #[allow(unused_variables)]
    fn prepass_fragment_shader() -> ShaderRef {
        ShaderRef::Default
    }

    /// Returns this material's deferred vertex shader. If [`ShaderRef::Default`] is returned, the default deferred vertex shader
    /// will be used.
    fn deferred_vertex_shader() -> ShaderRef {
        ShaderRef::Default
    }

    /// Returns this material's deferred fragment shader. If [`ShaderRef::Default`] is returned, the default deferred fragment shader
    /// will be used.
    #[allow(unused_variables)]
    fn deferred_fragment_shader() -> ShaderRef {
        ShaderRef::Default
    }

    /// Customizes the default [`RenderPipelineDescriptor`] for a specific entity using the entity's
    /// [`MaterialPipelineKey`] and [`MeshVertexBufferLayout`] as input.
    #[allow(unused_variables)]
    #[inline]
    fn specialize(
        pipeline: &MaterialPipeline<Self>,
        descriptor: &mut RenderPipelineDescriptor,
        layout: &MeshVertexBufferLayout,
        key: MaterialPipelineKey<Self>,
    ) -> Result<(), SpecializedMeshPipelineError> {
        Ok(())
    }
}

/// Adds the necessary ECS resources and render logic to enable rendering entities using the given [`Material`]
/// asset type.
pub struct MaterialPlugin<M: Material> {
    /// Controls if the prepass is enabled for the Material.
    /// For more information about what a prepass is, see the [`bevy_core_pipeline::prepass`] docs.
    ///
    /// When it is enabled, it will automatically add the [`PrepassPlugin`]
    /// required to make the prepass work on this Material.
    pub prepass_enabled: bool,
    pub _marker: PhantomData<M>,
}

impl<M: Material> Default for MaterialPlugin<M> {
    fn default() -> Self {
        Self {
            prepass_enabled: true,
            _marker: Default::default(),
        }
    }
}

impl<M: Material> Plugin for MaterialPlugin<M>
where
    M::Data: PartialEq + Eq + Hash + Clone,
{
    fn build(&self, app: &mut App) {
        app.init_asset::<M>()
            .add_plugins(ExtractInstancesPlugin::<AssetId<M>>::extract_visible());

        if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
            render_app
                .init_resource::<DrawFunctions<Shadow>>()
                .add_render_command::<Shadow, DrawPrepass<M>>()
                .add_render_command::<Transmissive3d, DrawMaterial<M>>()
                .add_render_command::<Transparent3d, DrawMaterial<M>>()
                .add_render_command::<Opaque3d, DrawMaterial<M>>()
                .add_render_command::<AlphaMask3d, DrawMaterial<M>>()
                .init_resource::<ExtractedMaterials<M>>()
                .init_resource::<RenderMaterials<M>>()
                .init_resource::<SpecializedMeshPipelines<MaterialPipeline<M>>>()
                .add_systems(ExtractSchedule, extract_materials::<M>)
                .add_systems(
                    Render,
                    (
                        prepare_materials::<M>
                            .in_set(RenderSet::PrepareAssets)
                            .after(prepare_assets::<Image>),
                        queue_shadows::<M>
                            .in_set(RenderSet::QueueMeshes)
                            .after(prepare_materials::<M>),
                        queue_material_meshes::<M>
                            .in_set(RenderSet::QueueMeshes)
                            .after(prepare_materials::<M>)
                            // queue_material_meshes only writes to `material_bind_group_id`, which `queue_shadows` doesn't read
                            .ambiguous_with(render::queue_shadows::<M>),
                    ),
                );
        }

        // PrepassPipelinePlugin is required for shadow mapping and the optional PrepassPlugin
        app.add_plugins(PrepassPipelinePlugin::<M>::default());

        if self.prepass_enabled {
            app.add_plugins(PrepassPlugin::<M>::default());
        }
    }

    fn finish(&self, app: &mut App) {
        if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
            render_app.init_resource::<MaterialPipeline<M>>();
        }
    }
}

/// A key uniquely identifying a specialized [`MaterialPipeline`].
pub struct MaterialPipelineKey<M: Material> {
    pub mesh_key: MeshPipelineKey,
    pub bind_group_data: M::Data,
}

impl<M: Material> Eq for MaterialPipelineKey<M> where M::Data: PartialEq {}

impl<M: Material> PartialEq for MaterialPipelineKey<M>
where
    M::Data: PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        self.mesh_key == other.mesh_key && self.bind_group_data == other.bind_group_data
    }
}

impl<M: Material> Clone for MaterialPipelineKey<M>
where
    M::Data: Clone,
{
    fn clone(&self) -> Self {
        Self {
            mesh_key: self.mesh_key,
            bind_group_data: self.bind_group_data.clone(),
        }
    }
}

impl<M: Material> Hash for MaterialPipelineKey<M>
where
    M::Data: Hash,
{
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        self.mesh_key.hash(state);
        self.bind_group_data.hash(state);
    }
}

/// Render pipeline data for a given [`Material`].
#[derive(Resource)]
pub struct MaterialPipeline<M: Material> {
    pub mesh_pipeline: MeshPipeline,
    pub material_layout: BindGroupLayout,
    pub vertex_shader: Option<Handle<Shader>>,
    pub fragment_shader: Option<Handle<Shader>>,
    pub marker: PhantomData<M>,
}

impl<M: Material> Clone for MaterialPipeline<M> {
    fn clone(&self) -> Self {
        Self {
            mesh_pipeline: self.mesh_pipeline.clone(),
            material_layout: self.material_layout.clone(),
            vertex_shader: self.vertex_shader.clone(),
            fragment_shader: self.fragment_shader.clone(),
            marker: PhantomData,
        }
    }
}

impl<M: Material> SpecializedMeshPipeline for MaterialPipeline<M>
where
    M::Data: PartialEq + Eq + Hash + Clone,
{
    type Key = MaterialPipelineKey<M>;

    fn specialize(
        &self,
        key: Self::Key,
        layout: &MeshVertexBufferLayout,
    ) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
        let mut descriptor = self.mesh_pipeline.specialize(key.mesh_key, layout)?;
        if let Some(vertex_shader) = &self.vertex_shader {
            descriptor.vertex.shader = vertex_shader.clone();
        }

        if let Some(fragment_shader) = &self.fragment_shader {
            descriptor.fragment.as_mut().unwrap().shader = fragment_shader.clone();
        }

        descriptor.layout.insert(2, self.material_layout.clone());

        M::specialize(self, &mut descriptor, layout, key)?;
        Ok(descriptor)
    }
}

impl<M: Material> FromWorld for MaterialPipeline<M> {
    fn from_world(world: &mut World) -> Self {
        let asset_server = world.resource::<AssetServer>();
        let render_device = world.resource::<RenderDevice>();

        MaterialPipeline {
            mesh_pipeline: world.resource::<MeshPipeline>().clone(),
            material_layout: M::bind_group_layout(render_device),
            vertex_shader: match M::vertex_shader() {
                ShaderRef::Default => None,
                ShaderRef::Handle(handle) => Some(handle),
                ShaderRef::Path(path) => Some(asset_server.load(path)),
            },
            fragment_shader: match M::fragment_shader() {
                ShaderRef::Default => None,
                ShaderRef::Handle(handle) => Some(handle),
                ShaderRef::Path(path) => Some(asset_server.load(path)),
            },
            marker: PhantomData,
        }
    }
}

type DrawMaterial<M> = (
    SetItemPipeline,
    SetMeshViewBindGroup<0>,
    SetMeshBindGroup<1>,
    SetMaterialBindGroup<M, 2>,
    DrawMesh,
);

/// Sets the bind group for a given [`Material`] at the configured `I` index.
pub struct SetMaterialBindGroup<M: Material, const I: usize>(PhantomData<M>);
impl<P: PhaseItem, M: Material, const I: usize> RenderCommand<P> for SetMaterialBindGroup<M, I> {
    type Param = (SRes<RenderMaterials<M>>, SRes<RenderMaterialInstances<M>>);
    type ViewQuery = ();
    type ItemQuery = ();

    #[inline]
    fn render<'w>(
        item: &P,
        _view: (),
        _item_query: Option<()>,
        (materials, material_instances): SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        let materials = materials.into_inner();
        let material_instances = material_instances.into_inner();

        let Some(material_asset_id) = material_instances.get(&item.entity()) else {
            return RenderCommandResult::Failure;
        };
        let Some(material) = materials.get(material_asset_id) else {
            return RenderCommandResult::Failure;
        };
        pass.set_bind_group(I, &material.bind_group, &[]);
        RenderCommandResult::Success
    }
}

pub type RenderMaterialInstances<M> = ExtractedInstances<AssetId<M>>;

pub const fn alpha_mode_pipeline_key(alpha_mode: AlphaMode) -> MeshPipelineKey {
    match alpha_mode {
        // Premultiplied and Add share the same pipeline key
        // They're made distinct in the PBR shader, via `premultiply_alpha()`
        AlphaMode::Premultiplied | AlphaMode::Add => MeshPipelineKey::BLEND_PREMULTIPLIED_ALPHA,
        AlphaMode::Blend => MeshPipelineKey::BLEND_ALPHA,
        AlphaMode::Multiply => MeshPipelineKey::BLEND_MULTIPLY,
        AlphaMode::Mask(_) => MeshPipelineKey::MAY_DISCARD,
        _ => MeshPipelineKey::NONE,
    }
}

pub const fn tonemapping_pipeline_key(tonemapping: Tonemapping) -> MeshPipelineKey {
    match tonemapping {
        Tonemapping::None => MeshPipelineKey::TONEMAP_METHOD_NONE,
        Tonemapping::Reinhard => MeshPipelineKey::TONEMAP_METHOD_REINHARD,
        Tonemapping::ReinhardLuminance => MeshPipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE,
        Tonemapping::AcesFitted => MeshPipelineKey::TONEMAP_METHOD_ACES_FITTED,
        Tonemapping::AgX => MeshPipelineKey::TONEMAP_METHOD_AGX,
        Tonemapping::SomewhatBoringDisplayTransform => {
            MeshPipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM
        }
        Tonemapping::TonyMcMapface => MeshPipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE,
        Tonemapping::BlenderFilmic => MeshPipelineKey::TONEMAP_METHOD_BLENDER_FILMIC,
    }
}

pub const fn screen_space_specular_transmission_pipeline_key(
    screen_space_transmissive_blur_quality: ScreenSpaceTransmissionQuality,
) -> MeshPipelineKey {
    match screen_space_transmissive_blur_quality {
        ScreenSpaceTransmissionQuality::Low => {
            MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_LOW
        }
        ScreenSpaceTransmissionQuality::Medium => {
            MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_MEDIUM
        }
        ScreenSpaceTransmissionQuality::High => {
            MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_HIGH
        }
        ScreenSpaceTransmissionQuality::Ultra => {
            MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_ULTRA
        }
    }
}

#[allow(clippy::too_many_arguments)]
pub fn queue_material_meshes<M: Material>(
    opaque_draw_functions: Res<DrawFunctions<Opaque3d>>,
    alpha_mask_draw_functions: Res<DrawFunctions<AlphaMask3d>>,
    transmissive_draw_functions: Res<DrawFunctions<Transmissive3d>>,
    transparent_draw_functions: Res<DrawFunctions<Transparent3d>>,
    material_pipeline: Res<MaterialPipeline<M>>,
    mut pipelines: ResMut<SpecializedMeshPipelines<MaterialPipeline<M>>>,
    pipeline_cache: Res<PipelineCache>,
    msaa: Res<Msaa>,
    render_meshes: Res<RenderAssets<Mesh>>,
    render_materials: Res<RenderMaterials<M>>,
    mut render_mesh_instances: ResMut<RenderMeshInstances>,
    render_material_instances: Res<RenderMaterialInstances<M>>,
    render_lightmaps: Res<RenderLightmaps>,
    mut views: Query<(
        &ExtractedView,
        &VisibleEntities,
        Option<&Tonemapping>,
        Option<&DebandDither>,
        Option<&ShadowFilteringMethod>,
        Has<ScreenSpaceAmbientOcclusionSettings>,
        (
            Has<NormalPrepass>,
            Has<DepthPrepass>,
            Has<MotionVectorPrepass>,
            Has<DeferredPrepass>,
        ),
        Option<&Camera3d>,
        Has<TemporalJitter>,
        Option<&Projection>,
        &mut RenderPhase<Opaque3d>,
        &mut RenderPhase<AlphaMask3d>,
        &mut RenderPhase<Transmissive3d>,
        &mut RenderPhase<Transparent3d>,
        (
            Has<RenderViewLightProbes<EnvironmentMapLight>>,
            Has<RenderViewLightProbes<IrradianceVolume>>,
        ),
    )>,
) where
    M::Data: PartialEq + Eq + Hash + Clone,
{
    for (
        view,
        visible_entities,
        tonemapping,
        dither,
        shadow_filter_method,
        ssao,
        (normal_prepass, depth_prepass, motion_vector_prepass, deferred_prepass),
        camera_3d,
        temporal_jitter,
        projection,
        mut opaque_phase,
        mut alpha_mask_phase,
        mut transmissive_phase,
        mut transparent_phase,
        (has_environment_maps, has_irradiance_volumes),
    ) in &mut views
    {
        let draw_opaque_pbr = opaque_draw_functions.read().id::<DrawMaterial<M>>();
        let draw_alpha_mask_pbr = alpha_mask_draw_functions.read().id::<DrawMaterial<M>>();
        let draw_transmissive_pbr = transmissive_draw_functions.read().id::<DrawMaterial<M>>();
        let draw_transparent_pbr = transparent_draw_functions.read().id::<DrawMaterial<M>>();

        let mut view_key = MeshPipelineKey::from_msaa_samples(msaa.samples())
            | MeshPipelineKey::from_hdr(view.hdr);

        if normal_prepass {
            view_key |= MeshPipelineKey::NORMAL_PREPASS;
        }

        if depth_prepass {
            view_key |= MeshPipelineKey::DEPTH_PREPASS;
        }

        if motion_vector_prepass {
            view_key |= MeshPipelineKey::MOTION_VECTOR_PREPASS;
        }

        if deferred_prepass {
            view_key |= MeshPipelineKey::DEFERRED_PREPASS;
        }

        if temporal_jitter {
            view_key |= MeshPipelineKey::TEMPORAL_JITTER;
        }

        if has_environment_maps {
            view_key |= MeshPipelineKey::ENVIRONMENT_MAP;
        }

        if has_irradiance_volumes {
            view_key |= MeshPipelineKey::IRRADIANCE_VOLUME;
        }

        if let Some(projection) = projection {
            view_key |= match projection {
                Projection::Perspective(_) => MeshPipelineKey::VIEW_PROJECTION_PERSPECTIVE,
                Projection::Orthographic(_) => MeshPipelineKey::VIEW_PROJECTION_ORTHOGRAPHIC,
            };
        }

        match shadow_filter_method.unwrap_or(&ShadowFilteringMethod::default()) {
            ShadowFilteringMethod::Hardware2x2 => {
                view_key |= MeshPipelineKey::SHADOW_FILTER_METHOD_HARDWARE_2X2;
            }
            ShadowFilteringMethod::Castano13 => {
                view_key |= MeshPipelineKey::SHADOW_FILTER_METHOD_CASTANO_13;
            }
            ShadowFilteringMethod::Jimenez14 => {
                view_key |= MeshPipelineKey::SHADOW_FILTER_METHOD_JIMENEZ_14;
            }
        }

        if !view.hdr {
            if let Some(tonemapping) = tonemapping {
                view_key |= MeshPipelineKey::TONEMAP_IN_SHADER;
                view_key |= tonemapping_pipeline_key(*tonemapping);
            }
            if let Some(DebandDither::Enabled) = dither {
                view_key |= MeshPipelineKey::DEBAND_DITHER;
            }
        }
        if ssao {
            view_key |= MeshPipelineKey::SCREEN_SPACE_AMBIENT_OCCLUSION;
        }
        if let Some(camera_3d) = camera_3d {
            view_key |= screen_space_specular_transmission_pipeline_key(
                camera_3d.screen_space_specular_transmission_quality,
            );
        }
        let rangefinder = view.rangefinder3d();
        for visible_entity in &visible_entities.entities {
            let Some(material_asset_id) = render_material_instances.get(visible_entity) else {
                continue;
            };
            let Some(mesh_instance) = render_mesh_instances.get_mut(visible_entity) else {
                continue;
            };
            let Some(mesh) = render_meshes.get(mesh_instance.mesh_asset_id) else {
                continue;
            };
            let Some(material) = render_materials.get(material_asset_id) else {
                continue;
            };

            let forward = match material.properties.render_method {
                OpaqueRendererMethod::Forward => true,
                OpaqueRendererMethod::Deferred => false,
                OpaqueRendererMethod::Auto => unreachable!(),
            };

            let mut mesh_key = view_key;

            mesh_key |= MeshPipelineKey::from_primitive_topology(mesh.primitive_topology);

            if mesh.morph_targets.is_some() {
                mesh_key |= MeshPipelineKey::MORPH_TARGETS;
            }

            if material.properties.reads_view_transmission_texture {
                mesh_key |= MeshPipelineKey::READS_VIEW_TRANSMISSION_TEXTURE;
            }

            mesh_key |= alpha_mode_pipeline_key(material.properties.alpha_mode);

            if render_lightmaps
                .render_lightmaps
                .contains_key(visible_entity)
            {
                mesh_key |= MeshPipelineKey::LIGHTMAPPED;
            }

            let pipeline_id = pipelines.specialize(
                &pipeline_cache,
                &material_pipeline,
                MaterialPipelineKey {
                    mesh_key,
                    bind_group_data: material.key.clone(),
                },
                &mesh.layout,
            );
            let pipeline_id = match pipeline_id {
                Ok(id) => id,
                Err(err) => {
                    error!("{}", err);
                    continue;
                }
            };

            mesh_instance.material_bind_group_id = material.get_bind_group_id();

            match material.properties.alpha_mode {
                AlphaMode::Opaque => {
                    if material.properties.reads_view_transmission_texture {
                        let distance = rangefinder
                            .distance_translation(&mesh_instance.transforms.transform.translation)
                            + material.properties.depth_bias;
                        transmissive_phase.add(Transmissive3d {
                            entity: *visible_entity,
                            draw_function: draw_transmissive_pbr,
                            pipeline: pipeline_id,
                            distance,
                            batch_range: 0..1,
                            dynamic_offset: None,
                        });
                    } else if forward {
                        opaque_phase.add(Opaque3d {
                            entity: *visible_entity,
                            draw_function: draw_opaque_pbr,
                            pipeline: pipeline_id,
                            asset_id: mesh_instance.mesh_asset_id,
                            batch_range: 0..1,
                            dynamic_offset: None,
                        });
                    }
                }
                AlphaMode::Mask(_) => {
                    let distance = rangefinder
                        .distance_translation(&mesh_instance.transforms.transform.translation)
                        + material.properties.depth_bias;
                    if material.properties.reads_view_transmission_texture {
                        transmissive_phase.add(Transmissive3d {
                            entity: *visible_entity,
                            draw_function: draw_transmissive_pbr,
                            pipeline: pipeline_id,
                            distance,
                            batch_range: 0..1,
                            dynamic_offset: None,
                        });
                    } else if forward {
                        alpha_mask_phase.add(AlphaMask3d {
                            entity: *visible_entity,
                            draw_function: draw_alpha_mask_pbr,
                            pipeline: pipeline_id,
                            distance,
                            batch_range: 0..1,
                            dynamic_offset: None,
                        });
                    }
                }
                AlphaMode::Blend
                | AlphaMode::Premultiplied
                | AlphaMode::Add
                | AlphaMode::Multiply => {
                    let distance = rangefinder
                        .distance_translation(&mesh_instance.transforms.transform.translation)
                        + material.properties.depth_bias;
                    transparent_phase.add(Transparent3d {
                        entity: *visible_entity,
                        draw_function: draw_transparent_pbr,
                        pipeline: pipeline_id,
                        distance,
                        batch_range: 0..1,
                        dynamic_offset: None,
                    });
                }
            }
        }
    }
}

/// Default render method used for opaque materials.
#[derive(Default, Resource, Clone, Debug, ExtractResource, Reflect)]
pub struct DefaultOpaqueRendererMethod(OpaqueRendererMethod);

impl DefaultOpaqueRendererMethod {
    pub fn forward() -> Self {
        DefaultOpaqueRendererMethod(OpaqueRendererMethod::Forward)
    }

    pub fn deferred() -> Self {
        DefaultOpaqueRendererMethod(OpaqueRendererMethod::Deferred)
    }

    pub fn set_to_forward(&mut self) {
        self.0 = OpaqueRendererMethod::Forward;
    }

    pub fn set_to_deferred(&mut self) {
        self.0 = OpaqueRendererMethod::Deferred;
    }
}

/// Render method used for opaque materials.
///
/// The forward rendering main pass draws each mesh entity and shades it according to its
/// corresponding material and the lights that affect it. Some render features like Screen Space
/// Ambient Occlusion require running depth and normal prepasses, that are 'deferred'-like
/// prepasses over all mesh entities to populate depth and normal textures. This means that when
/// using render features that require running prepasses, multiple passes over all visible geometry
/// are required. This can be slow if there is a lot of geometry that cannot be batched into few
/// draws.
///
/// Deferred rendering runs a prepass to gather not only geometric information like depth and
/// normals, but also all the material properties like base color, emissive color, reflectance,
/// metalness, etc, and writes them into a deferred 'g-buffer' texture. The deferred main pass is
/// then a fullscreen pass that reads data from these textures and executes shading. This allows
/// for one pass over geometry, but is at the cost of not being able to use MSAA, and has heavier
/// bandwidth usage which can be unsuitable for low end mobile or other bandwidth-constrained devices.
///
/// If a material indicates `OpaqueRendererMethod::Auto`, `DefaultOpaqueRendererMethod` will be used.
#[derive(Default, Clone, Copy, Debug, Reflect)]
pub enum OpaqueRendererMethod {
    #[default]
    Forward,
    Deferred,
    Auto,
}

/// Common [`Material`] properties, calculated for a specific material instance.
pub struct MaterialProperties {
    /// Is this material should be rendered by the deferred renderer when.
    /// AlphaMode::Opaque or AlphaMode::Mask
    pub render_method: OpaqueRendererMethod,
    /// The [`AlphaMode`] of this material.
    pub alpha_mode: AlphaMode,
    /// Add a bias to the view depth of the mesh which can be used to force a specific render order
    /// for meshes with equal depth, to avoid z-fighting.
    /// The bias is in depth-texture units so large values may be needed to overcome small depth differences.
    pub depth_bias: f32,
    /// Whether the material would like to read from [`ViewTransmissionTexture`](bevy_core_pipeline::core_3d::ViewTransmissionTexture).
    ///
    /// This allows taking color output from the [`Opaque3d`] pass as an input, (for screen-space transmission) but requires
    /// rendering to take place in a separate [`Transmissive3d`] pass.
    pub reads_view_transmission_texture: bool,
}

/// Data prepared for a [`Material`] instance.
pub struct PreparedMaterial<T: Material> {
    pub bindings: Vec<(u32, OwnedBindingResource)>,
    pub bind_group: BindGroup,
    pub key: T::Data,
    pub properties: MaterialProperties,
}

#[derive(Component, Clone, Copy, Default, PartialEq, Eq, Deref, DerefMut)]
pub struct MaterialBindGroupId(Option<BindGroupId>);

impl<T: Material> PreparedMaterial<T> {
    pub fn get_bind_group_id(&self) -> MaterialBindGroupId {
        MaterialBindGroupId(Some(self.bind_group.id()))
    }
}

#[derive(Resource)]
pub struct ExtractedMaterials<M: Material> {
    extracted: Vec<(AssetId<M>, M)>,
    removed: Vec<AssetId<M>>,
}

impl<M: Material> Default for ExtractedMaterials<M> {
    fn default() -> Self {
        Self {
            extracted: Default::default(),
            removed: Default::default(),
        }
    }
}

/// Stores all prepared representations of [`Material`] assets for as long as they exist.
#[derive(Resource, Deref, DerefMut)]
pub struct RenderMaterials<T: Material>(pub HashMap<AssetId<T>, PreparedMaterial<T>>);

impl<T: Material> Default for RenderMaterials<T> {
    fn default() -> Self {
        Self(Default::default())
    }
}

/// This system extracts all created or modified assets of the corresponding [`Material`] type
/// into the "render world".
pub fn extract_materials<M: Material>(
    mut commands: Commands,
    mut events: Extract<EventReader<AssetEvent<M>>>,
    assets: Extract<Res<Assets<M>>>,
) {
    let mut changed_assets = HashSet::default();
    let mut removed = Vec::new();
    for event in events.read() {
        #[allow(clippy::match_same_arms)]
        match event {
            AssetEvent::Added { id } | AssetEvent::Modified { id } => {
                changed_assets.insert(*id);
            }
            AssetEvent::Removed { id } => {
                changed_assets.remove(id);
                removed.push(*id);
            }
            AssetEvent::Unused { .. } => {}
            AssetEvent::LoadedWithDependencies { .. } => {
                // TODO: handle this
            }
        }
    }

    let mut extracted_assets = Vec::new();
    for id in changed_assets.drain() {
        if let Some(asset) = assets.get(id) {
            extracted_assets.push((id, asset.clone()));
        }
    }

    commands.insert_resource(ExtractedMaterials {
        extracted: extracted_assets,
        removed,
    });
}

/// All [`Material`] values of a given type that should be prepared next frame.
pub struct PrepareNextFrameMaterials<M: Material> {
    assets: Vec<(AssetId<M>, M)>,
}

impl<M: Material> Default for PrepareNextFrameMaterials<M> {
    fn default() -> Self {
        Self {
            assets: Default::default(),
        }
    }
}

/// This system prepares all assets of the corresponding [`Material`] type
/// which where extracted this frame for the GPU.
#[allow(clippy::too_many_arguments)]
pub fn prepare_materials<M: Material>(
    mut prepare_next_frame: Local<PrepareNextFrameMaterials<M>>,
    mut extracted_assets: ResMut<ExtractedMaterials<M>>,
    mut render_materials: ResMut<RenderMaterials<M>>,
    render_device: Res<RenderDevice>,
    images: Res<RenderAssets<Image>>,
    fallback_image: Res<FallbackImage>,
    pipeline: Res<MaterialPipeline<M>>,
    default_opaque_render_method: Res<DefaultOpaqueRendererMethod>,
) {
    let queued_assets = std::mem::take(&mut prepare_next_frame.assets);
    for (id, material) in queued_assets.into_iter() {
        match prepare_material(
            &material,
            &render_device,
            &images,
            &fallback_image,
            &pipeline,
            default_opaque_render_method.0,
        ) {
            Ok(prepared_asset) => {
                render_materials.insert(id, prepared_asset);
            }
            Err(AsBindGroupError::RetryNextUpdate) => {
                prepare_next_frame.assets.push((id, material));
            }
        }
    }

    for removed in std::mem::take(&mut extracted_assets.removed) {
        render_materials.remove(&removed);
    }

    for (id, material) in std::mem::take(&mut extracted_assets.extracted) {
        match prepare_material(
            &material,
            &render_device,
            &images,
            &fallback_image,
            &pipeline,
            default_opaque_render_method.0,
        ) {
            Ok(prepared_asset) => {
                render_materials.insert(id, prepared_asset);
            }
            Err(AsBindGroupError::RetryNextUpdate) => {
                prepare_next_frame.assets.push((id, material));
            }
        }
    }
}

fn prepare_material<M: Material>(
    material: &M,
    render_device: &RenderDevice,
    images: &RenderAssets<Image>,
    fallback_image: &FallbackImage,
    pipeline: &MaterialPipeline<M>,
    default_opaque_render_method: OpaqueRendererMethod,
) -> Result<PreparedMaterial<M>, AsBindGroupError> {
    let prepared = material.as_bind_group(
        &pipeline.material_layout,
        render_device,
        images,
        fallback_image,
    )?;
    let method = match material.opaque_render_method() {
        OpaqueRendererMethod::Forward => OpaqueRendererMethod::Forward,
        OpaqueRendererMethod::Deferred => OpaqueRendererMethod::Deferred,
        OpaqueRendererMethod::Auto => default_opaque_render_method,
    };
    Ok(PreparedMaterial {
        bindings: prepared.bindings,
        bind_group: prepared.bind_group,
        key: prepared.data,
        properties: MaterialProperties {
            alpha_mode: material.alpha_mode(),
            depth_bias: material.depth_bias(),
            reads_view_transmission_texture: material.reads_view_transmission_texture(),
            render_method: method,
        },
    })
}