1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
//! General-purpose utility functions for internal usage within this crate.

use crate::derive_data::ReflectMeta;
use bevy_macro_utils::{
    fq_std::{FQAny, FQOption, FQSend, FQSync},
    BevyManifest,
};
use proc_macro2::{Ident, Span, TokenStream};
use quote::{quote, ToTokens};
use syn::parse::{Parse, ParseStream, Peek};
use syn::punctuated::Punctuated;
use syn::{spanned::Spanned, LitStr, Member, Path, Token, Type, WhereClause};

/// Returns the correct path for `bevy_reflect`.
pub(crate) fn get_bevy_reflect_path() -> Path {
    BevyManifest::get_path_direct("bevy_reflect")
}

/// Returns the "reflected" ident for a given string.
///
/// # Example
///
/// ```
/// # use proc_macro2::Ident;
/// # // We can't import this method because of its visibility.
/// # fn get_reflect_ident(name: &str) -> Ident {
/// #     let reflected = format!("Reflect{name}");
/// #     Ident::new(&reflected, proc_macro2::Span::call_site())
/// # }
/// let reflected: Ident = get_reflect_ident("Hash");
/// assert_eq!("ReflectHash", reflected.to_string());
/// ```
pub(crate) fn get_reflect_ident(name: &str) -> Ident {
    let reflected = format!("Reflect{name}");
    Ident::new(&reflected, Span::call_site())
}

/// Helper struct used to process an iterator of `Result<Vec<T>, syn::Error>`,
/// combining errors into one along the way.
pub(crate) struct ResultSifter<T> {
    items: Vec<T>,
    errors: Option<syn::Error>,
}

/// Returns a [`Member`] made of `ident` or `index` if `ident` is None.
///
/// Rust struct syntax allows for `Struct { foo: "string" }` with explicitly
/// named fields. It allows the `Struct { 0: "string" }` syntax when the struct
/// is declared as a tuple struct.
///
/// ```
/// # fn main() {
/// struct Foo { field: &'static str }
/// struct Bar(&'static str);
/// let Foo { field } = Foo { field: "hi" };
/// let Bar { 0: field } = Bar { 0: "hello" };
/// let Bar(field) = Bar("hello"); // more common syntax
/// # }
/// ```
///
/// This function helps field access in context where you are declaring either
/// a tuple struct or a struct with named fields. If you don't have a field name,
/// it means you need to access the struct through an index.
pub(crate) fn ident_or_index(ident: Option<&Ident>, index: usize) -> Member {
    ident.map_or_else(
        || Member::Unnamed(index.into()),
        |ident| Member::Named(ident.clone()),
    )
}

/// Options defining how to extend the `where` clause for reflection.
pub(crate) struct WhereClauseOptions<'a, 'b> {
    meta: &'a ReflectMeta<'b>,
    active_fields: Box<[Type]>,
}

impl<'a, 'b> WhereClauseOptions<'a, 'b> {
    pub fn new(meta: &'a ReflectMeta<'b>) -> Self {
        Self {
            meta,
            active_fields: Box::new([]),
        }
    }

    pub fn new_with_fields(meta: &'a ReflectMeta<'b>, active_fields: Box<[Type]>) -> Self {
        Self {
            meta,
            active_fields,
        }
    }

    /// Extends the `where` clause for a type with additional bounds needed for the reflection impls.
    ///
    /// The default bounds added are as follows:
    /// - `Self` has the bounds `Any + Send + Sync`
    /// - Type parameters have the bound `TypePath` unless `#[reflect(type_path = false)]` is present
    /// - Active fields have the bounds `TypePath` and either `Reflect` if `#[reflect(from_reflect = false)]` is present
    ///   or `FromReflect` otherwise (or no bounds at all if `#[reflect(no_field_bounds)]` is present)
    ///
    /// When the derive is used with `#[reflect(where)]`, the bounds specified in the attribute are added as well.
    ///
    /// # Example
    ///
    /// ```ignore (bevy_reflect is not accessible from this crate)
    /// #[derive(Reflect)]
    /// struct Foo<T, U> {
    ///   a: T,
    ///   #[reflect(ignore)]
    ///   b: U
    /// }
    /// ```
    ///
    /// Generates the following where clause:
    ///
    /// ```ignore (bevy_reflect is not accessible from this crate)
    /// where
    ///   // `Self` bounds:
    ///   Self: Any + Send + Sync,
    ///   // Type parameter bounds:
    ///   T: TypePath,
    ///   U: TypePath,
    ///   // Field bounds
    ///   T: FromReflect + TypePath,
    /// ```
    ///
    /// If we had added `#[reflect(where T: MyTrait)]` to the type, it would instead generate:
    ///
    /// ```ignore (bevy_reflect is not accessible from this crate)
    /// where
    ///   // `Self` bounds:
    ///   Self: Any + Send + Sync,
    ///   // Type parameter bounds:
    ///   T: TypePath,
    ///   U: TypePath,
    ///   // Field bounds
    ///   T: FromReflect + TypePath,
    ///   // Custom bounds
    ///   T: MyTrait,
    /// ```
    ///
    /// And if we also added `#[reflect(no_field_bounds)]` to the type, it would instead generate:
    ///
    /// ```ignore (bevy_reflect is not accessible from this crate)
    /// where
    ///   // `Self` bounds:
    ///   Self: Any + Send + Sync,
    ///   // Type parameter bounds:
    ///   T: TypePath,
    ///   U: TypePath,
    ///   // Custom bounds
    ///   T: MyTrait,
    /// ```
    pub fn extend_where_clause(
        &self,
        where_clause: Option<&WhereClause>,
    ) -> proc_macro2::TokenStream {
        let required_bounds = self.required_bounds();
        // Maintain existing where clause, if any.
        let mut generic_where_clause = if let Some(where_clause) = where_clause {
            let predicates = where_clause.predicates.iter();
            quote! {where Self: #required_bounds, #(#predicates,)*}
        } else {
            quote!(where Self: #required_bounds,)
        };

        // Add additional reflection trait bounds
        let predicates = self.predicates();
        generic_where_clause.extend(quote! {
            #predicates
        });

        generic_where_clause
    }

    /// Returns an iterator the where clause predicates to extended the where clause with.
    fn predicates(&self) -> Punctuated<TokenStream, Token![,]> {
        let mut predicates = Punctuated::new();

        if let Some(type_param_predicates) = self.type_param_predicates() {
            predicates.extend(type_param_predicates);
        }

        if let Some(field_predicates) = self.active_field_predicates() {
            predicates.extend(field_predicates);
        }

        if let Some(custom_where) = self.meta.attrs().custom_where() {
            predicates.push(custom_where.predicates.to_token_stream());
        }

        predicates
    }

    /// Returns an iterator over the where clause predicates for the type parameters
    /// if they require one.
    fn type_param_predicates(&self) -> Option<impl Iterator<Item = TokenStream> + '_> {
        self.type_path_bound().map(|type_path_bound| {
            self.meta
                .type_path()
                .generics()
                .type_params()
                .map(move |param| {
                    let ident = &param.ident;

                    quote!(#ident : #type_path_bound)
                })
        })
    }

    /// Returns an iterator over the where clause predicates for the active fields.
    fn active_field_predicates(&self) -> Option<impl Iterator<Item = TokenStream> + '_> {
        if self.meta.attrs().no_field_bounds() {
            None
        } else {
            let bevy_reflect_path = self.meta.bevy_reflect_path();
            let reflect_bound = self.reflect_bound();

            // `TypePath` is always required for active fields since they are used to
            // construct `NamedField` and `UnnamedField` instances for the `Typed` impl.
            Some(
                self.active_fields
                    .iter()
                    .map(move |ty| quote!(#ty : #reflect_bound + #bevy_reflect_path::TypePath)),
            )
        }
    }

    /// The `Reflect` or `FromReflect` bound to use based on `#[reflect(from_reflect = false)]`.
    fn reflect_bound(&self) -> TokenStream {
        let bevy_reflect_path = self.meta.bevy_reflect_path();

        if self.meta.from_reflect().should_auto_derive() {
            quote!(#bevy_reflect_path::FromReflect)
        } else {
            quote!(#bevy_reflect_path::Reflect)
        }
    }

    /// The `TypePath` bounds to use based on `#[reflect(type_path = false)]`.
    fn type_path_bound(&self) -> Option<TokenStream> {
        if self.meta.type_path_attrs().should_auto_derive() {
            let bevy_reflect_path = self.meta.bevy_reflect_path();
            Some(quote!(#bevy_reflect_path::TypePath))
        } else {
            None
        }
    }

    /// The minimum required bounds for a type to be reflected.
    fn required_bounds(&self) -> proc_macro2::TokenStream {
        quote!(#FQAny + #FQSend + #FQSync)
    }
}

impl<T> Default for ResultSifter<T> {
    fn default() -> Self {
        Self {
            items: Vec::new(),
            errors: None,
        }
    }
}

impl<T> ResultSifter<T> {
    /// Sift the given result, combining errors if necessary.
    pub fn sift(&mut self, result: Result<T, syn::Error>) {
        match result {
            Ok(data) => self.items.push(data),
            Err(err) => {
                if let Some(ref mut errors) = self.errors {
                    errors.combine(err);
                } else {
                    self.errors = Some(err);
                }
            }
        }
    }

    /// Associated method that provides a convenient implementation for [`Iterator::fold`].
    pub fn fold(mut sifter: Self, result: Result<T, syn::Error>) -> Self {
        sifter.sift(result);
        sifter
    }

    /// Complete the sifting process and return the final result.
    pub fn finish(self) -> Result<Vec<T>, syn::Error> {
        if let Some(errors) = self.errors {
            Err(errors)
        } else {
            Ok(self.items)
        }
    }
}

/// Turns an `Option<TokenStream>` into a `TokenStream` for an `Option`.
pub(crate) fn wrap_in_option(tokens: Option<proc_macro2::TokenStream>) -> proc_macro2::TokenStream {
    match tokens {
        Some(tokens) => quote! {
            #FQOption::Some(#tokens)
        },
        None => quote! {
            #FQOption::None
        },
    }
}

/// Contains tokens representing different kinds of string.
#[derive(Clone)]
pub(crate) enum StringExpr {
    /// A string that is valid at compile time.
    ///
    /// This is either a string literal like `"mystring"`,
    /// or a string created by a macro like [`module_path`]
    /// or [`concat`].
    Const(proc_macro2::TokenStream),
    /// A [string slice](str) that is borrowed for a `'static` lifetime.
    Borrowed(proc_macro2::TokenStream),
    /// An [owned string](String).
    Owned(proc_macro2::TokenStream),
}

impl<T: ToString + Spanned> From<T> for StringExpr {
    fn from(value: T) -> Self {
        Self::from_lit(&LitStr::new(&value.to_string(), value.span()))
    }
}

impl StringExpr {
    /// Creates a [constant] [`StringExpr`] from a [`struct@LitStr`].
    ///
    /// [constant]: StringExpr::Const
    pub fn from_lit(lit: &LitStr) -> Self {
        Self::Const(lit.to_token_stream())
    }

    /// Creates a [constant] [`StringExpr`] by interpreting a [string slice][str] as a [`struct@LitStr`].
    ///
    /// [constant]: StringExpr::Const
    pub fn from_str(string: &str) -> Self {
        Self::Const(string.into_token_stream())
    }

    /// Returns tokens for an [owned string](String).
    ///
    /// The returned expression will allocate unless the [`StringExpr`] is [already owned].
    ///
    /// [already owned]: StringExpr::Owned
    pub fn into_owned(self) -> proc_macro2::TokenStream {
        match self {
            Self::Const(tokens) | Self::Borrowed(tokens) => quote! {
                ::std::string::ToString::to_string(#tokens)
            },
            Self::Owned(owned) => owned,
        }
    }

    /// Returns tokens for a statically borrowed [string slice](str).
    pub fn into_borrowed(self) -> proc_macro2::TokenStream {
        match self {
            Self::Const(tokens) | Self::Borrowed(tokens) => tokens,
            Self::Owned(owned) => quote! {
                &#owned
            },
        }
    }

    /// Appends a [`StringExpr`] to another.
    ///
    /// If both expressions are [`StringExpr::Const`] this will use [`concat`] to merge them.
    pub fn appended_by(mut self, other: StringExpr) -> Self {
        if let Self::Const(tokens) = self {
            if let Self::Const(more) = other {
                return Self::Const(quote! {
                    ::core::concat!(#tokens, #more)
                });
            }
            self = Self::Const(tokens);
        }

        let owned = self.into_owned();
        let borrowed = other.into_borrowed();
        Self::Owned(quote! {
            #owned + #borrowed
        })
    }
}

impl Default for StringExpr {
    fn default() -> Self {
        StringExpr::from_str("")
    }
}

impl FromIterator<StringExpr> for StringExpr {
    fn from_iter<T: IntoIterator<Item = StringExpr>>(iter: T) -> Self {
        let mut iter = iter.into_iter();
        match iter.next() {
            Some(mut expr) => {
                for next in iter {
                    expr = expr.appended_by(next);
                }

                expr
            }
            None => Default::default(),
        }
    }
}

/// Returns a [`syn::parse::Parser`] which parses a stream of zero or more occurences of `T`
/// separated by punctuation of type `P`, with optional trailing punctuation.
///
/// This is functionally the same as [`Punctuated::parse_terminated`],
/// but accepts a closure rather than a function pointer.
pub(crate) fn terminated_parser<T, P, F: FnMut(ParseStream) -> syn::Result<T>>(
    terminator: P,
    mut parser: F,
) -> impl FnOnce(ParseStream) -> syn::Result<Punctuated<T, P::Token>>
where
    P: Peek,
    P::Token: Parse,
{
    let _ = terminator;
    move |stream: ParseStream| {
        let mut punctuated = Punctuated::new();

        loop {
            if stream.is_empty() {
                break;
            }
            let value = parser(stream)?;
            punctuated.push_value(value);
            if stream.is_empty() {
                break;
            }
            let punct = stream.parse()?;
            punctuated.push_punct(punct);
        }

        Ok(punctuated)
    }
}