1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
use crate::{
    ArrayInfo, EnumInfo, ListInfo, MapInfo, Reflect, StructInfo, TupleInfo, TupleStructInfo,
    TypePath, TypePathTable,
};
use std::any::{Any, TypeId};
use std::fmt::Debug;

/// A static accessor to compile-time type information.
///
/// This trait is automatically implemented by the [`#[derive(Reflect)]`](derive@crate::Reflect) macro
/// and allows type information to be processed without an instance of that type.
///
/// # Implementing
///
/// While it is recommended to leave implementing this trait to the `#[derive(Reflect)]` macro,
/// it is possible to implement this trait manually. If a manual implementation is needed,
/// you _must_ ensure that the information you provide is correct, otherwise various systems that
/// rely on this trait may fail in unexpected ways.
///
/// Implementors may have difficulty in generating a reference to [`TypeInfo`] with a static
/// lifetime. Luckily, this crate comes with some [utility] structs, to make generating these
/// statics much simpler.
///
/// # Example
///
/// ```
/// # use std::any::Any;
/// # use bevy_reflect::{DynamicTypePath, NamedField, Reflect, ReflectMut, ReflectOwned, ReflectRef, StructInfo, TypeInfo, TypePath, ValueInfo};
/// # use bevy_reflect::utility::NonGenericTypeInfoCell;
/// use bevy_reflect::Typed;
///
/// struct MyStruct {
///   foo: usize,
///   bar: (f32, f32)
/// }
///
/// impl Typed for MyStruct {
///   fn type_info() -> &'static TypeInfo {
///     static CELL: NonGenericTypeInfoCell = NonGenericTypeInfoCell::new();
///     CELL.get_or_set(|| {
///       let fields = [
///         NamedField::new::<usize >("foo"),
///         NamedField::new::<(f32, f32) >("bar"),
///       ];
///       let info = StructInfo::new::<Self>(&fields);
///       TypeInfo::Struct(info)
///     })
///   }
/// }
///
/// # impl TypePath for MyStruct {
/// #     fn type_path() -> &'static str { todo!() }
/// #     fn short_type_path() -> &'static str { todo!() }
/// # }
/// # impl Reflect for MyStruct {
/// #   fn get_represented_type_info(&self) -> Option<&'static TypeInfo> { todo!() }
/// #   fn into_any(self: Box<Self>) -> Box<dyn Any> { todo!() }
/// #   fn as_any(&self) -> &dyn Any { todo!() }
/// #   fn as_any_mut(&mut self) -> &mut dyn Any { todo!() }
/// #   fn into_reflect(self: Box<Self>) -> Box<dyn Reflect> { todo!() }
/// #   fn as_reflect(&self) -> &dyn Reflect { todo!() }
/// #   fn as_reflect_mut(&mut self) -> &mut dyn Reflect { todo!() }
/// #   fn apply(&mut self, value: &dyn Reflect) { todo!() }
/// #   fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>> { todo!() }
/// #   fn reflect_ref(&self) -> ReflectRef { todo!() }
/// #   fn reflect_mut(&mut self) -> ReflectMut { todo!() }
/// #   fn reflect_owned(self: Box<Self>) -> ReflectOwned { todo!() }
/// #   fn clone_value(&self) -> Box<dyn Reflect> { todo!() }
/// # }
/// ```
///
/// [utility]: crate::utility
pub trait Typed: Reflect + TypePath {
    /// Returns the compile-time [info] for the underlying type.
    ///
    /// [info]: TypeInfo
    fn type_info() -> &'static TypeInfo;
}

/// Compile-time type information for various reflected types.
///
/// Generally, for any given type, this value can be retrieved one of three ways:
///
/// 1. [`Typed::type_info`]
/// 2. [`Reflect::get_represented_type_info`]
/// 3. [`TypeRegistry::get_type_info`]
///
/// Each return a static reference to [`TypeInfo`], but they all have their own use cases.
/// For example, if you know the type at compile time, [`Typed::type_info`] is probably
/// the simplest. If all you have is a `dyn Reflect`, you'll probably want [`Reflect::get_represented_type_info`].
/// Lastly, if all you have is a [`TypeId`] or [type path], you will need to go through
/// [`TypeRegistry::get_type_info`].
///
/// You may also opt to use [`TypeRegistry::get_type_info`] in place of the other methods simply because
/// it can be more performant. This is because those other methods may require attaining a lock on
/// the static [`TypeInfo`], while the registry simply checks a map.
///
/// [`Reflect::get_represented_type_info`]: Reflect::get_represented_type_info
/// [`TypeRegistry::get_type_info`]: crate::TypeRegistry::get_type_info
/// [type path]: TypePath::type_path
#[derive(Debug, Clone)]
pub enum TypeInfo {
    Struct(StructInfo),
    TupleStruct(TupleStructInfo),
    Tuple(TupleInfo),
    List(ListInfo),
    Array(ArrayInfo),
    Map(MapInfo),
    Enum(EnumInfo),
    Value(ValueInfo),
}

impl TypeInfo {
    /// The [`TypeId`] of the underlying type.
    pub fn type_id(&self) -> TypeId {
        match self {
            Self::Struct(info) => info.type_id(),
            Self::TupleStruct(info) => info.type_id(),
            Self::Tuple(info) => info.type_id(),
            Self::List(info) => info.type_id(),
            Self::Array(info) => info.type_id(),
            Self::Map(info) => info.type_id(),
            Self::Enum(info) => info.type_id(),
            Self::Value(info) => info.type_id(),
        }
    }

    /// A representation of the type path of the underlying type.
    ///
    /// Provides dynamic access to all methods on [`TypePath`].
    pub fn type_path_table(&self) -> &TypePathTable {
        match self {
            Self::Struct(info) => info.type_path_table(),
            Self::TupleStruct(info) => info.type_path_table(),
            Self::Tuple(info) => info.type_path_table(),
            Self::List(info) => info.type_path_table(),
            Self::Array(info) => info.type_path_table(),
            Self::Map(info) => info.type_path_table(),
            Self::Enum(info) => info.type_path_table(),
            Self::Value(info) => info.type_path_table(),
        }
    }

    /// The [stable, full type path] of the underlying type.
    ///
    /// Use [`type_path_table`] if you need access to the other methods on [`TypePath`].
    ///
    /// [stable, full type path]: TypePath
    /// [`type_path_table`]: Self::type_path_table
    pub fn type_path(&self) -> &'static str {
        self.type_path_table().path()
    }

    /// Check if the given type matches the underlying type.
    pub fn is<T: Any>(&self) -> bool {
        TypeId::of::<T>() == self.type_id()
    }

    /// The docstring of the underlying type, if any.
    #[cfg(feature = "documentation")]
    pub fn docs(&self) -> Option<&str> {
        match self {
            Self::Struct(info) => info.docs(),
            Self::TupleStruct(info) => info.docs(),
            Self::Tuple(info) => info.docs(),
            Self::List(info) => info.docs(),
            Self::Array(info) => info.docs(),
            Self::Map(info) => info.docs(),
            Self::Enum(info) => info.docs(),
            Self::Value(info) => info.docs(),
        }
    }
}

/// A container for compile-time info related to general value types, including primitives.
///
/// This typically represents a type which cannot be broken down any further. This is often
/// due to technical reasons (or by definition), but it can also be a purposeful choice.
///
/// For example, [`i32`] cannot be broken down any further, so it is represented by a [`ValueInfo`].
/// And while [`String`] itself is a struct, it's fields are private, so we don't really treat
/// it _as_ a struct. It therefore makes more sense to represent it as a [`ValueInfo`].
#[derive(Debug, Clone)]
pub struct ValueInfo {
    type_path: TypePathTable,
    type_id: TypeId,
    #[cfg(feature = "documentation")]
    docs: Option<&'static str>,
}

impl ValueInfo {
    pub fn new<T: Reflect + TypePath + ?Sized>() -> Self {
        Self {
            type_path: TypePathTable::of::<T>(),
            type_id: TypeId::of::<T>(),
            #[cfg(feature = "documentation")]
            docs: None,
        }
    }

    /// Sets the docstring for this value.
    #[cfg(feature = "documentation")]
    pub fn with_docs(self, doc: Option<&'static str>) -> Self {
        Self { docs: doc, ..self }
    }

    /// A representation of the type path of the value.
    ///
    /// Provides dynamic access to all methods on [`TypePath`].
    pub fn type_path_table(&self) -> &TypePathTable {
        &self.type_path
    }

    /// The [stable, full type path] of the value.
    ///
    /// Use [`type_path_table`] if you need access to the other methods on [`TypePath`].
    ///
    /// [stable, full type path]: TypePath
    /// [`type_path_table`]: Self::type_path_table
    pub fn type_path(&self) -> &'static str {
        self.type_path_table().path()
    }

    /// The [`TypeId`] of the value.
    pub fn type_id(&self) -> TypeId {
        self.type_id
    }

    /// Check if the given type matches the value type.
    pub fn is<T: Any>(&self) -> bool {
        TypeId::of::<T>() == self.type_id
    }

    /// The docstring of this dynamic value, if any.
    #[cfg(feature = "documentation")]
    pub fn docs(&self) -> Option<&'static str> {
        self.docs
    }
}