1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
use crate::{
camera::CameraProjection,
camera::{ManualTextureViewHandle, ManualTextureViews},
prelude::Image,
primitives::Frustum,
render_asset::RenderAssets,
render_graph::{InternedRenderSubGraph, RenderSubGraph},
render_resource::TextureView,
view::{ColorGrading, ExtractedView, ExtractedWindows, RenderLayers, VisibleEntities},
Extract,
};
use bevy_asset::{AssetEvent, AssetId, Assets, Handle};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
change_detection::DetectChanges,
component::Component,
entity::Entity,
event::EventReader,
prelude::With,
reflect::ReflectComponent,
system::{Commands, Query, Res, ResMut, Resource},
};
use bevy_log::warn;
use bevy_math::{
primitives::Direction3d, vec2, Mat4, Ray3d, Rect, URect, UVec2, UVec4, Vec2, Vec3,
};
use bevy_reflect::prelude::*;
use bevy_render_macros::ExtractComponent;
use bevy_transform::components::GlobalTransform;
use bevy_utils::{HashMap, HashSet};
use bevy_window::{
NormalizedWindowRef, PrimaryWindow, Window, WindowCreated, WindowRef, WindowResized,
WindowScaleFactorChanged,
};
use std::ops::Range;
use wgpu::{BlendState, LoadOp, TextureFormat, TextureUsages};
use super::{ClearColorConfig, Projection};
/// Render viewport configuration for the [`Camera`] component.
///
/// The viewport defines the area on the render target to which the camera renders its image.
/// You can overlay multiple cameras in a single window using viewports to create effects like
/// split screen, minimaps, and character viewers.
#[derive(Reflect, Debug, Clone)]
#[reflect(Default)]
pub struct Viewport {
/// The physical position to render this viewport to within the [`RenderTarget`] of this [`Camera`].
/// (0,0) corresponds to the top-left corner
pub physical_position: UVec2,
/// The physical size of the viewport rectangle to render to within the [`RenderTarget`] of this [`Camera`].
/// The origin of the rectangle is in the top-left corner.
pub physical_size: UVec2,
/// The minimum and maximum depth to render (on a scale from 0.0 to 1.0).
pub depth: Range<f32>,
}
impl Default for Viewport {
fn default() -> Self {
Self {
physical_position: Default::default(),
physical_size: Default::default(),
depth: 0.0..1.0,
}
}
}
/// Information about the current [`RenderTarget`].
#[derive(Default, Debug, Clone)]
pub struct RenderTargetInfo {
/// The physical size of this render target (in physical pixels, ignoring scale factor).
pub physical_size: UVec2,
/// The scale factor of this render target.
///
/// When rendering to a window, typically it is a value greater or equal than 1.0,
/// representing the ratio between the size of the window in physical pixels and the logical size of the window.
pub scale_factor: f32,
}
/// Holds internally computed [`Camera`] values.
#[derive(Default, Debug, Clone)]
pub struct ComputedCameraValues {
projection_matrix: Mat4,
target_info: Option<RenderTargetInfo>,
// size of the `Viewport`
old_viewport_size: Option<UVec2>,
}
/// How much energy a `Camera3d` absorbs from incoming light.
///
/// <https://en.wikipedia.org/wiki/Exposure_(photography)>
#[derive(Component, Clone, Copy, Reflect)]
#[reflect_value(Component)]
pub struct Exposure {
/// <https://en.wikipedia.org/wiki/Exposure_value#Tabulated_exposure_values>
pub ev100: f32,
}
impl Exposure {
pub const SUNLIGHT: Self = Self {
ev100: Self::EV100_SUNLIGHT,
};
pub const OVERCAST: Self = Self {
ev100: Self::EV100_OVERCAST,
};
pub const INDOOR: Self = Self {
ev100: Self::EV100_INDOOR,
};
/// This value was calibrated to match Blender's implicit/default exposure as closely as possible.
/// It also happens to be a reasonable default.
///
/// See <https://github.com/bevyengine/bevy/issues/11577> for details.
pub const BLENDER: Self = Self {
ev100: Self::EV100_BLENDER,
};
pub const EV100_SUNLIGHT: f32 = 15.0;
pub const EV100_OVERCAST: f32 = 12.0;
pub const EV100_INDOOR: f32 = 7.0;
/// This value was calibrated to match Blender's implicit/default exposure as closely as possible.
/// It also happens to be a reasonable default.
///
/// See <https://github.com/bevyengine/bevy/issues/11577> for details.
pub const EV100_BLENDER: f32 = 9.7;
pub fn from_physical_camera(physical_camera_parameters: PhysicalCameraParameters) -> Self {
Self {
ev100: physical_camera_parameters.ev100(),
}
}
/// Converts EV100 values to exposure values.
/// <https://google.github.io/filament/Filament.md.html#imagingpipeline/physicallybasedcamera/exposure>
#[inline]
pub fn exposure(&self) -> f32 {
(-self.ev100).exp2() / 1.2
}
}
impl Default for Exposure {
fn default() -> Self {
Self::BLENDER
}
}
/// Parameters based on physical camera characteristics for calculating
/// EV100 values for use with [`Exposure`].
#[derive(Clone, Copy)]
pub struct PhysicalCameraParameters {
/// <https://en.wikipedia.org/wiki/F-number>
pub aperture_f_stops: f32,
/// <https://en.wikipedia.org/wiki/Shutter_speed>
pub shutter_speed_s: f32,
/// <https://en.wikipedia.org/wiki/Film_speed>
pub sensitivity_iso: f32,
}
impl PhysicalCameraParameters {
/// Calculate the [EV100](https://en.wikipedia.org/wiki/Exposure_value).
pub fn ev100(&self) -> f32 {
(self.aperture_f_stops * self.aperture_f_stops * 100.0
/ (self.shutter_speed_s * self.sensitivity_iso))
.log2()
}
}
impl Default for PhysicalCameraParameters {
fn default() -> Self {
Self {
aperture_f_stops: 1.0,
shutter_speed_s: 1.0 / 125.0,
sensitivity_iso: 100.0,
}
}
}
/// The defining [`Component`] for camera entities,
/// storing information about how and what to render through this camera.
///
/// The [`Camera`] component is added to an entity to define the properties of the viewpoint from
/// which rendering occurs. It defines the position of the view to render, the projection method
/// to transform the 3D objects into a 2D image, as well as the render target into which that image
/// is produced.
///
/// Adding a camera is typically done by adding a bundle, either the `Camera2dBundle` or the
/// `Camera3dBundle`.
#[derive(Component, Debug, Reflect, Clone)]
#[reflect(Component)]
pub struct Camera {
/// If set, this camera will render to the given [`Viewport`] rectangle within the configured [`RenderTarget`].
pub viewport: Option<Viewport>,
/// Cameras with a higher order are rendered later, and thus on top of lower order cameras.
pub order: isize,
/// If this is set to `true`, this camera will be rendered to its specified [`RenderTarget`]. If `false`, this
/// camera will not be rendered.
pub is_active: bool,
/// Computed values for this camera, such as the projection matrix and the render target size.
#[reflect(ignore)]
pub computed: ComputedCameraValues,
/// The "target" that this camera will render to.
#[reflect(ignore)]
pub target: RenderTarget,
/// If this is set to `true`, the camera will use an intermediate "high dynamic range" render texture.
/// This allows rendering with a wider range of lighting values.
pub hdr: bool,
// todo: reflect this when #6042 lands
/// The [`CameraOutputMode`] for this camera.
#[reflect(ignore)]
pub output_mode: CameraOutputMode,
/// If this is enabled, a previous camera exists that shares this camera's render target, and this camera has MSAA enabled, then the previous camera's
/// outputs will be written to the intermediate multi-sampled render target textures for this camera. This enables cameras with MSAA enabled to
/// "write their results on top" of previous camera results, and include them as a part of their render results. This is enabled by default to ensure
/// cameras with MSAA enabled layer their results in the same way as cameras without MSAA enabled by default.
pub msaa_writeback: bool,
/// The clear color operation to perform on the render target.
pub clear_color: ClearColorConfig,
}
impl Default for Camera {
fn default() -> Self {
Self {
is_active: true,
order: 0,
viewport: None,
computed: Default::default(),
target: Default::default(),
output_mode: Default::default(),
hdr: false,
msaa_writeback: true,
clear_color: Default::default(),
}
}
}
impl Camera {
/// Converts a physical size in this `Camera` to a logical size.
#[inline]
pub fn to_logical(&self, physical_size: UVec2) -> Option<Vec2> {
let scale = self.computed.target_info.as_ref()?.scale_factor;
Some(physical_size.as_vec2() / scale)
}
/// The rendered physical bounds [`URect`] of the camera. If the `viewport` field is
/// set to [`Some`], this will be the rect of that custom viewport. Otherwise it will default to
/// the full physical rect of the current [`RenderTarget`].
#[inline]
pub fn physical_viewport_rect(&self) -> Option<URect> {
let min = self
.viewport
.as_ref()
.map(|v| v.physical_position)
.unwrap_or(UVec2::ZERO);
let max = min + self.physical_viewport_size()?;
Some(URect { min, max })
}
/// The rendered logical bounds [`Rect`] of the camera. If the `viewport` field is set to
/// [`Some`], this will be the rect of that custom viewport. Otherwise it will default to the
/// full logical rect of the current [`RenderTarget`].
#[inline]
pub fn logical_viewport_rect(&self) -> Option<Rect> {
let URect { min, max } = self.physical_viewport_rect()?;
Some(Rect {
min: self.to_logical(min)?,
max: self.to_logical(max)?,
})
}
/// The logical size of this camera's viewport. If the `viewport` field is set to [`Some`], this
/// will be the size of that custom viewport. Otherwise it will default to the full logical size
/// of the current [`RenderTarget`].
/// For logic that requires the full logical size of the
/// [`RenderTarget`], prefer [`Camera::logical_target_size`].
///
/// Returns `None` if either:
/// - the function is called just after the `Camera` is created, before `camera_system` is executed,
/// - the [`RenderTarget`] isn't correctly set:
/// - it references the [`PrimaryWindow`](RenderTarget::Window) when there is none,
/// - it references a [`Window`](RenderTarget::Window) entity that doesn't exist or doesn't actually have a `Window` component,
/// - it references an [`Image`](RenderTarget::Image) that doesn't exist (invalid handle),
/// - it references a [`TextureView`](RenderTarget::TextureView) that doesn't exist (invalid handle).
#[inline]
pub fn logical_viewport_size(&self) -> Option<Vec2> {
self.viewport
.as_ref()
.and_then(|v| self.to_logical(v.physical_size))
.or_else(|| self.logical_target_size())
}
/// The physical size of this camera's viewport (in physical pixels).
/// If the `viewport` field is set to [`Some`], this
/// will be the size of that custom viewport. Otherwise it will default to the full physical size of
/// the current [`RenderTarget`].
/// For logic that requires the full physical size of the [`RenderTarget`], prefer [`Camera::physical_target_size`].
#[inline]
pub fn physical_viewport_size(&self) -> Option<UVec2> {
self.viewport
.as_ref()
.map(|v| v.physical_size)
.or_else(|| self.physical_target_size())
}
/// The full logical size of this camera's [`RenderTarget`], ignoring custom `viewport` configuration.
/// Note that if the `viewport` field is [`Some`], this will not represent the size of the rendered area.
/// For logic that requires the size of the actually rendered area, prefer [`Camera::logical_viewport_size`].
#[inline]
pub fn logical_target_size(&self) -> Option<Vec2> {
self.computed
.target_info
.as_ref()
.and_then(|t| self.to_logical(t.physical_size))
}
/// The full physical size of this camera's [`RenderTarget`] (in physical pixels),
/// ignoring custom `viewport` configuration.
/// Note that if the `viewport` field is [`Some`], this will not represent the size of the rendered area.
/// For logic that requires the size of the actually rendered area, prefer [`Camera::physical_viewport_size`].
#[inline]
pub fn physical_target_size(&self) -> Option<UVec2> {
self.computed.target_info.as_ref().map(|t| t.physical_size)
}
#[inline]
pub fn target_scaling_factor(&self) -> Option<f32> {
self.computed.target_info.as_ref().map(|t| t.scale_factor)
}
/// The projection matrix computed using this camera's [`CameraProjection`].
#[inline]
pub fn projection_matrix(&self) -> Mat4 {
self.computed.projection_matrix
}
/// Given a position in world space, use the camera to compute the viewport-space coordinates.
///
/// To get the coordinates in Normalized Device Coordinates, you should use
/// [`world_to_ndc`](Self::world_to_ndc).
///
/// Returns `None` if any of these conditions occur:
/// - The computed coordinates are beyond the near or far plane
/// - The logical viewport size cannot be computed. See [`logical_viewport_size`](Camera::logical_viewport_size)
/// - The world coordinates cannot be mapped to the Normalized Device Coordinates. See [`world_to_ndc`](Camera::world_to_ndc)
/// May also panic if `glam_assert` is enabled. See [`world_to_ndc`](Camera::world_to_ndc).
#[doc(alias = "world_to_screen")]
pub fn world_to_viewport(
&self,
camera_transform: &GlobalTransform,
world_position: Vec3,
) -> Option<Vec2> {
let target_size = self.logical_viewport_size()?;
let ndc_space_coords = self.world_to_ndc(camera_transform, world_position)?;
// NDC z-values outside of 0 < z < 1 are outside the (implicit) camera frustum and are thus not in viewport-space
if ndc_space_coords.z < 0.0 || ndc_space_coords.z > 1.0 {
return None;
}
// Once in NDC space, we can discard the z element and rescale x/y to fit the screen
let mut viewport_position = (ndc_space_coords.truncate() + Vec2::ONE) / 2.0 * target_size;
// Flip the Y co-ordinate origin from the bottom to the top.
viewport_position.y = target_size.y - viewport_position.y;
Some(viewport_position)
}
/// Returns a ray originating from the camera, that passes through everything beyond `viewport_position`.
///
/// The resulting ray starts on the near plane of the camera.
///
/// If the camera's projection is orthographic the direction of the ray is always equal to `camera_transform.forward()`.
///
/// To get the world space coordinates with Normalized Device Coordinates, you should use
/// [`ndc_to_world`](Self::ndc_to_world).
///
/// Returns `None` if any of these conditions occur:
/// - The logical viewport size cannot be computed. See [`logical_viewport_size`](Camera::logical_viewport_size)
/// - The near or far plane cannot be computed. This can happen if the `camera_transform`, the `world_position`, or the projection matrix defined by [`CameraProjection`] contain `NAN`.
/// Panics if the projection matrix is null and `glam_assert` is enabled.
pub fn viewport_to_world(
&self,
camera_transform: &GlobalTransform,
mut viewport_position: Vec2,
) -> Option<Ray3d> {
let target_size = self.logical_viewport_size()?;
// Flip the Y co-ordinate origin from the top to the bottom.
viewport_position.y = target_size.y - viewport_position.y;
let ndc = viewport_position * 2. / target_size - Vec2::ONE;
let ndc_to_world =
camera_transform.compute_matrix() * self.computed.projection_matrix.inverse();
let world_near_plane = ndc_to_world.project_point3(ndc.extend(1.));
// Using EPSILON because an ndc with Z = 0 returns NaNs.
let world_far_plane = ndc_to_world.project_point3(ndc.extend(f32::EPSILON));
// The fallible direction constructor ensures that world_near_plane and world_far_plane aren't NaN.
Direction3d::new(world_far_plane - world_near_plane).map_or(None, |direction| {
Some(Ray3d {
origin: world_near_plane,
direction,
})
})
}
/// Returns a 2D world position computed from a position on this [`Camera`]'s viewport.
///
/// Useful for 2D cameras and other cameras with an orthographic projection pointing along the Z axis.
///
/// To get the world space coordinates with Normalized Device Coordinates, you should use
/// [`ndc_to_world`](Self::ndc_to_world).
///
/// Returns `None` if any of these conditions occur:
/// - The logical viewport size cannot be computed. See [`logical_viewport_size`](Camera::logical_viewport_size)
/// - The viewport position cannot be mapped to the world. See [`ndc_to_world`](Camera::ndc_to_world)
/// May panic. See [`ndc_to_world`](Camera::ndc_to_world).
pub fn viewport_to_world_2d(
&self,
camera_transform: &GlobalTransform,
mut viewport_position: Vec2,
) -> Option<Vec2> {
let target_size = self.logical_viewport_size()?;
// Flip the Y co-ordinate origin from the top to the bottom.
viewport_position.y = target_size.y - viewport_position.y;
let ndc = viewport_position * 2. / target_size - Vec2::ONE;
let world_near_plane = self.ndc_to_world(camera_transform, ndc.extend(1.))?;
Some(world_near_plane.truncate())
}
/// Given a position in world space, use the camera's viewport to compute the Normalized Device Coordinates.
///
/// When the position is within the viewport the values returned will be between -1.0 and 1.0 on the X and Y axes,
/// and between 0.0 and 1.0 on the Z axis.
/// To get the coordinates in the render target's viewport dimensions, you should use
/// [`world_to_viewport`](Self::world_to_viewport).
///
/// Returns `None` if the `camera_transform`, the `world_position`, or the projection matrix defined by [`CameraProjection`] contain `NAN`.
/// Panics if the `camera_transform` contains `NAN` and the `glam_assert` feature is enabled.
pub fn world_to_ndc(
&self,
camera_transform: &GlobalTransform,
world_position: Vec3,
) -> Option<Vec3> {
// Build a transformation matrix to convert from world space to NDC using camera data
let world_to_ndc: Mat4 =
self.computed.projection_matrix * camera_transform.compute_matrix().inverse();
let ndc_space_coords: Vec3 = world_to_ndc.project_point3(world_position);
(!ndc_space_coords.is_nan()).then_some(ndc_space_coords)
}
/// Given a position in Normalized Device Coordinates,
/// use the camera's viewport to compute the world space position.
///
/// When the position is within the viewport the values returned will be between -1.0 and 1.0 on the X and Y axes,
/// and between 0.0 and 1.0 on the Z axis.
/// To get the world space coordinates with the viewport position, you should use
/// [`world_to_viewport`](Self::world_to_viewport).
///
/// Returns `None` if the `camera_transform`, the `world_position`, or the projection matrix defined by [`CameraProjection`] contain `NAN`.
/// Panics if the projection matrix is null and `glam_assert` is enabled.
pub fn ndc_to_world(&self, camera_transform: &GlobalTransform, ndc: Vec3) -> Option<Vec3> {
// Build a transformation matrix to convert from NDC to world space using camera data
let ndc_to_world =
camera_transform.compute_matrix() * self.computed.projection_matrix.inverse();
let world_space_coords = ndc_to_world.project_point3(ndc);
(!world_space_coords.is_nan()).then_some(world_space_coords)
}
}
/// Control how this camera outputs once rendering is completed.
#[derive(Debug, Clone, Copy)]
pub enum CameraOutputMode {
/// Writes the camera output to configured render target.
Write {
/// The blend state that will be used by the pipeline that writes the intermediate render textures to the final render target texture.
blend_state: Option<BlendState>,
/// The color attachment load operation that will be used by the pipeline that writes the intermediate render textures to the final render
/// target texture.
color_attachment_load_op: LoadOp<wgpu::Color>,
},
/// Skips writing the camera output to the configured render target. The output will remain in the
/// Render Target's "intermediate" textures, which a camera with a higher order should write to the render target
/// using [`CameraOutputMode::Write`]. The "skip" mode can easily prevent render results from being displayed, or cause
/// them to be lost. Only use this if you know what you are doing!
/// In camera setups with multiple active cameras rendering to the same RenderTarget, the Skip mode can be used to remove
/// unnecessary / redundant writes to the final output texture, removing unnecessary render passes.
Skip,
}
impl Default for CameraOutputMode {
fn default() -> Self {
CameraOutputMode::Write {
blend_state: None,
color_attachment_load_op: LoadOp::Clear(Default::default()),
}
}
}
/// Configures the [`RenderGraph`](crate::render_graph::RenderGraph) name assigned to be run for a given [`Camera`] entity.
#[derive(Component, Deref, DerefMut, Reflect, Clone)]
#[reflect_value(Component)]
pub struct CameraRenderGraph(InternedRenderSubGraph);
impl CameraRenderGraph {
/// Creates a new [`CameraRenderGraph`] from any string-like type.
#[inline]
pub fn new<T: RenderSubGraph>(name: T) -> Self {
Self(name.intern())
}
/// Sets the graph name.
#[inline]
pub fn set<T: RenderSubGraph>(&mut self, name: T) {
self.0 = name.intern();
}
}
/// The "target" that a [`Camera`] will render to. For example, this could be a [`Window`]
/// swapchain or an [`Image`].
#[derive(Debug, Clone, Reflect)]
pub enum RenderTarget {
/// Window to which the camera's view is rendered.
Window(WindowRef),
/// Image to which the camera's view is rendered.
Image(Handle<Image>),
/// Texture View to which the camera's view is rendered.
/// Useful when the texture view needs to be created outside of Bevy, for example OpenXR.
TextureView(ManualTextureViewHandle),
}
impl From<Handle<Image>> for RenderTarget {
fn from(handle: Handle<Image>) -> Self {
Self::Image(handle)
}
}
/// Normalized version of the render target.
///
/// Once we have this we shouldn't need to resolve it down anymore.
#[derive(Debug, Clone, Reflect, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum NormalizedRenderTarget {
/// Window to which the camera's view is rendered.
Window(NormalizedWindowRef),
/// Image to which the camera's view is rendered.
Image(Handle<Image>),
/// Texture View to which the camera's view is rendered.
/// Useful when the texture view needs to be created outside of Bevy, for example OpenXR.
TextureView(ManualTextureViewHandle),
}
impl Default for RenderTarget {
fn default() -> Self {
Self::Window(Default::default())
}
}
impl RenderTarget {
/// Normalize the render target down to a more concrete value, mostly used for equality comparisons.
pub fn normalize(&self, primary_window: Option<Entity>) -> Option<NormalizedRenderTarget> {
match self {
RenderTarget::Window(window_ref) => window_ref
.normalize(primary_window)
.map(NormalizedRenderTarget::Window),
RenderTarget::Image(handle) => Some(NormalizedRenderTarget::Image(handle.clone())),
RenderTarget::TextureView(id) => Some(NormalizedRenderTarget::TextureView(*id)),
}
}
/// Get a handle to the render target's image,
/// or `None` if the render target is another variant.
pub fn as_image(&self) -> Option<&Handle<Image>> {
if let Self::Image(handle) = self {
Some(handle)
} else {
None
}
}
}
impl NormalizedRenderTarget {
pub fn get_texture_view<'a>(
&self,
windows: &'a ExtractedWindows,
images: &'a RenderAssets<Image>,
manual_texture_views: &'a ManualTextureViews,
) -> Option<&'a TextureView> {
match self {
NormalizedRenderTarget::Window(window_ref) => windows
.get(&window_ref.entity())
.and_then(|window| window.swap_chain_texture_view.as_ref()),
NormalizedRenderTarget::Image(image_handle) => {
images.get(image_handle).map(|image| &image.texture_view)
}
NormalizedRenderTarget::TextureView(id) => {
manual_texture_views.get(id).map(|tex| &tex.texture_view)
}
}
}
/// Retrieves the [`TextureFormat`] of this render target, if it exists.
pub fn get_texture_format<'a>(
&self,
windows: &'a ExtractedWindows,
images: &'a RenderAssets<Image>,
manual_texture_views: &'a ManualTextureViews,
) -> Option<TextureFormat> {
match self {
NormalizedRenderTarget::Window(window_ref) => windows
.get(&window_ref.entity())
.and_then(|window| window.swap_chain_texture_format),
NormalizedRenderTarget::Image(image_handle) => {
images.get(image_handle).map(|image| image.texture_format)
}
NormalizedRenderTarget::TextureView(id) => {
manual_texture_views.get(id).map(|tex| tex.format)
}
}
}
pub fn get_render_target_info<'a>(
&self,
resolutions: impl IntoIterator<Item = (Entity, &'a Window)>,
images: &Assets<Image>,
manual_texture_views: &ManualTextureViews,
) -> Option<RenderTargetInfo> {
match self {
NormalizedRenderTarget::Window(window_ref) => resolutions
.into_iter()
.find(|(entity, _)| *entity == window_ref.entity())
.map(|(_, window)| RenderTargetInfo {
physical_size: UVec2::new(
window.resolution.physical_width(),
window.resolution.physical_height(),
),
scale_factor: window.resolution.scale_factor(),
}),
NormalizedRenderTarget::Image(image_handle) => {
let image = images.get(image_handle)?;
Some(RenderTargetInfo {
physical_size: image.size(),
scale_factor: 1.0,
})
}
NormalizedRenderTarget::TextureView(id) => {
manual_texture_views.get(id).map(|tex| RenderTargetInfo {
physical_size: tex.size,
scale_factor: 1.0,
})
}
}
}
// Check if this render target is contained in the given changed windows or images.
fn is_changed(
&self,
changed_window_ids: &HashSet<Entity>,
changed_image_handles: &HashSet<&AssetId<Image>>,
) -> bool {
match self {
NormalizedRenderTarget::Window(window_ref) => {
changed_window_ids.contains(&window_ref.entity())
}
NormalizedRenderTarget::Image(image_handle) => {
changed_image_handles.contains(&image_handle.id())
}
NormalizedRenderTarget::TextureView(_) => true,
}
}
}
/// System in charge of updating a [`Camera`] when its window or projection changes.
///
/// The system detects window creation, resize, and scale factor change events to update the camera
/// projection if needed. It also queries any [`CameraProjection`] component associated with the same
/// entity as the [`Camera`] one, to automatically update the camera projection matrix.
///
/// The system function is generic over the camera projection type, and only instances of
/// [`OrthographicProjection`] and [`PerspectiveProjection`] are automatically added to
/// the app, as well as the runtime-selected [`Projection`].
/// The system runs during [`PostUpdate`](bevy_app::PostUpdate).
///
/// ## World Resources
///
/// [`Res<Assets<Image>>`](Assets<Image>) -- For cameras that render to an image, this resource is used to
/// inspect information about the render target. This system will not access any other image assets.
///
/// [`OrthographicProjection`]: crate::camera::OrthographicProjection
/// [`PerspectiveProjection`]: crate::camera::PerspectiveProjection
#[allow(clippy::too_many_arguments)]
pub fn camera_system<T: CameraProjection + Component>(
mut window_resized_events: EventReader<WindowResized>,
mut window_created_events: EventReader<WindowCreated>,
mut window_scale_factor_changed_events: EventReader<WindowScaleFactorChanged>,
mut image_asset_events: EventReader<AssetEvent<Image>>,
primary_window: Query<Entity, With<PrimaryWindow>>,
windows: Query<(Entity, &Window)>,
images: Res<Assets<Image>>,
manual_texture_views: Res<ManualTextureViews>,
mut cameras: Query<(&mut Camera, &mut T)>,
) {
let primary_window = primary_window.iter().next();
let mut changed_window_ids = HashSet::new();
changed_window_ids.extend(window_created_events.read().map(|event| event.window));
changed_window_ids.extend(window_resized_events.read().map(|event| event.window));
let scale_factor_changed_window_ids: HashSet<_> = window_scale_factor_changed_events
.read()
.map(|event| event.window)
.collect();
changed_window_ids.extend(scale_factor_changed_window_ids.clone());
let changed_image_handles: HashSet<&AssetId<Image>> = image_asset_events
.read()
.filter_map(|event| match event {
AssetEvent::Modified { id } | AssetEvent::Added { id } => Some(id),
_ => None,
})
.collect();
for (mut camera, mut camera_projection) in &mut cameras {
let mut viewport_size = camera
.viewport
.as_ref()
.map(|viewport| viewport.physical_size);
if let Some(normalized_target) = camera.target.normalize(primary_window) {
if normalized_target.is_changed(&changed_window_ids, &changed_image_handles)
|| camera.is_added()
|| camera_projection.is_changed()
|| camera.computed.old_viewport_size != viewport_size
{
let new_computed_target_info = normalized_target.get_render_target_info(
&windows,
&images,
&manual_texture_views,
);
// Check for the scale factor changing, and resize the viewport if needed.
// This can happen when the window is moved between monitors with different DPIs.
// Without this, the viewport will take a smaller portion of the window moved to
// a higher DPI monitor.
if normalized_target.is_changed(&scale_factor_changed_window_ids, &HashSet::new()) {
if let (Some(new_scale_factor), Some(old_scale_factor)) = (
new_computed_target_info
.as_ref()
.map(|info| info.scale_factor),
camera
.computed
.target_info
.as_ref()
.map(|info| info.scale_factor),
) {
let resize_factor = new_scale_factor / old_scale_factor;
if let Some(ref mut viewport) = camera.viewport {
let resize = |vec: UVec2| (vec.as_vec2() * resize_factor).as_uvec2();
viewport.physical_position = resize(viewport.physical_position);
viewport.physical_size = resize(viewport.physical_size);
viewport_size = Some(viewport.physical_size);
}
}
}
camera.computed.target_info = new_computed_target_info;
if let Some(size) = camera.logical_viewport_size() {
camera_projection.update(size.x, size.y);
camera.computed.projection_matrix = camera_projection.get_projection_matrix();
}
}
}
if camera.computed.old_viewport_size != viewport_size {
camera.computed.old_viewport_size = viewport_size;
}
}
}
/// This component lets you control the [`TextureUsages`] field of the main texture generated for the camera
#[derive(Component, ExtractComponent, Clone, Copy, Reflect)]
#[reflect_value(Component)]
pub struct CameraMainTextureUsages(pub TextureUsages);
impl Default for CameraMainTextureUsages {
fn default() -> Self {
Self(
TextureUsages::RENDER_ATTACHMENT
| TextureUsages::TEXTURE_BINDING
| TextureUsages::COPY_SRC,
)
}
}
#[derive(Component, Debug)]
pub struct ExtractedCamera {
pub target: Option<NormalizedRenderTarget>,
pub physical_viewport_size: Option<UVec2>,
pub physical_target_size: Option<UVec2>,
pub viewport: Option<Viewport>,
pub render_graph: InternedRenderSubGraph,
pub order: isize,
pub output_mode: CameraOutputMode,
pub msaa_writeback: bool,
pub clear_color: ClearColorConfig,
pub sorted_camera_index_for_target: usize,
pub exposure: f32,
}
pub fn extract_cameras(
mut commands: Commands,
query: Extract<
Query<(
Entity,
&Camera,
&CameraRenderGraph,
&GlobalTransform,
&VisibleEntities,
&Frustum,
Option<&ColorGrading>,
Option<&Exposure>,
Option<&TemporalJitter>,
Option<&RenderLayers>,
Option<&Projection>,
)>,
>,
primary_window: Extract<Query<Entity, With<PrimaryWindow>>>,
) {
let primary_window = primary_window.iter().next();
for (
entity,
camera,
camera_render_graph,
transform,
visible_entities,
frustum,
color_grading,
exposure,
temporal_jitter,
render_layers,
projection,
) in query.iter()
{
let color_grading = *color_grading.unwrap_or(&ColorGrading::default());
if !camera.is_active {
continue;
}
if let (
Some(URect {
min: viewport_origin,
..
}),
Some(viewport_size),
Some(target_size),
) = (
camera.physical_viewport_rect(),
camera.physical_viewport_size(),
camera.physical_target_size(),
) {
if target_size.x == 0 || target_size.y == 0 {
continue;
}
let mut commands = commands.get_or_spawn(entity);
commands.insert((
ExtractedCamera {
target: camera.target.normalize(primary_window),
viewport: camera.viewport.clone(),
physical_viewport_size: Some(viewport_size),
physical_target_size: Some(target_size),
render_graph: camera_render_graph.0,
order: camera.order,
output_mode: camera.output_mode,
msaa_writeback: camera.msaa_writeback,
clear_color: camera.clear_color.clone(),
// this will be set in sort_cameras
sorted_camera_index_for_target: 0,
exposure: exposure
.map(|e| e.exposure())
.unwrap_or_else(|| Exposure::default().exposure()),
},
ExtractedView {
projection: camera.projection_matrix(),
transform: *transform,
view_projection: None,
hdr: camera.hdr,
viewport: UVec4::new(
viewport_origin.x,
viewport_origin.y,
viewport_size.x,
viewport_size.y,
),
color_grading,
},
visible_entities.clone(),
*frustum,
));
if let Some(temporal_jitter) = temporal_jitter {
commands.insert(temporal_jitter.clone());
}
if let Some(render_layers) = render_layers {
commands.insert(*render_layers);
}
if let Some(perspective) = projection {
commands.insert(perspective.clone());
}
}
}
}
/// Cameras sorted by their order field. This is updated in the [`sort_cameras`] system.
#[derive(Resource, Default)]
pub struct SortedCameras(pub Vec<SortedCamera>);
pub struct SortedCamera {
pub entity: Entity,
pub order: isize,
pub target: Option<NormalizedRenderTarget>,
}
pub fn sort_cameras(
mut sorted_cameras: ResMut<SortedCameras>,
mut cameras: Query<(Entity, &mut ExtractedCamera)>,
) {
sorted_cameras.0.clear();
for (entity, camera) in cameras.iter() {
sorted_cameras.0.push(SortedCamera {
entity,
order: camera.order,
target: camera.target.clone(),
});
}
// sort by order and ensure within an order, RenderTargets of the same type are packed together
sorted_cameras
.0
.sort_by(|c1, c2| match c1.order.cmp(&c2.order) {
std::cmp::Ordering::Equal => c1.target.cmp(&c2.target),
ord => ord,
});
let mut previous_order_target = None;
let mut ambiguities = HashSet::new();
let mut target_counts = HashMap::new();
for sorted_camera in &mut sorted_cameras.0 {
let new_order_target = (sorted_camera.order, sorted_camera.target.clone());
if let Some(previous_order_target) = previous_order_target {
if previous_order_target == new_order_target {
ambiguities.insert(new_order_target.clone());
}
}
if let Some(target) = &sorted_camera.target {
let count = target_counts.entry(target.clone()).or_insert(0usize);
let (_, mut camera) = cameras.get_mut(sorted_camera.entity).unwrap();
camera.sorted_camera_index_for_target = *count;
*count += 1;
}
previous_order_target = Some(new_order_target);
}
if !ambiguities.is_empty() {
warn!(
"Camera order ambiguities detected for active cameras with the following priorities: {:?}. \
To fix this, ensure there is exactly one Camera entity spawned with a given order for a given RenderTarget. \
Ambiguities should be resolved because either (1) multiple active cameras were spawned accidentally, which will \
result in rendering multiple instances of the scene or (2) for cases where multiple active cameras is intentional, \
ambiguities could result in unpredictable render results.",
ambiguities
);
}
}
/// A subpixel offset to jitter a perspective camera's frustum by.
///
/// Useful for temporal rendering techniques.
///
/// Do not use with [`OrthographicProjection`].
///
/// [`OrthographicProjection`]: crate::camera::OrthographicProjection
#[derive(Component, Clone, Default)]
pub struct TemporalJitter {
/// Offset is in range [-0.5, 0.5].
pub offset: Vec2,
}
impl TemporalJitter {
pub fn jitter_projection(&self, projection: &mut Mat4, view_size: Vec2) {
if projection.w_axis.w == 1.0 {
warn!(
"TemporalJitter not supported with OrthographicProjection. Use PerspectiveProjection instead."
);
return;
}
// https://github.com/GPUOpen-LibrariesAndSDKs/FidelityFX-SDK/blob/d7531ae47d8b36a5d4025663e731a47a38be882f/docs/techniques/media/super-resolution-temporal/jitter-space.svg
let jitter = (self.offset * vec2(2.0, -2.0)) / view_size;
projection.z_axis.x += jitter.x;
projection.z_axis.y += jitter.y;
}
}
/// Camera component specifying a mip bias to apply when sampling from material textures.
///
/// Often used in conjunction with antialiasing post-process effects to reduce textures blurriness.
#[derive(Component)]
pub struct MipBias(pub f32);