1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
use bevy_asset::{Asset, Handle};
use bevy_math::Vec4;
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
use bevy_render::{
color::Color, mesh::MeshVertexBufferLayout, render_asset::RenderAssets, render_resource::*,
texture::Image,
};
use crate::deferred::DEFAULT_PBR_DEFERRED_LIGHTING_PASS_ID;
use crate::*;
/// A material with "standard" properties used in PBR lighting
/// Standard property values with pictures here
/// <https://google.github.io/filament/Material%20Properties.pdf>.
///
/// May be created directly from a [`Color`] or an [`Image`].
#[derive(Asset, AsBindGroup, Reflect, Debug, Clone)]
#[bind_group_data(StandardMaterialKey)]
#[uniform(0, StandardMaterialUniform)]
#[reflect(Default, Debug)]
pub struct StandardMaterial {
/// The color of the surface of the material before lighting.
///
/// Doubles as diffuse albedo for non-metallic, specular for metallic and a mix for everything
/// in between. If used together with a `base_color_texture`, this is factored into the final
/// base color as `base_color * base_color_texture_value`
///
/// Defaults to [`Color::WHITE`].
pub base_color: Color,
/// The texture component of the material's color before lighting.
/// The actual pre-lighting color is `base_color * this_texture`.
///
/// See [`base_color`] for details.
///
/// You should set `base_color` to [`Color::WHITE`] (the default)
/// if you want the texture to show as-is.
///
/// Setting `base_color` to something else than white will tint
/// the texture. For example, setting `base_color` to pure red will
/// tint the texture red.
///
/// [`base_color`]: StandardMaterial::base_color
#[texture(1)]
#[sampler(2)]
#[dependency]
pub base_color_texture: Option<Handle<Image>>,
// Use a color for user friendliness even though we technically don't use the alpha channel
// Might be used in the future for exposure correction in HDR
/// Color the material "emits" to the camera.
///
/// This is typically used for monitor screens or LED lights.
/// Anything that can be visible even in darkness.
///
/// The emissive color is added to what would otherwise be the material's visible color.
/// This means that for a light emissive value, in darkness,
/// you will mostly see the emissive component.
///
/// The default emissive color is black, which doesn't add anything to the material color.
///
/// Note that **an emissive material won't light up surrounding areas like a light source**,
/// it just adds a value to the color seen on screen.
pub emissive: Color,
/// The emissive map, multiplies pixels with [`emissive`]
/// to get the final "emitting" color of a surface.
///
/// This color is multiplied by [`emissive`] to get the final emitted color.
/// Meaning that you should set [`emissive`] to [`Color::WHITE`]
/// if you want to use the full range of color of the emissive texture.
///
/// [`emissive`]: StandardMaterial::emissive
#[texture(3)]
#[sampler(4)]
#[dependency]
pub emissive_texture: Option<Handle<Image>>,
/// Linear perceptual roughness, clamped to `[0.089, 1.0]` in the shader.
///
/// Defaults to `0.5`.
///
/// Low values result in a "glossy" material with specular highlights,
/// while values close to `1` result in rough materials.
///
/// If used together with a roughness/metallic texture, this is factored into the final base
/// color as `roughness * roughness_texture_value`.
///
/// 0.089 is the minimum floating point value that won't be rounded down to 0 in the
/// calculations used.
//
// Technically for 32-bit floats, 0.045 could be used.
// See <https://google.github.io/filament/Filament.html#materialsystem/parameterization/>
pub perceptual_roughness: f32,
/// How "metallic" the material appears, within `[0.0, 1.0]`.
///
/// This should be set to 0.0 for dielectric materials or 1.0 for metallic materials.
/// For a hybrid surface such as corroded metal, you may need to use in-between values.
///
/// Defaults to `0.00`, for dielectric.
///
/// If used together with a roughness/metallic texture, this is factored into the final base
/// color as `metallic * metallic_texture_value`.
pub metallic: f32,
/// Metallic and roughness maps, stored as a single texture.
///
/// The blue channel contains metallic values,
/// and the green channel contains the roughness values.
/// Other channels are unused.
///
/// Those values are multiplied by the scalar ones of the material,
/// see [`metallic`] and [`perceptual_roughness`] for details.
///
/// Note that with the default values of [`metallic`] and [`perceptual_roughness`],
/// setting this texture has no effect. If you want to exclusively use the
/// `metallic_roughness_texture` values for your material, make sure to set [`metallic`]
/// and [`perceptual_roughness`] to `1.0`.
///
/// [`metallic`]: StandardMaterial::metallic
/// [`perceptual_roughness`]: StandardMaterial::perceptual_roughness
#[texture(5)]
#[sampler(6)]
#[dependency]
pub metallic_roughness_texture: Option<Handle<Image>>,
/// Specular intensity for non-metals on a linear scale of `[0.0, 1.0]`.
///
/// Use the value as a way to control the intensity of the
/// specular highlight of the material, i.e. how reflective is the material,
/// rather than the physical property "reflectance."
///
/// Set to `0.0`, no specular highlight is visible, the highlight is strongest
/// when `reflectance` is set to `1.0`.
///
/// Defaults to `0.5` which is mapped to 4% reflectance in the shader.
#[doc(alias = "specular_intensity")]
pub reflectance: f32,
/// The amount of light transmitted _diffusely_ through the material (i.e. “translucency”)
///
/// Implemented as a second, flipped [Lambertian diffuse](https://en.wikipedia.org/wiki/Lambertian_reflectance) lobe,
/// which provides an inexpensive but plausible approximation of translucency for thin dieletric objects (e.g. paper,
/// leaves, some fabrics) or thicker volumetric materials with short scattering distances (e.g. porcelain, wax).
///
/// For specular transmission usecases with refraction (e.g. glass) use the [`StandardMaterial::specular_transmission`] and
/// [`StandardMaterial::ior`] properties instead.
///
/// - When set to `0.0` (the default) no diffuse light is transmitted;
/// - When set to `1.0` all diffuse light is transmitted through the material;
/// - Values higher than `0.5` will cause more diffuse light to be transmitted than reflected, resulting in a “darker”
/// appearance on the side facing the light than the opposite side. (e.g. plant leaves)
///
/// ## Notes
///
/// - The material's [`StandardMaterial::base_color`] also modulates the transmitted light;
/// - To receive transmitted shadows on the diffuse transmission lobe (i.e. the “backside”) of the material,
/// use the [`TransmittedShadowReceiver`] component.
#[doc(alias = "translucency")]
pub diffuse_transmission: f32,
/// A map that modulates diffuse transmission via its alpha channel. Multiplied by [`StandardMaterial::diffuse_transmission`]
/// to obtain the final result.
///
/// **Important:** The [`StandardMaterial::diffuse_transmission`] property must be set to a value higher than 0.0,
/// or this texture won't have any effect.
#[texture(17)]
#[sampler(18)]
#[cfg(feature = "pbr_transmission_textures")]
pub diffuse_transmission_texture: Option<Handle<Image>>,
/// The amount of light transmitted _specularly_ through the material (i.e. via refraction)
///
/// - When set to `0.0` (the default) no light is transmitted.
/// - When set to `1.0` all light is transmitted through the material.
///
/// The material's [`StandardMaterial::base_color`] also modulates the transmitted light.
///
/// **Note:** Typically used in conjunction with [`StandardMaterial::thickness`], [`StandardMaterial::ior`] and [`StandardMaterial::perceptual_roughness`].
///
/// ## Performance
///
/// Specular transmission is implemented as a relatively expensive screen-space effect that allows ocluded objects to be seen through the material,
/// with distortion and blur effects.
///
/// - [`Camera3d::screen_space_specular_transmission_steps`](bevy_core_pipeline::core_3d::Camera3d::screen_space_specular_transmission_steps) can be used to enable transmissive objects
/// to be seen through other transmissive objects, at the cost of additional draw calls and texture copies; (Use with caution!)
/// - If a simplified approximation of specular transmission using only environment map lighting is sufficient, consider setting
/// [`Camera3d::screen_space_specular_transmission_steps`](bevy_core_pipeline::core_3d::Camera3d::screen_space_specular_transmission_steps) to `0`.
/// - If purely diffuse light transmission is needed, (i.e. “translucency”) consider using [`StandardMaterial::diffuse_transmission`] instead,
/// for a much less expensive effect.
/// - Specular transmission is rendered before alpha blending, so any material with [`AlphaMode::Blend`], [`AlphaMode::Premultiplied`], [`AlphaMode::Add`] or [`AlphaMode::Multiply`]
/// won't be visible through specular transmissive materials.
#[doc(alias = "refraction")]
pub specular_transmission: f32,
/// A map that modulates specular transmission via its red channel. Multiplied by [`StandardMaterial::specular_transmission`]
/// to obtain the final result.
///
/// **Important:** The [`StandardMaterial::specular_transmission`] property must be set to a value higher than 0.0,
/// or this texture won't have any effect.
#[texture(13)]
#[sampler(14)]
#[cfg(feature = "pbr_transmission_textures")]
pub specular_transmission_texture: Option<Handle<Image>>,
/// Thickness of the volume beneath the material surface.
///
/// When set to `0.0` (the default) the material appears as an infinitely-thin film,
/// transmitting light without distorting it.
///
/// When set to any other value, the material distorts light like a thick lens.
///
/// **Note:** Typically used in conjunction with [`StandardMaterial::specular_transmission`] and [`StandardMaterial::ior`], or with
/// [`StandardMaterial::diffuse_transmission`].
#[doc(alias = "volume")]
#[doc(alias = "thin_walled")]
pub thickness: f32,
/// A map that modulates thickness via its green channel. Multiplied by [`StandardMaterial::thickness`]
/// to obtain the final result.
///
/// **Important:** The [`StandardMaterial::thickness`] property must be set to a value higher than 0.0,
/// or this texture won't have any effect.
#[texture(15)]
#[sampler(16)]
#[cfg(feature = "pbr_transmission_textures")]
pub thickness_texture: Option<Handle<Image>>,
/// The [index of refraction](https://en.wikipedia.org/wiki/Refractive_index) of the material.
///
/// Defaults to 1.5.
///
/// | Material | Index of Refraction |
/// |:----------------|:---------------------|
/// | Vacuum | 1 |
/// | Air | 1.00 |
/// | Ice | 1.31 |
/// | Water | 1.33 |
/// | Eyes | 1.38 |
/// | Quartz | 1.46 |
/// | Olive Oil | 1.47 |
/// | Honey | 1.49 |
/// | Acrylic | 1.49 |
/// | Window Glass | 1.52 |
/// | Polycarbonate | 1.58 |
/// | Flint Glass | 1.69 |
/// | Ruby | 1.71 |
/// | Glycerine | 1.74 |
/// | Saphire | 1.77 |
/// | Cubic Zirconia | 2.15 |
/// | Diamond | 2.42 |
/// | Moissanite | 2.65 |
///
/// **Note:** Typically used in conjunction with [`StandardMaterial::specular_transmission`] and [`StandardMaterial::thickness`].
#[doc(alias = "index_of_refraction")]
#[doc(alias = "refraction_index")]
#[doc(alias = "refractive_index")]
pub ior: f32,
/// How far, on average, light travels through the volume beneath the material's
/// surface before being absorbed.
///
/// Defaults to [`f32::INFINITY`], i.e. light is never absorbed.
///
/// **Note:** To have any effect, must be used in conjunction with:
/// - [`StandardMaterial::attenuation_color`];
/// - [`StandardMaterial::thickness`];
/// - [`StandardMaterial::diffuse_transmission`] or [`StandardMaterial::specular_transmission`].
#[doc(alias = "absorption_distance")]
#[doc(alias = "extinction_distance")]
pub attenuation_distance: f32,
/// The resulting (non-absorbed) color after white light travels through the attenuation distance.
///
/// Defaults to [`Color::WHITE`], i.e. no change.
///
/// **Note:** To have any effect, must be used in conjunction with:
/// - [`StandardMaterial::attenuation_distance`];
/// - [`StandardMaterial::thickness`];
/// - [`StandardMaterial::diffuse_transmission`] or [`StandardMaterial::specular_transmission`].
#[doc(alias = "absorption_color")]
#[doc(alias = "extinction_color")]
pub attenuation_color: Color,
/// Used to fake the lighting of bumps and dents on a material.
///
/// A typical usage would be faking cobblestones on a flat plane mesh in 3D.
///
/// # Notes
///
/// Normal mapping with `StandardMaterial` and the core bevy PBR shaders requires:
/// - A normal map texture
/// - Vertex UVs
/// - Vertex tangents
/// - Vertex normals
///
/// Tangents do not have to be stored in your model,
/// they can be generated using the [`Mesh::generate_tangents`] or
/// [`Mesh::with_generated_tangents`] methods.
/// If your material has a normal map, but still renders as a flat surface,
/// make sure your meshes have their tangents set.
///
/// [`Mesh::generate_tangents`]: bevy_render::mesh::Mesh::generate_tangents
/// [`Mesh::with_generated_tangents`]: bevy_render::mesh::Mesh::with_generated_tangents
#[texture(9)]
#[sampler(10)]
#[dependency]
pub normal_map_texture: Option<Handle<Image>>,
/// Normal map textures authored for DirectX have their y-component flipped. Set this to flip
/// it to right-handed conventions.
pub flip_normal_map_y: bool,
/// Specifies the level of exposure to ambient light.
///
/// This is usually generated and stored automatically ("baked") by 3D-modelling software.
///
/// Typically, steep concave parts of a model (such as the armpit of a shirt) are darker,
/// because they have little exposure to light.
/// An occlusion map specifies those parts of the model that light doesn't reach well.
///
/// The material will be less lit in places where this texture is dark.
/// This is similar to ambient occlusion, but built into the model.
#[texture(7)]
#[sampler(8)]
#[dependency]
pub occlusion_texture: Option<Handle<Image>>,
/// Support two-sided lighting by automatically flipping the normals for "back" faces
/// within the PBR lighting shader.
///
/// Defaults to `false`.
/// This does not automatically configure backface culling,
/// which can be done via `cull_mode`.
pub double_sided: bool,
/// Whether to cull the "front", "back" or neither side of a mesh.
/// If set to `None`, the two sides of the mesh are visible.
///
/// Defaults to `Some(Face::Back)`.
/// In bevy, the order of declaration of a triangle's vertices
/// in [`Mesh`] defines the triangle's front face.
///
/// When a triangle is in a viewport,
/// if its vertices appear counter-clockwise from the viewport's perspective,
/// then the viewport is seeing the triangle's front face.
/// Conversely, if the vertices appear clockwise, you are seeing the back face.
///
/// In short, in bevy, front faces winds counter-clockwise.
///
/// Your 3D editing software should manage all of that.
///
/// [`Mesh`]: bevy_render::mesh::Mesh
// TODO: include this in reflection somehow (maybe via remote types like serde https://serde.rs/remote-derive.html)
#[reflect(ignore)]
pub cull_mode: Option<Face>,
/// Whether to apply only the base color to this material.
///
/// Normals, occlusion textures, roughness, metallic, reflectance, emissive,
/// shadows, alpha mode and ambient light are ignored if this is set to `true`.
pub unlit: bool,
/// Whether to enable fog for this material.
pub fog_enabled: bool,
/// How to apply the alpha channel of the `base_color_texture`.
///
/// See [`AlphaMode`] for details. Defaults to [`AlphaMode::Opaque`].
pub alpha_mode: AlphaMode,
/// Adjust rendered depth.
///
/// A material with a positive depth bias will render closer to the
/// camera while negative values cause the material to render behind
/// other objects. This is independent of the viewport.
///
/// `depth_bias` affects render ordering and depth write operations
/// using the `wgpu::DepthBiasState::Constant` field.
///
/// [z-fighting]: https://en.wikipedia.org/wiki/Z-fighting
pub depth_bias: f32,
/// The depth map used for [parallax mapping].
///
/// It is a greyscale image where white represents bottom and black the top.
/// If this field is set, bevy will apply [parallax mapping].
/// Parallax mapping, unlike simple normal maps, will move the texture
/// coordinate according to the current perspective,
/// giving actual depth to the texture.
///
/// The visual result is similar to a displacement map,
/// but does not require additional geometry.
///
/// Use the [`parallax_depth_scale`] field to control the depth of the parallax.
///
/// ## Limitations
///
/// - It will look weird on bent/non-planar surfaces.
/// - The depth of the pixel does not reflect its visual position, resulting
/// in artifacts for depth-dependent features such as fog or SSAO.
/// - For the same reason, the geometry silhouette will always be
/// the one of the actual geometry, not the parallaxed version, resulting
/// in awkward looks on intersecting parallaxed surfaces.
///
/// ## Performance
///
/// Parallax mapping requires multiple texture lookups, proportional to
/// [`max_parallax_layer_count`], which might be costly.
///
/// Use the [`parallax_mapping_method`] and [`max_parallax_layer_count`] fields
/// to tweak the shader, trading graphical quality for performance.
///
/// To improve performance, set your `depth_map`'s [`Image::sampler`]
/// filter mode to `FilterMode::Nearest`, as [this paper] indicates, it improves
/// performance a bit.
///
/// To reduce artifacts, avoid steep changes in depth, blurring the depth
/// map helps with this.
///
/// Larger depth maps haves a disproportionate performance impact.
///
/// [this paper]: https://www.diva-portal.org/smash/get/diva2:831762/FULLTEXT01.pdf
/// [parallax mapping]: https://en.wikipedia.org/wiki/Parallax_mapping
/// [`parallax_depth_scale`]: StandardMaterial::parallax_depth_scale
/// [`parallax_mapping_method`]: StandardMaterial::parallax_mapping_method
/// [`max_parallax_layer_count`]: StandardMaterial::max_parallax_layer_count
#[texture(11)]
#[sampler(12)]
#[dependency]
pub depth_map: Option<Handle<Image>>,
/// How deep the offset introduced by the depth map should be.
///
/// Default is `0.1`, anything over that value may look distorted.
/// Lower values lessen the effect.
///
/// The depth is relative to texture size. This means that if your texture
/// occupies a surface of `1` world unit, and `parallax_depth_scale` is `0.1`, then
/// the in-world depth will be of `0.1` world units.
/// If the texture stretches for `10` world units, then the final depth
/// will be of `1` world unit.
pub parallax_depth_scale: f32,
/// Which parallax mapping method to use.
///
/// We recommend that all objects use the same [`ParallaxMappingMethod`], to avoid
/// duplicating and running two shaders.
pub parallax_mapping_method: ParallaxMappingMethod,
/// In how many layers to split the depth maps for parallax mapping.
///
/// If you are seeing jaggy edges, increase this value.
/// However, this incurs a performance cost.
///
/// Dependent on the situation, switching to [`ParallaxMappingMethod::Relief`]
/// and keeping this value low might have better performance than increasing the
/// layer count while using [`ParallaxMappingMethod::Occlusion`].
///
/// Default is `16.0`.
pub max_parallax_layer_count: f32,
/// The exposure (brightness) level of the lightmap, if present.
pub lightmap_exposure: f32,
/// Render method used for opaque materials. (Where `alpha_mode` is [`AlphaMode::Opaque`] or [`AlphaMode::Mask`])
pub opaque_render_method: OpaqueRendererMethod,
/// Used for selecting the deferred lighting pass for deferred materials.
/// Default is [`DEFAULT_PBR_DEFERRED_LIGHTING_PASS_ID`] for default
/// PBR deferred lighting pass. Ignored in the case of forward materials.
pub deferred_lighting_pass_id: u8,
}
impl Default for StandardMaterial {
fn default() -> Self {
StandardMaterial {
// White because it gets multiplied with texture values if someone uses
// a texture.
base_color: Color::rgb(1.0, 1.0, 1.0),
base_color_texture: None,
emissive: Color::BLACK,
emissive_texture: None,
// Matches Blender's default roughness.
perceptual_roughness: 0.5,
// Metallic should generally be set to 0.0 or 1.0.
metallic: 0.0,
metallic_roughness_texture: None,
// Minimum real-world reflectance is 2%, most materials between 2-5%
// Expressed in a linear scale and equivalent to 4% reflectance see
// <https://google.github.io/filament/Material%20Properties.pdf>
reflectance: 0.5,
diffuse_transmission: 0.0,
#[cfg(feature = "pbr_transmission_textures")]
diffuse_transmission_texture: None,
specular_transmission: 0.0,
#[cfg(feature = "pbr_transmission_textures")]
specular_transmission_texture: None,
thickness: 0.0,
#[cfg(feature = "pbr_transmission_textures")]
thickness_texture: None,
ior: 1.5,
attenuation_color: Color::WHITE,
attenuation_distance: f32::INFINITY,
occlusion_texture: None,
normal_map_texture: None,
flip_normal_map_y: false,
double_sided: false,
cull_mode: Some(Face::Back),
unlit: false,
fog_enabled: true,
alpha_mode: AlphaMode::Opaque,
depth_bias: 0.0,
depth_map: None,
parallax_depth_scale: 0.1,
max_parallax_layer_count: 16.0,
lightmap_exposure: 1.0,
parallax_mapping_method: ParallaxMappingMethod::Occlusion,
opaque_render_method: OpaqueRendererMethod::Auto,
deferred_lighting_pass_id: DEFAULT_PBR_DEFERRED_LIGHTING_PASS_ID,
}
}
}
impl From<Color> for StandardMaterial {
fn from(color: Color) -> Self {
StandardMaterial {
base_color: color,
alpha_mode: if color.a() < 1.0 {
AlphaMode::Blend
} else {
AlphaMode::Opaque
},
..Default::default()
}
}
}
impl From<Handle<Image>> for StandardMaterial {
fn from(texture: Handle<Image>) -> Self {
StandardMaterial {
base_color_texture: Some(texture),
..Default::default()
}
}
}
// NOTE: These must match the bit flags in bevy_pbr/src/render/pbr_types.wgsl!
bitflags::bitflags! {
/// Bitflags info about the material a shader is currently rendering.
/// This is accessible in the shader in the [`StandardMaterialUniform`]
#[repr(transparent)]
pub struct StandardMaterialFlags: u32 {
const BASE_COLOR_TEXTURE = 1 << 0;
const EMISSIVE_TEXTURE = 1 << 1;
const METALLIC_ROUGHNESS_TEXTURE = 1 << 2;
const OCCLUSION_TEXTURE = 1 << 3;
const DOUBLE_SIDED = 1 << 4;
const UNLIT = 1 << 5;
const TWO_COMPONENT_NORMAL_MAP = 1 << 6;
const FLIP_NORMAL_MAP_Y = 1 << 7;
const FOG_ENABLED = 1 << 8;
const DEPTH_MAP = 1 << 9; // Used for parallax mapping
const SPECULAR_TRANSMISSION_TEXTURE = 1 << 10;
const THICKNESS_TEXTURE = 1 << 11;
const DIFFUSE_TRANSMISSION_TEXTURE = 1 << 12;
const ATTENUATION_ENABLED = 1 << 13;
const ALPHA_MODE_RESERVED_BITS = Self::ALPHA_MODE_MASK_BITS << Self::ALPHA_MODE_SHIFT_BITS; // ← Bitmask reserving bits for the `AlphaMode`
const ALPHA_MODE_OPAQUE = 0 << Self::ALPHA_MODE_SHIFT_BITS; // ← Values are just sequential values bitshifted into
const ALPHA_MODE_MASK = 1 << Self::ALPHA_MODE_SHIFT_BITS; // the bitmask, and can range from 0 to 7.
const ALPHA_MODE_BLEND = 2 << Self::ALPHA_MODE_SHIFT_BITS; //
const ALPHA_MODE_PREMULTIPLIED = 3 << Self::ALPHA_MODE_SHIFT_BITS; //
const ALPHA_MODE_ADD = 4 << Self::ALPHA_MODE_SHIFT_BITS; // Right now only values 0–5 are used, which still gives
const ALPHA_MODE_MULTIPLY = 5 << Self::ALPHA_MODE_SHIFT_BITS; // ← us "room" for two more modes without adding more bits
const NONE = 0;
const UNINITIALIZED = 0xFFFF;
}
}
impl StandardMaterialFlags {
const ALPHA_MODE_MASK_BITS: u32 = 0b111;
const ALPHA_MODE_SHIFT_BITS: u32 = 32 - Self::ALPHA_MODE_MASK_BITS.count_ones();
}
/// The GPU representation of the uniform data of a [`StandardMaterial`].
#[derive(Clone, Default, ShaderType)]
pub struct StandardMaterialUniform {
/// Doubles as diffuse albedo for non-metallic, specular for metallic and a mix for everything
/// in between.
pub base_color: Vec4,
// Use a color for user friendliness even though we technically don't use the alpha channel
// Might be used in the future for exposure correction in HDR
pub emissive: Vec4,
/// Linear perceptual roughness, clamped to [0.089, 1.0] in the shader
/// Defaults to minimum of 0.089
pub roughness: f32,
/// From [0.0, 1.0], dielectric to pure metallic
pub metallic: f32,
/// Specular intensity for non-metals on a linear scale of [0.0, 1.0]
/// defaults to 0.5 which is mapped to 4% reflectance in the shader
pub reflectance: f32,
/// Amount of diffuse light transmitted through the material
pub diffuse_transmission: f32,
/// Amount of specular light transmitted through the material
pub specular_transmission: f32,
/// Thickness of the volume underneath the material surface
pub thickness: f32,
/// Index of Refraction
pub ior: f32,
/// How far light travels through the volume underneath the material surface before being absorbed
pub attenuation_distance: f32,
/// Color white light takes after travelling through the attenuation distance underneath the material surface
pub attenuation_color: Vec4,
/// The [`StandardMaterialFlags`] accessible in the `wgsl` shader.
pub flags: u32,
/// When the alpha mode mask flag is set, any base color alpha above this cutoff means fully opaque,
/// and any below means fully transparent.
pub alpha_cutoff: f32,
/// The depth of the [`StandardMaterial::depth_map`] to apply.
pub parallax_depth_scale: f32,
/// In how many layers to split the depth maps for Steep parallax mapping.
///
/// If your `parallax_depth_scale` is >0.1 and you are seeing jaggy edges,
/// increase this value. However, this incurs a performance cost.
pub max_parallax_layer_count: f32,
/// The exposure (brightness) level of the lightmap, if present.
pub lightmap_exposure: f32,
/// Using [`ParallaxMappingMethod::Relief`], how many additional
/// steps to use at most to find the depth value.
pub max_relief_mapping_search_steps: u32,
/// ID for specifying which deferred lighting pass should be used for rendering this material, if any.
pub deferred_lighting_pass_id: u32,
}
impl AsBindGroupShaderType<StandardMaterialUniform> for StandardMaterial {
fn as_bind_group_shader_type(&self, images: &RenderAssets<Image>) -> StandardMaterialUniform {
let mut flags = StandardMaterialFlags::NONE;
if self.base_color_texture.is_some() {
flags |= StandardMaterialFlags::BASE_COLOR_TEXTURE;
}
if self.emissive_texture.is_some() {
flags |= StandardMaterialFlags::EMISSIVE_TEXTURE;
}
if self.metallic_roughness_texture.is_some() {
flags |= StandardMaterialFlags::METALLIC_ROUGHNESS_TEXTURE;
}
if self.occlusion_texture.is_some() {
flags |= StandardMaterialFlags::OCCLUSION_TEXTURE;
}
if self.double_sided {
flags |= StandardMaterialFlags::DOUBLE_SIDED;
}
if self.unlit {
flags |= StandardMaterialFlags::UNLIT;
}
if self.fog_enabled {
flags |= StandardMaterialFlags::FOG_ENABLED;
}
if self.depth_map.is_some() {
flags |= StandardMaterialFlags::DEPTH_MAP;
}
#[cfg(feature = "pbr_transmission_textures")]
{
if self.specular_transmission_texture.is_some() {
flags |= StandardMaterialFlags::SPECULAR_TRANSMISSION_TEXTURE;
}
if self.thickness_texture.is_some() {
flags |= StandardMaterialFlags::THICKNESS_TEXTURE;
}
if self.diffuse_transmission_texture.is_some() {
flags |= StandardMaterialFlags::DIFFUSE_TRANSMISSION_TEXTURE;
}
}
let has_normal_map = self.normal_map_texture.is_some();
if has_normal_map {
let normal_map_id = self.normal_map_texture.as_ref().map(|h| h.id()).unwrap();
if let Some(texture) = images.get(normal_map_id) {
match texture.texture_format {
// All 2-component unorm formats
TextureFormat::Rg8Unorm
| TextureFormat::Rg16Unorm
| TextureFormat::Bc5RgUnorm
| TextureFormat::EacRg11Unorm => {
flags |= StandardMaterialFlags::TWO_COMPONENT_NORMAL_MAP;
}
_ => {}
}
}
if self.flip_normal_map_y {
flags |= StandardMaterialFlags::FLIP_NORMAL_MAP_Y;
}
}
// NOTE: 0.5 is from the glTF default - do we want this?
let mut alpha_cutoff = 0.5;
match self.alpha_mode {
AlphaMode::Opaque => flags |= StandardMaterialFlags::ALPHA_MODE_OPAQUE,
AlphaMode::Mask(c) => {
alpha_cutoff = c;
flags |= StandardMaterialFlags::ALPHA_MODE_MASK;
}
AlphaMode::Blend => flags |= StandardMaterialFlags::ALPHA_MODE_BLEND,
AlphaMode::Premultiplied => flags |= StandardMaterialFlags::ALPHA_MODE_PREMULTIPLIED,
AlphaMode::Add => flags |= StandardMaterialFlags::ALPHA_MODE_ADD,
AlphaMode::Multiply => flags |= StandardMaterialFlags::ALPHA_MODE_MULTIPLY,
};
if self.attenuation_distance.is_finite() {
flags |= StandardMaterialFlags::ATTENUATION_ENABLED;
}
StandardMaterialUniform {
base_color: self.base_color.as_linear_rgba_f32().into(),
emissive: self.emissive.as_linear_rgba_f32().into(),
roughness: self.perceptual_roughness,
metallic: self.metallic,
reflectance: self.reflectance,
diffuse_transmission: self.diffuse_transmission,
specular_transmission: self.specular_transmission,
thickness: self.thickness,
ior: self.ior,
attenuation_distance: self.attenuation_distance,
attenuation_color: self.attenuation_color.as_linear_rgba_f32().into(),
flags: flags.bits(),
alpha_cutoff,
parallax_depth_scale: self.parallax_depth_scale,
max_parallax_layer_count: self.max_parallax_layer_count,
lightmap_exposure: self.lightmap_exposure,
max_relief_mapping_search_steps: self.parallax_mapping_method.max_steps(),
deferred_lighting_pass_id: self.deferred_lighting_pass_id as u32,
}
}
}
/// The pipeline key for [`StandardMaterial`].
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct StandardMaterialKey {
normal_map: bool,
cull_mode: Option<Face>,
depth_bias: i32,
relief_mapping: bool,
diffuse_transmission: bool,
specular_transmission: bool,
}
impl From<&StandardMaterial> for StandardMaterialKey {
fn from(material: &StandardMaterial) -> Self {
StandardMaterialKey {
normal_map: material.normal_map_texture.is_some(),
cull_mode: material.cull_mode,
depth_bias: material.depth_bias as i32,
relief_mapping: matches!(
material.parallax_mapping_method,
ParallaxMappingMethod::Relief { .. }
),
diffuse_transmission: material.diffuse_transmission > 0.0,
specular_transmission: material.specular_transmission > 0.0,
}
}
}
impl Material for StandardMaterial {
fn fragment_shader() -> ShaderRef {
PBR_SHADER_HANDLE.into()
}
#[inline]
fn alpha_mode(&self) -> AlphaMode {
self.alpha_mode
}
#[inline]
fn opaque_render_method(&self) -> OpaqueRendererMethod {
match self.opaque_render_method {
// For now, diffuse transmission doesn't work under deferred rendering as we don't pack
// the required data into the GBuffer. If this material is set to `Auto`, we report it as
// `Forward` so that it's rendered correctly, even when the `DefaultOpaqueRendererMethod`
// is set to `Deferred`.
//
// If the developer explicitly sets the `OpaqueRendererMethod` to `Deferred`, we assume
// they know what they're doing and don't override it.
OpaqueRendererMethod::Auto if self.diffuse_transmission > 0.0 => {
OpaqueRendererMethod::Forward
}
other => other,
}
}
#[inline]
fn depth_bias(&self) -> f32 {
self.depth_bias
}
#[inline]
fn reads_view_transmission_texture(&self) -> bool {
self.specular_transmission > 0.0
}
fn prepass_fragment_shader() -> ShaderRef {
PBR_PREPASS_SHADER_HANDLE.into()
}
fn deferred_fragment_shader() -> ShaderRef {
PBR_SHADER_HANDLE.into()
}
fn specialize(
_pipeline: &MaterialPipeline<Self>,
descriptor: &mut RenderPipelineDescriptor,
_layout: &MeshVertexBufferLayout,
key: MaterialPipelineKey<Self>,
) -> Result<(), SpecializedMeshPipelineError> {
if let Some(fragment) = descriptor.fragment.as_mut() {
let shader_defs = &mut fragment.shader_defs;
if key.bind_group_data.normal_map {
shader_defs.push("STANDARD_MATERIAL_NORMAL_MAP".into());
}
if key.bind_group_data.relief_mapping {
shader_defs.push("RELIEF_MAPPING".into());
}
if key.bind_group_data.diffuse_transmission {
shader_defs.push("STANDARD_MATERIAL_DIFFUSE_TRANSMISSION".into());
}
if key.bind_group_data.specular_transmission {
shader_defs.push("STANDARD_MATERIAL_SPECULAR_TRANSMISSION".into());
}
if key.bind_group_data.diffuse_transmission || key.bind_group_data.specular_transmission
{
shader_defs.push("STANDARD_MATERIAL_SPECULAR_OR_DIFFUSE_TRANSMISSION".into());
}
}
descriptor.primitive.cull_mode = key.bind_group_data.cull_mode;
if let Some(label) = &mut descriptor.label {
*label = format!("pbr_{}", *label).into();
}
if let Some(depth_stencil) = descriptor.depth_stencil.as_mut() {
depth_stencil.bias.constant = key.bind_group_data.depth_bias;
}
Ok(())
}
}