1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
use crate::{
    camera::CameraProjection,
    camera::{ManualTextureViewHandle, ManualTextureViews},
    prelude::Image,
    primitives::Frustum,
    render_asset::RenderAssets,
    render_graph::{InternedRenderSubGraph, RenderSubGraph},
    render_resource::TextureView,
    view::{ColorGrading, ExtractedView, ExtractedWindows, RenderLayers, VisibleEntities},
    Extract,
};
use bevy_asset::{AssetEvent, AssetId, Assets, Handle};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
    change_detection::DetectChanges,
    component::Component,
    entity::Entity,
    event::EventReader,
    prelude::With,
    reflect::ReflectComponent,
    system::{Commands, Query, Res, ResMut, Resource},
};
use bevy_log::warn;
use bevy_math::{
    primitives::Direction3d, vec2, Mat4, Ray3d, Rect, URect, UVec2, UVec4, Vec2, Vec3,
};
use bevy_reflect::prelude::*;
use bevy_render_macros::ExtractComponent;
use bevy_transform::components::GlobalTransform;
use bevy_utils::{HashMap, HashSet};
use bevy_window::{
    NormalizedWindowRef, PrimaryWindow, Window, WindowCreated, WindowRef, WindowResized,
    WindowScaleFactorChanged,
};
use std::ops::Range;
use wgpu::{BlendState, LoadOp, TextureFormat, TextureUsages};

use super::{ClearColorConfig, Projection};

/// Render viewport configuration for the [`Camera`] component.
///
/// The viewport defines the area on the render target to which the camera renders its image.
/// You can overlay multiple cameras in a single window using viewports to create effects like
/// split screen, minimaps, and character viewers.
#[derive(Reflect, Debug, Clone)]
#[reflect(Default)]
pub struct Viewport {
    /// The physical position to render this viewport to within the [`RenderTarget`] of this [`Camera`].
    /// (0,0) corresponds to the top-left corner
    pub physical_position: UVec2,
    /// The physical size of the viewport rectangle to render to within the [`RenderTarget`] of this [`Camera`].
    /// The origin of the rectangle is in the top-left corner.
    pub physical_size: UVec2,
    /// The minimum and maximum depth to render (on a scale from 0.0 to 1.0).
    pub depth: Range<f32>,
}

impl Default for Viewport {
    fn default() -> Self {
        Self {
            physical_position: Default::default(),
            physical_size: Default::default(),
            depth: 0.0..1.0,
        }
    }
}

/// Information about the current [`RenderTarget`].
#[derive(Default, Debug, Clone)]
pub struct RenderTargetInfo {
    /// The physical size of this render target (in physical pixels, ignoring scale factor).
    pub physical_size: UVec2,
    /// The scale factor of this render target.
    ///
    /// When rendering to a window, typically it is a value greater or equal than 1.0,
    /// representing the ratio between the size of the window in physical pixels and the logical size of the window.
    pub scale_factor: f32,
}

/// Holds internally computed [`Camera`] values.
#[derive(Default, Debug, Clone)]
pub struct ComputedCameraValues {
    projection_matrix: Mat4,
    target_info: Option<RenderTargetInfo>,
    // size of the `Viewport`
    old_viewport_size: Option<UVec2>,
}

/// How much energy a `Camera3d` absorbs from incoming light.
///
/// <https://en.wikipedia.org/wiki/Exposure_(photography)>
#[derive(Component, Clone, Copy, Reflect)]
#[reflect_value(Component)]
pub struct Exposure {
    /// <https://en.wikipedia.org/wiki/Exposure_value#Tabulated_exposure_values>
    pub ev100: f32,
}

impl Exposure {
    pub const SUNLIGHT: Self = Self {
        ev100: Self::EV100_SUNLIGHT,
    };
    pub const OVERCAST: Self = Self {
        ev100: Self::EV100_OVERCAST,
    };
    pub const INDOOR: Self = Self {
        ev100: Self::EV100_INDOOR,
    };
    /// This value was calibrated to match Blender's implicit/default exposure as closely as possible.
    /// It also happens to be a reasonable default.
    ///
    /// See <https://github.com/bevyengine/bevy/issues/11577> for details.
    pub const BLENDER: Self = Self {
        ev100: Self::EV100_BLENDER,
    };

    pub const EV100_SUNLIGHT: f32 = 15.0;
    pub const EV100_OVERCAST: f32 = 12.0;
    pub const EV100_INDOOR: f32 = 7.0;

    /// This value was calibrated to match Blender's implicit/default exposure as closely as possible.
    /// It also happens to be a reasonable default.
    ///
    /// See <https://github.com/bevyengine/bevy/issues/11577> for details.
    pub const EV100_BLENDER: f32 = 9.7;

    pub fn from_physical_camera(physical_camera_parameters: PhysicalCameraParameters) -> Self {
        Self {
            ev100: physical_camera_parameters.ev100(),
        }
    }

    /// Converts EV100 values to exposure values.
    /// <https://google.github.io/filament/Filament.md.html#imagingpipeline/physicallybasedcamera/exposure>
    #[inline]
    pub fn exposure(&self) -> f32 {
        (-self.ev100).exp2() / 1.2
    }
}

impl Default for Exposure {
    fn default() -> Self {
        Self::BLENDER
    }
}

/// Parameters based on physical camera characteristics for calculating
/// EV100 values for use with [`Exposure`].
#[derive(Clone, Copy)]
pub struct PhysicalCameraParameters {
    /// <https://en.wikipedia.org/wiki/F-number>
    pub aperture_f_stops: f32,
    /// <https://en.wikipedia.org/wiki/Shutter_speed>
    pub shutter_speed_s: f32,
    /// <https://en.wikipedia.org/wiki/Film_speed>
    pub sensitivity_iso: f32,
}

impl PhysicalCameraParameters {
    /// Calculate the [EV100](https://en.wikipedia.org/wiki/Exposure_value).
    pub fn ev100(&self) -> f32 {
        (self.aperture_f_stops * self.aperture_f_stops * 100.0
            / (self.shutter_speed_s * self.sensitivity_iso))
            .log2()
    }
}

impl Default for PhysicalCameraParameters {
    fn default() -> Self {
        Self {
            aperture_f_stops: 1.0,
            shutter_speed_s: 1.0 / 125.0,
            sensitivity_iso: 100.0,
        }
    }
}

/// The defining [`Component`] for camera entities,
/// storing information about how and what to render through this camera.
///
/// The [`Camera`] component is added to an entity to define the properties of the viewpoint from
/// which rendering occurs. It defines the position of the view to render, the projection method
/// to transform the 3D objects into a 2D image, as well as the render target into which that image
/// is produced.
///
/// Adding a camera is typically done by adding a bundle, either the `Camera2dBundle` or the
/// `Camera3dBundle`.
#[derive(Component, Debug, Reflect, Clone)]
#[reflect(Component)]
pub struct Camera {
    /// If set, this camera will render to the given [`Viewport`] rectangle within the configured [`RenderTarget`].
    pub viewport: Option<Viewport>,
    /// Cameras with a higher order are rendered later, and thus on top of lower order cameras.
    pub order: isize,
    /// If this is set to `true`, this camera will be rendered to its specified [`RenderTarget`]. If `false`, this
    /// camera will not be rendered.
    pub is_active: bool,
    /// Computed values for this camera, such as the projection matrix and the render target size.
    #[reflect(ignore)]
    pub computed: ComputedCameraValues,
    /// The "target" that this camera will render to.
    #[reflect(ignore)]
    pub target: RenderTarget,
    /// If this is set to `true`, the camera will use an intermediate "high dynamic range" render texture.
    /// This allows rendering with a wider range of lighting values.
    pub hdr: bool,
    // todo: reflect this when #6042 lands
    /// The [`CameraOutputMode`] for this camera.
    #[reflect(ignore)]
    pub output_mode: CameraOutputMode,
    /// If this is enabled, a previous camera exists that shares this camera's render target, and this camera has MSAA enabled, then the previous camera's
    /// outputs will be written to the intermediate multi-sampled render target textures for this camera. This enables cameras with MSAA enabled to
    /// "write their results on top" of previous camera results, and include them as a part of their render results. This is enabled by default to ensure
    /// cameras with MSAA enabled layer their results in the same way as cameras without MSAA enabled by default.
    pub msaa_writeback: bool,
    /// The clear color operation to perform on the render target.
    pub clear_color: ClearColorConfig,
}

impl Default for Camera {
    fn default() -> Self {
        Self {
            is_active: true,
            order: 0,
            viewport: None,
            computed: Default::default(),
            target: Default::default(),
            output_mode: Default::default(),
            hdr: false,
            msaa_writeback: true,
            clear_color: Default::default(),
        }
    }
}

impl Camera {
    /// Converts a physical size in this `Camera` to a logical size.
    #[inline]
    pub fn to_logical(&self, physical_size: UVec2) -> Option<Vec2> {
        let scale = self.computed.target_info.as_ref()?.scale_factor;
        Some(physical_size.as_vec2() / scale)
    }

    /// The rendered physical bounds [`URect`] of the camera. If the `viewport` field is
    /// set to [`Some`], this will be the rect of that custom viewport. Otherwise it will default to
    /// the full physical rect of the current [`RenderTarget`].
    #[inline]
    pub fn physical_viewport_rect(&self) -> Option<URect> {
        let min = self
            .viewport
            .as_ref()
            .map(|v| v.physical_position)
            .unwrap_or(UVec2::ZERO);
        let max = min + self.physical_viewport_size()?;
        Some(URect { min, max })
    }

    /// The rendered logical bounds [`Rect`] of the camera. If the `viewport` field is set to
    /// [`Some`], this will be the rect of that custom viewport. Otherwise it will default to the
    /// full logical rect of the current [`RenderTarget`].
    #[inline]
    pub fn logical_viewport_rect(&self) -> Option<Rect> {
        let URect { min, max } = self.physical_viewport_rect()?;
        Some(Rect {
            min: self.to_logical(min)?,
            max: self.to_logical(max)?,
        })
    }

    /// The logical size of this camera's viewport. If the `viewport` field is set to [`Some`], this
    /// will be the size of that custom viewport. Otherwise it will default to the full logical size
    /// of the current [`RenderTarget`].
    ///  For logic that requires the full logical size of the
    /// [`RenderTarget`], prefer [`Camera::logical_target_size`].
    ///
    /// Returns `None` if either:
    /// - the function is called just after the `Camera` is created, before `camera_system` is executed,
    /// - the [`RenderTarget`] isn't correctly set:
    ///   - it references the [`PrimaryWindow`](RenderTarget::Window) when there is none,
    ///   - it references a [`Window`](RenderTarget::Window) entity that doesn't exist or doesn't actually have a `Window` component,
    ///   - it references an [`Image`](RenderTarget::Image) that doesn't exist (invalid handle),
    ///   - it references a [`TextureView`](RenderTarget::TextureView) that doesn't exist (invalid handle).
    #[inline]
    pub fn logical_viewport_size(&self) -> Option<Vec2> {
        self.viewport
            .as_ref()
            .and_then(|v| self.to_logical(v.physical_size))
            .or_else(|| self.logical_target_size())
    }

    /// The physical size of this camera's viewport (in physical pixels).
    /// If the `viewport` field is set to [`Some`], this
    /// will be the size of that custom viewport. Otherwise it will default to the full physical size of
    /// the current [`RenderTarget`].
    /// For logic that requires the full physical size of the [`RenderTarget`], prefer [`Camera::physical_target_size`].
    #[inline]
    pub fn physical_viewport_size(&self) -> Option<UVec2> {
        self.viewport
            .as_ref()
            .map(|v| v.physical_size)
            .or_else(|| self.physical_target_size())
    }

    /// The full logical size of this camera's [`RenderTarget`], ignoring custom `viewport` configuration.
    /// Note that if the `viewport` field is [`Some`], this will not represent the size of the rendered area.
    /// For logic that requires the size of the actually rendered area, prefer [`Camera::logical_viewport_size`].
    #[inline]
    pub fn logical_target_size(&self) -> Option<Vec2> {
        self.computed
            .target_info
            .as_ref()
            .and_then(|t| self.to_logical(t.physical_size))
    }

    /// The full physical size of this camera's [`RenderTarget`] (in physical pixels),
    /// ignoring custom `viewport` configuration.
    /// Note that if the `viewport` field is [`Some`], this will not represent the size of the rendered area.
    /// For logic that requires the size of the actually rendered area, prefer [`Camera::physical_viewport_size`].
    #[inline]
    pub fn physical_target_size(&self) -> Option<UVec2> {
        self.computed.target_info.as_ref().map(|t| t.physical_size)
    }

    #[inline]
    pub fn target_scaling_factor(&self) -> Option<f32> {
        self.computed.target_info.as_ref().map(|t| t.scale_factor)
    }

    /// The projection matrix computed using this camera's [`CameraProjection`].
    #[inline]
    pub fn projection_matrix(&self) -> Mat4 {
        self.computed.projection_matrix
    }

    /// Given a position in world space, use the camera to compute the viewport-space coordinates.
    ///
    /// To get the coordinates in Normalized Device Coordinates, you should use
    /// [`world_to_ndc`](Self::world_to_ndc).
    ///
    /// Returns `None` if any of these conditions occur:
    /// - The computed coordinates are beyond the near or far plane
    /// - The logical viewport size cannot be computed. See [`logical_viewport_size`](Camera::logical_viewport_size)
    /// - The world coordinates cannot be mapped to the Normalized Device Coordinates. See [`world_to_ndc`](Camera::world_to_ndc)
    /// May also panic if `glam_assert` is enabled. See [`world_to_ndc`](Camera::world_to_ndc).
    #[doc(alias = "world_to_screen")]
    pub fn world_to_viewport(
        &self,
        camera_transform: &GlobalTransform,
        world_position: Vec3,
    ) -> Option<Vec2> {
        let target_size = self.logical_viewport_size()?;
        let ndc_space_coords = self.world_to_ndc(camera_transform, world_position)?;
        // NDC z-values outside of 0 < z < 1 are outside the (implicit) camera frustum and are thus not in viewport-space
        if ndc_space_coords.z < 0.0 || ndc_space_coords.z > 1.0 {
            return None;
        }

        // Once in NDC space, we can discard the z element and rescale x/y to fit the screen
        let mut viewport_position = (ndc_space_coords.truncate() + Vec2::ONE) / 2.0 * target_size;
        // Flip the Y co-ordinate origin from the bottom to the top.
        viewport_position.y = target_size.y - viewport_position.y;
        Some(viewport_position)
    }

    /// Returns a ray originating from the camera, that passes through everything beyond `viewport_position`.
    ///
    /// The resulting ray starts on the near plane of the camera.
    ///
    /// If the camera's projection is orthographic the direction of the ray is always equal to `camera_transform.forward()`.
    ///
    /// To get the world space coordinates with Normalized Device Coordinates, you should use
    /// [`ndc_to_world`](Self::ndc_to_world).
    ///
    /// Returns `None` if any of these conditions occur:
    /// - The logical viewport size cannot be computed. See [`logical_viewport_size`](Camera::logical_viewport_size)
    /// - The near or far plane cannot be computed. This can happen if the `camera_transform`, the `world_position`, or the projection matrix defined by [`CameraProjection`] contain `NAN`.
    /// Panics if the projection matrix is null and `glam_assert` is enabled.
    pub fn viewport_to_world(
        &self,
        camera_transform: &GlobalTransform,
        mut viewport_position: Vec2,
    ) -> Option<Ray3d> {
        let target_size = self.logical_viewport_size()?;
        // Flip the Y co-ordinate origin from the top to the bottom.
        viewport_position.y = target_size.y - viewport_position.y;
        let ndc = viewport_position * 2. / target_size - Vec2::ONE;

        let ndc_to_world =
            camera_transform.compute_matrix() * self.computed.projection_matrix.inverse();
        let world_near_plane = ndc_to_world.project_point3(ndc.extend(1.));
        // Using EPSILON because an ndc with Z = 0 returns NaNs.
        let world_far_plane = ndc_to_world.project_point3(ndc.extend(f32::EPSILON));

        // The fallible direction constructor ensures that world_near_plane and world_far_plane aren't NaN.
        Direction3d::new(world_far_plane - world_near_plane).map_or(None, |direction| {
            Some(Ray3d {
                origin: world_near_plane,
                direction,
            })
        })
    }

    /// Returns a 2D world position computed from a position on this [`Camera`]'s viewport.
    ///
    /// Useful for 2D cameras and other cameras with an orthographic projection pointing along the Z axis.
    ///
    /// To get the world space coordinates with Normalized Device Coordinates, you should use
    /// [`ndc_to_world`](Self::ndc_to_world).
    ///
    /// Returns `None` if any of these conditions occur:
    /// - The logical viewport size cannot be computed. See [`logical_viewport_size`](Camera::logical_viewport_size)
    /// - The viewport position cannot be mapped to the world. See [`ndc_to_world`](Camera::ndc_to_world)
    /// May panic. See [`ndc_to_world`](Camera::ndc_to_world).
    pub fn viewport_to_world_2d(
        &self,
        camera_transform: &GlobalTransform,
        mut viewport_position: Vec2,
    ) -> Option<Vec2> {
        let target_size = self.logical_viewport_size()?;
        // Flip the Y co-ordinate origin from the top to the bottom.
        viewport_position.y = target_size.y - viewport_position.y;
        let ndc = viewport_position * 2. / target_size - Vec2::ONE;

        let world_near_plane = self.ndc_to_world(camera_transform, ndc.extend(1.))?;

        Some(world_near_plane.truncate())
    }

    /// Given a position in world space, use the camera's viewport to compute the Normalized Device Coordinates.
    ///
    /// When the position is within the viewport the values returned will be between -1.0 and 1.0 on the X and Y axes,
    /// and between 0.0 and 1.0 on the Z axis.
    /// To get the coordinates in the render target's viewport dimensions, you should use
    /// [`world_to_viewport`](Self::world_to_viewport).
    ///
    /// Returns `None` if the `camera_transform`, the `world_position`, or the projection matrix defined by [`CameraProjection`] contain `NAN`.
    /// Panics if the `camera_transform` contains `NAN` and the `glam_assert` feature is enabled.
    pub fn world_to_ndc(
        &self,
        camera_transform: &GlobalTransform,
        world_position: Vec3,
    ) -> Option<Vec3> {
        // Build a transformation matrix to convert from world space to NDC using camera data
        let world_to_ndc: Mat4 =
            self.computed.projection_matrix * camera_transform.compute_matrix().inverse();
        let ndc_space_coords: Vec3 = world_to_ndc.project_point3(world_position);

        (!ndc_space_coords.is_nan()).then_some(ndc_space_coords)
    }

    /// Given a position in Normalized Device Coordinates,
    /// use the camera's viewport to compute the world space position.
    ///
    /// When the position is within the viewport the values returned will be between -1.0 and 1.0 on the X and Y axes,
    /// and between 0.0 and 1.0 on the Z axis.
    /// To get the world space coordinates with the viewport position, you should use
    /// [`world_to_viewport`](Self::world_to_viewport).
    ///
    /// Returns `None` if the `camera_transform`, the `world_position`, or the projection matrix defined by [`CameraProjection`] contain `NAN`.
    /// Panics if the projection matrix is null and `glam_assert` is enabled.
    pub fn ndc_to_world(&self, camera_transform: &GlobalTransform, ndc: Vec3) -> Option<Vec3> {
        // Build a transformation matrix to convert from NDC to world space using camera data
        let ndc_to_world =
            camera_transform.compute_matrix() * self.computed.projection_matrix.inverse();

        let world_space_coords = ndc_to_world.project_point3(ndc);

        (!world_space_coords.is_nan()).then_some(world_space_coords)
    }
}

/// Control how this camera outputs once rendering is completed.
#[derive(Debug, Clone, Copy)]
pub enum CameraOutputMode {
    /// Writes the camera output to configured render target.
    Write {
        /// The blend state that will be used by the pipeline that writes the intermediate render textures to the final render target texture.
        blend_state: Option<BlendState>,
        /// The color attachment load operation that will be used by the pipeline that writes the intermediate render textures to the final render
        /// target texture.
        color_attachment_load_op: LoadOp<wgpu::Color>,
    },
    /// Skips writing the camera output to the configured render target. The output will remain in the
    /// Render Target's "intermediate" textures, which a camera with a higher order should write to the render target
    /// using [`CameraOutputMode::Write`]. The "skip" mode can easily prevent render results from being displayed, or cause
    /// them to be lost. Only use this if you know what you are doing!
    /// In camera setups with multiple active cameras rendering to the same RenderTarget, the Skip mode can be used to remove
    /// unnecessary / redundant writes to the final output texture, removing unnecessary render passes.
    Skip,
}

impl Default for CameraOutputMode {
    fn default() -> Self {
        CameraOutputMode::Write {
            blend_state: None,
            color_attachment_load_op: LoadOp::Clear(Default::default()),
        }
    }
}

/// Configures the [`RenderGraph`](crate::render_graph::RenderGraph) name assigned to be run for a given [`Camera`] entity.
#[derive(Component, Deref, DerefMut, Reflect, Clone)]
#[reflect_value(Component)]
pub struct CameraRenderGraph(InternedRenderSubGraph);

impl CameraRenderGraph {
    /// Creates a new [`CameraRenderGraph`] from any string-like type.
    #[inline]
    pub fn new<T: RenderSubGraph>(name: T) -> Self {
        Self(name.intern())
    }

    /// Sets the graph name.
    #[inline]
    pub fn set<T: RenderSubGraph>(&mut self, name: T) {
        self.0 = name.intern();
    }
}

/// The "target" that a [`Camera`] will render to. For example, this could be a [`Window`]
/// swapchain or an [`Image`].
#[derive(Debug, Clone, Reflect)]
pub enum RenderTarget {
    /// Window to which the camera's view is rendered.
    Window(WindowRef),
    /// Image to which the camera's view is rendered.
    Image(Handle<Image>),
    /// Texture View to which the camera's view is rendered.
    /// Useful when the texture view needs to be created outside of Bevy, for example OpenXR.
    TextureView(ManualTextureViewHandle),
}

impl From<Handle<Image>> for RenderTarget {
    fn from(handle: Handle<Image>) -> Self {
        Self::Image(handle)
    }
}

/// Normalized version of the render target.
///
/// Once we have this we shouldn't need to resolve it down anymore.
#[derive(Debug, Clone, Reflect, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum NormalizedRenderTarget {
    /// Window to which the camera's view is rendered.
    Window(NormalizedWindowRef),
    /// Image to which the camera's view is rendered.
    Image(Handle<Image>),
    /// Texture View to which the camera's view is rendered.
    /// Useful when the texture view needs to be created outside of Bevy, for example OpenXR.
    TextureView(ManualTextureViewHandle),
}

impl Default for RenderTarget {
    fn default() -> Self {
        Self::Window(Default::default())
    }
}

impl RenderTarget {
    /// Normalize the render target down to a more concrete value, mostly used for equality comparisons.
    pub fn normalize(&self, primary_window: Option<Entity>) -> Option<NormalizedRenderTarget> {
        match self {
            RenderTarget::Window(window_ref) => window_ref
                .normalize(primary_window)
                .map(NormalizedRenderTarget::Window),
            RenderTarget::Image(handle) => Some(NormalizedRenderTarget::Image(handle.clone())),
            RenderTarget::TextureView(id) => Some(NormalizedRenderTarget::TextureView(*id)),
        }
    }

    /// Get a handle to the render target's image,
    /// or `None` if the render target is another variant.
    pub fn as_image(&self) -> Option<&Handle<Image>> {
        if let Self::Image(handle) = self {
            Some(handle)
        } else {
            None
        }
    }
}

impl NormalizedRenderTarget {
    pub fn get_texture_view<'a>(
        &self,
        windows: &'a ExtractedWindows,
        images: &'a RenderAssets<Image>,
        manual_texture_views: &'a ManualTextureViews,
    ) -> Option<&'a TextureView> {
        match self {
            NormalizedRenderTarget::Window(window_ref) => windows
                .get(&window_ref.entity())
                .and_then(|window| window.swap_chain_texture_view.as_ref()),
            NormalizedRenderTarget::Image(image_handle) => {
                images.get(image_handle).map(|image| &image.texture_view)
            }
            NormalizedRenderTarget::TextureView(id) => {
                manual_texture_views.get(id).map(|tex| &tex.texture_view)
            }
        }
    }

    /// Retrieves the [`TextureFormat`] of this render target, if it exists.
    pub fn get_texture_format<'a>(
        &self,
        windows: &'a ExtractedWindows,
        images: &'a RenderAssets<Image>,
        manual_texture_views: &'a ManualTextureViews,
    ) -> Option<TextureFormat> {
        match self {
            NormalizedRenderTarget::Window(window_ref) => windows
                .get(&window_ref.entity())
                .and_then(|window| window.swap_chain_texture_format),
            NormalizedRenderTarget::Image(image_handle) => {
                images.get(image_handle).map(|image| image.texture_format)
            }
            NormalizedRenderTarget::TextureView(id) => {
                manual_texture_views.get(id).map(|tex| tex.format)
            }
        }
    }

    pub fn get_render_target_info<'a>(
        &self,
        resolutions: impl IntoIterator<Item = (Entity, &'a Window)>,
        images: &Assets<Image>,
        manual_texture_views: &ManualTextureViews,
    ) -> Option<RenderTargetInfo> {
        match self {
            NormalizedRenderTarget::Window(window_ref) => resolutions
                .into_iter()
                .find(|(entity, _)| *entity == window_ref.entity())
                .map(|(_, window)| RenderTargetInfo {
                    physical_size: UVec2::new(
                        window.resolution.physical_width(),
                        window.resolution.physical_height(),
                    ),
                    scale_factor: window.resolution.scale_factor(),
                }),
            NormalizedRenderTarget::Image(image_handle) => {
                let image = images.get(image_handle)?;
                Some(RenderTargetInfo {
                    physical_size: image.size(),
                    scale_factor: 1.0,
                })
            }
            NormalizedRenderTarget::TextureView(id) => {
                manual_texture_views.get(id).map(|tex| RenderTargetInfo {
                    physical_size: tex.size,
                    scale_factor: 1.0,
                })
            }
        }
    }

    // Check if this render target is contained in the given changed windows or images.
    fn is_changed(
        &self,
        changed_window_ids: &HashSet<Entity>,
        changed_image_handles: &HashSet<&AssetId<Image>>,
    ) -> bool {
        match self {
            NormalizedRenderTarget::Window(window_ref) => {
                changed_window_ids.contains(&window_ref.entity())
            }
            NormalizedRenderTarget::Image(image_handle) => {
                changed_image_handles.contains(&image_handle.id())
            }
            NormalizedRenderTarget::TextureView(_) => true,
        }
    }
}

/// System in charge of updating a [`Camera`] when its window or projection changes.
///
/// The system detects window creation, resize, and scale factor change events to update the camera
/// projection if needed. It also queries any [`CameraProjection`] component associated with the same
/// entity as the [`Camera`] one, to automatically update the camera projection matrix.
///
/// The system function is generic over the camera projection type, and only instances of
/// [`OrthographicProjection`] and [`PerspectiveProjection`] are automatically added to
/// the app, as well as the runtime-selected [`Projection`].
/// The system runs during [`PostUpdate`](bevy_app::PostUpdate).
///
/// ## World Resources
///
/// [`Res<Assets<Image>>`](Assets<Image>) -- For cameras that render to an image, this resource is used to
/// inspect information about the render target. This system will not access any other image assets.
///
/// [`OrthographicProjection`]: crate::camera::OrthographicProjection
/// [`PerspectiveProjection`]: crate::camera::PerspectiveProjection
#[allow(clippy::too_many_arguments)]
pub fn camera_system<T: CameraProjection + Component>(
    mut window_resized_events: EventReader<WindowResized>,
    mut window_created_events: EventReader<WindowCreated>,
    mut window_scale_factor_changed_events: EventReader<WindowScaleFactorChanged>,
    mut image_asset_events: EventReader<AssetEvent<Image>>,
    primary_window: Query<Entity, With<PrimaryWindow>>,
    windows: Query<(Entity, &Window)>,
    images: Res<Assets<Image>>,
    manual_texture_views: Res<ManualTextureViews>,
    mut cameras: Query<(&mut Camera, &mut T)>,
) {
    let primary_window = primary_window.iter().next();

    let mut changed_window_ids = HashSet::new();
    changed_window_ids.extend(window_created_events.read().map(|event| event.window));
    changed_window_ids.extend(window_resized_events.read().map(|event| event.window));
    let scale_factor_changed_window_ids: HashSet<_> = window_scale_factor_changed_events
        .read()
        .map(|event| event.window)
        .collect();
    changed_window_ids.extend(scale_factor_changed_window_ids.clone());

    let changed_image_handles: HashSet<&AssetId<Image>> = image_asset_events
        .read()
        .filter_map(|event| match event {
            AssetEvent::Modified { id } | AssetEvent::Added { id } => Some(id),
            _ => None,
        })
        .collect();

    for (mut camera, mut camera_projection) in &mut cameras {
        let mut viewport_size = camera
            .viewport
            .as_ref()
            .map(|viewport| viewport.physical_size);

        if let Some(normalized_target) = camera.target.normalize(primary_window) {
            if normalized_target.is_changed(&changed_window_ids, &changed_image_handles)
                || camera.is_added()
                || camera_projection.is_changed()
                || camera.computed.old_viewport_size != viewport_size
            {
                let new_computed_target_info = normalized_target.get_render_target_info(
                    &windows,
                    &images,
                    &manual_texture_views,
                );
                // Check for the scale factor changing, and resize the viewport if needed.
                // This can happen when the window is moved between monitors with different DPIs.
                // Without this, the viewport will take a smaller portion of the window moved to
                // a higher DPI monitor.
                if normalized_target.is_changed(&scale_factor_changed_window_ids, &HashSet::new()) {
                    if let (Some(new_scale_factor), Some(old_scale_factor)) = (
                        new_computed_target_info
                            .as_ref()
                            .map(|info| info.scale_factor),
                        camera
                            .computed
                            .target_info
                            .as_ref()
                            .map(|info| info.scale_factor),
                    ) {
                        let resize_factor = new_scale_factor / old_scale_factor;
                        if let Some(ref mut viewport) = camera.viewport {
                            let resize = |vec: UVec2| (vec.as_vec2() * resize_factor).as_uvec2();
                            viewport.physical_position = resize(viewport.physical_position);
                            viewport.physical_size = resize(viewport.physical_size);
                            viewport_size = Some(viewport.physical_size);
                        }
                    }
                }
                camera.computed.target_info = new_computed_target_info;
                if let Some(size) = camera.logical_viewport_size() {
                    camera_projection.update(size.x, size.y);
                    camera.computed.projection_matrix = camera_projection.get_projection_matrix();
                }
            }
        }

        if camera.computed.old_viewport_size != viewport_size {
            camera.computed.old_viewport_size = viewport_size;
        }
    }
}

/// This component lets you control the [`TextureUsages`] field of the main texture generated for the camera
#[derive(Component, ExtractComponent, Clone, Copy, Reflect)]
#[reflect_value(Component)]
pub struct CameraMainTextureUsages(pub TextureUsages);
impl Default for CameraMainTextureUsages {
    fn default() -> Self {
        Self(
            TextureUsages::RENDER_ATTACHMENT
                | TextureUsages::TEXTURE_BINDING
                | TextureUsages::COPY_SRC,
        )
    }
}

#[derive(Component, Debug)]
pub struct ExtractedCamera {
    pub target: Option<NormalizedRenderTarget>,
    pub physical_viewport_size: Option<UVec2>,
    pub physical_target_size: Option<UVec2>,
    pub viewport: Option<Viewport>,
    pub render_graph: InternedRenderSubGraph,
    pub order: isize,
    pub output_mode: CameraOutputMode,
    pub msaa_writeback: bool,
    pub clear_color: ClearColorConfig,
    pub sorted_camera_index_for_target: usize,
    pub exposure: f32,
}

pub fn extract_cameras(
    mut commands: Commands,
    query: Extract<
        Query<(
            Entity,
            &Camera,
            &CameraRenderGraph,
            &GlobalTransform,
            &VisibleEntities,
            &Frustum,
            Option<&ColorGrading>,
            Option<&Exposure>,
            Option<&TemporalJitter>,
            Option<&RenderLayers>,
            Option<&Projection>,
        )>,
    >,
    primary_window: Extract<Query<Entity, With<PrimaryWindow>>>,
) {
    let primary_window = primary_window.iter().next();
    for (
        entity,
        camera,
        camera_render_graph,
        transform,
        visible_entities,
        frustum,
        color_grading,
        exposure,
        temporal_jitter,
        render_layers,
        projection,
    ) in query.iter()
    {
        let color_grading = *color_grading.unwrap_or(&ColorGrading::default());

        if !camera.is_active {
            continue;
        }

        if let (
            Some(URect {
                min: viewport_origin,
                ..
            }),
            Some(viewport_size),
            Some(target_size),
        ) = (
            camera.physical_viewport_rect(),
            camera.physical_viewport_size(),
            camera.physical_target_size(),
        ) {
            if target_size.x == 0 || target_size.y == 0 {
                continue;
            }

            let mut commands = commands.get_or_spawn(entity);

            commands.insert((
                ExtractedCamera {
                    target: camera.target.normalize(primary_window),
                    viewport: camera.viewport.clone(),
                    physical_viewport_size: Some(viewport_size),
                    physical_target_size: Some(target_size),
                    render_graph: camera_render_graph.0,
                    order: camera.order,
                    output_mode: camera.output_mode,
                    msaa_writeback: camera.msaa_writeback,
                    clear_color: camera.clear_color.clone(),
                    // this will be set in sort_cameras
                    sorted_camera_index_for_target: 0,
                    exposure: exposure
                        .map(|e| e.exposure())
                        .unwrap_or_else(|| Exposure::default().exposure()),
                },
                ExtractedView {
                    projection: camera.projection_matrix(),
                    transform: *transform,
                    view_projection: None,
                    hdr: camera.hdr,
                    viewport: UVec4::new(
                        viewport_origin.x,
                        viewport_origin.y,
                        viewport_size.x,
                        viewport_size.y,
                    ),
                    color_grading,
                },
                visible_entities.clone(),
                *frustum,
            ));

            if let Some(temporal_jitter) = temporal_jitter {
                commands.insert(temporal_jitter.clone());
            }

            if let Some(render_layers) = render_layers {
                commands.insert(*render_layers);
            }

            if let Some(perspective) = projection {
                commands.insert(perspective.clone());
            }
        }
    }
}

/// Cameras sorted by their order field. This is updated in the [`sort_cameras`] system.
#[derive(Resource, Default)]
pub struct SortedCameras(pub Vec<SortedCamera>);

pub struct SortedCamera {
    pub entity: Entity,
    pub order: isize,
    pub target: Option<NormalizedRenderTarget>,
}

pub fn sort_cameras(
    mut sorted_cameras: ResMut<SortedCameras>,
    mut cameras: Query<(Entity, &mut ExtractedCamera)>,
) {
    sorted_cameras.0.clear();
    for (entity, camera) in cameras.iter() {
        sorted_cameras.0.push(SortedCamera {
            entity,
            order: camera.order,
            target: camera.target.clone(),
        });
    }
    // sort by order and ensure within an order, RenderTargets of the same type are packed together
    sorted_cameras
        .0
        .sort_by(|c1, c2| match c1.order.cmp(&c2.order) {
            std::cmp::Ordering::Equal => c1.target.cmp(&c2.target),
            ord => ord,
        });
    let mut previous_order_target = None;
    let mut ambiguities = HashSet::new();
    let mut target_counts = HashMap::new();
    for sorted_camera in &mut sorted_cameras.0 {
        let new_order_target = (sorted_camera.order, sorted_camera.target.clone());
        if let Some(previous_order_target) = previous_order_target {
            if previous_order_target == new_order_target {
                ambiguities.insert(new_order_target.clone());
            }
        }
        if let Some(target) = &sorted_camera.target {
            let count = target_counts.entry(target.clone()).or_insert(0usize);
            let (_, mut camera) = cameras.get_mut(sorted_camera.entity).unwrap();
            camera.sorted_camera_index_for_target = *count;
            *count += 1;
        }
        previous_order_target = Some(new_order_target);
    }

    if !ambiguities.is_empty() {
        warn!(
            "Camera order ambiguities detected for active cameras with the following priorities: {:?}. \
            To fix this, ensure there is exactly one Camera entity spawned with a given order for a given RenderTarget. \
            Ambiguities should be resolved because either (1) multiple active cameras were spawned accidentally, which will \
            result in rendering multiple instances of the scene or (2) for cases where multiple active cameras is intentional, \
            ambiguities could result in unpredictable render results.",
            ambiguities
        );
    }
}

/// A subpixel offset to jitter a perspective camera's frustum by.
///
/// Useful for temporal rendering techniques.
///
/// Do not use with [`OrthographicProjection`].
///
/// [`OrthographicProjection`]: crate::camera::OrthographicProjection
#[derive(Component, Clone, Default)]
pub struct TemporalJitter {
    /// Offset is in range [-0.5, 0.5].
    pub offset: Vec2,
}

impl TemporalJitter {
    pub fn jitter_projection(&self, projection: &mut Mat4, view_size: Vec2) {
        if projection.w_axis.w == 1.0 {
            warn!(
                "TemporalJitter not supported with OrthographicProjection. Use PerspectiveProjection instead."
            );
            return;
        }

        // https://github.com/GPUOpen-LibrariesAndSDKs/FidelityFX-SDK/blob/d7531ae47d8b36a5d4025663e731a47a38be882f/docs/techniques/media/super-resolution-temporal/jitter-space.svg
        let jitter = (self.offset * vec2(2.0, -2.0)) / view_size;

        projection.z_axis.x += jitter.x;
        projection.z_axis.y += jitter.y;
    }
}

/// Camera component specifying a mip bias to apply when sampling from material textures.
///
/// Often used in conjunction with antialiasing post-process effects to reduce textures blurriness.
#[derive(Component)]
pub struct MipBias(pub f32);