1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
use std::marker::PhantomData;
use std::ops::{Div, DivAssign, Mul, MulAssign};

use crate::primitives::Frustum;
use bevy_app::{App, Plugin, PostStartup, PostUpdate};
use bevy_ecs::{prelude::*, reflect::ReflectComponent};
use bevy_math::{AspectRatio, Mat4, Rect, Vec2, Vec3A};
use bevy_reflect::{
    std_traits::ReflectDefault, GetTypeRegistration, Reflect, ReflectDeserialize, ReflectSerialize,
};
use bevy_transform::components::GlobalTransform;
use serde::{Deserialize, Serialize};

/// Adds [`Camera`](crate::camera::Camera) driver systems for a given projection type.
pub struct CameraProjectionPlugin<T: CameraProjection>(PhantomData<T>);

impl<T: CameraProjection> Default for CameraProjectionPlugin<T> {
    fn default() -> Self {
        Self(Default::default())
    }
}

/// Label for [`camera_system<T>`], shared across all `T`.
///
/// [`camera_system<T>`]: crate::camera::camera_system
#[derive(SystemSet, Clone, Eq, PartialEq, Hash, Debug)]
pub struct CameraUpdateSystem;

impl<T: CameraProjection + Component + GetTypeRegistration> Plugin for CameraProjectionPlugin<T> {
    fn build(&self, app: &mut App) {
        app.register_type::<T>()
            .add_systems(
                PostStartup,
                crate::camera::camera_system::<T>
                    .in_set(CameraUpdateSystem)
                    // We assume that each camera will only have one projection,
                    // so we can ignore ambiguities with all other monomorphizations.
                    // FIXME: Add an archetype invariant for this https://github.com/bevyengine/bevy/issues/1481.
                    .ambiguous_with(CameraUpdateSystem),
            )
            .add_systems(
                PostUpdate,
                crate::camera::camera_system::<T>
                    .in_set(CameraUpdateSystem)
                    // We assume that each camera will only have one projection,
                    // so we can ignore ambiguities with all other monomorphizations.
                    // FIXME: Add an archetype invariant for this https://github.com/bevyengine/bevy/issues/1481.
                    .ambiguous_with(CameraUpdateSystem),
            );
    }
}

/// Trait to control the projection matrix of a camera.
///
/// Components implementing this trait are automatically polled for changes, and used
/// to recompute the camera projection matrix of the [`Camera`] component attached to
/// the same entity as the component implementing this trait.
///
/// [`Camera`]: crate::camera::Camera
pub trait CameraProjection {
    fn get_projection_matrix(&self) -> Mat4;
    fn update(&mut self, width: f32, height: f32);
    fn far(&self) -> f32;
    fn get_frustum_corners(&self, z_near: f32, z_far: f32) -> [Vec3A; 8];

    /// Compute camera frustum for camera with given projection and transform.
    ///
    /// This code is called by [`update_frusta`](crate::view::visibility::update_frusta) system
    /// for each camera to update its frustum.
    fn compute_frustum(&self, camera_transform: &GlobalTransform) -> Frustum {
        let view_projection =
            self.get_projection_matrix() * camera_transform.compute_matrix().inverse();
        Frustum::from_view_projection_custom_far(
            &view_projection,
            &camera_transform.translation(),
            &camera_transform.back(),
            self.far(),
        )
    }
}

/// A configurable [`CameraProjection`] that can select its projection type at runtime.
#[derive(Component, Debug, Clone, Reflect)]
#[reflect(Component, Default)]
pub enum Projection {
    Perspective(PerspectiveProjection),
    Orthographic(OrthographicProjection),
}

impl From<PerspectiveProjection> for Projection {
    fn from(p: PerspectiveProjection) -> Self {
        Self::Perspective(p)
    }
}

impl From<OrthographicProjection> for Projection {
    fn from(p: OrthographicProjection) -> Self {
        Self::Orthographic(p)
    }
}

impl CameraProjection for Projection {
    fn get_projection_matrix(&self) -> Mat4 {
        match self {
            Projection::Perspective(projection) => projection.get_projection_matrix(),
            Projection::Orthographic(projection) => projection.get_projection_matrix(),
        }
    }

    fn update(&mut self, width: f32, height: f32) {
        match self {
            Projection::Perspective(projection) => projection.update(width, height),
            Projection::Orthographic(projection) => projection.update(width, height),
        }
    }

    fn far(&self) -> f32 {
        match self {
            Projection::Perspective(projection) => projection.far(),
            Projection::Orthographic(projection) => projection.far(),
        }
    }

    fn get_frustum_corners(&self, z_near: f32, z_far: f32) -> [Vec3A; 8] {
        match self {
            Projection::Perspective(projection) => projection.get_frustum_corners(z_near, z_far),
            Projection::Orthographic(projection) => projection.get_frustum_corners(z_near, z_far),
        }
    }
}

impl Default for Projection {
    fn default() -> Self {
        Projection::Perspective(Default::default())
    }
}

/// A 3D camera projection in which distant objects appear smaller than close objects.
#[derive(Component, Debug, Clone, Reflect)]
#[reflect(Component, Default)]
pub struct PerspectiveProjection {
    /// The vertical field of view (FOV) in radians.
    ///
    /// Defaults to a value of π/4 radians or 45 degrees.
    pub fov: f32,

    /// The aspect ratio (width divided by height) of the viewing frustum.
    ///
    /// Bevy's [`camera_system`](crate::camera::camera_system) automatically
    /// updates this value when the aspect ratio of the associated window changes.
    ///
    /// Defaults to a value of `1.0`.
    pub aspect_ratio: f32,

    /// The distance from the camera in world units of the viewing frustum's near plane.
    ///
    /// Objects closer to the camera than this value will not be visible.
    ///
    /// Defaults to a value of `0.1`.
    pub near: f32,

    /// The distance from the camera in world units of the viewing frustum's far plane.
    ///
    /// Objects farther from the camera than this value will not be visible.
    ///
    /// Defaults to a value of `1000.0`.
    pub far: f32,
}

impl CameraProjection for PerspectiveProjection {
    fn get_projection_matrix(&self) -> Mat4 {
        Mat4::perspective_infinite_reverse_rh(self.fov, self.aspect_ratio, self.near)
    }

    fn update(&mut self, width: f32, height: f32) {
        self.aspect_ratio = AspectRatio::new(width, height).into();
    }

    fn far(&self) -> f32 {
        self.far
    }

    fn get_frustum_corners(&self, z_near: f32, z_far: f32) -> [Vec3A; 8] {
        let tan_half_fov = (self.fov / 2.).tan();
        let a = z_near.abs() * tan_half_fov;
        let b = z_far.abs() * tan_half_fov;
        let aspect_ratio = self.aspect_ratio;
        // NOTE: These vertices are in the specific order required by [`calculate_cascade`].
        [
            Vec3A::new(a * aspect_ratio, -a, z_near),  // bottom right
            Vec3A::new(a * aspect_ratio, a, z_near),   // top right
            Vec3A::new(-a * aspect_ratio, a, z_near),  // top left
            Vec3A::new(-a * aspect_ratio, -a, z_near), // bottom left
            Vec3A::new(b * aspect_ratio, -b, z_far),   // bottom right
            Vec3A::new(b * aspect_ratio, b, z_far),    // top right
            Vec3A::new(-b * aspect_ratio, b, z_far),   // top left
            Vec3A::new(-b * aspect_ratio, -b, z_far),  // bottom left
        ]
    }
}

impl Default for PerspectiveProjection {
    fn default() -> Self {
        PerspectiveProjection {
            fov: std::f32::consts::PI / 4.0,
            near: 0.1,
            far: 1000.0,
            aspect_ratio: 1.0,
        }
    }
}

/// Scaling mode for [`OrthographicProjection`].
///
/// # Examples
///
/// Configure the orthographic projection to two world units per window height:
///
/// ```
/// # use bevy_render::camera::{OrthographicProjection, Projection, ScalingMode};
/// let projection = Projection::Orthographic(OrthographicProjection {
///    scaling_mode: ScalingMode::FixedVertical(2.0),
///    ..OrthographicProjection::default()
/// });
/// ```
#[derive(Debug, Clone, Copy, Reflect, Serialize, Deserialize)]
#[reflect(Serialize, Deserialize)]
pub enum ScalingMode {
    /// Manually specify the projection's size, ignoring window resizing. The image will stretch.
    /// Arguments are in world units.
    Fixed { width: f32, height: f32 },
    /// Match the viewport size.
    /// The argument is the number of pixels that equals one world unit.
    WindowSize(f32),
    /// Keeping the aspect ratio while the axes can't be smaller than given minimum.
    /// Arguments are in world units.
    AutoMin { min_width: f32, min_height: f32 },
    /// Keeping the aspect ratio while the axes can't be bigger than given maximum.
    /// Arguments are in world units.
    AutoMax { max_width: f32, max_height: f32 },
    /// Keep the projection's height constant; width will be adjusted to match aspect ratio.
    /// The argument is the desired height of the projection in world units.
    FixedVertical(f32),
    /// Keep the projection's width constant; height will be adjusted to match aspect ratio.
    /// The argument is the desired width of the projection in world units.
    FixedHorizontal(f32),
}

impl Mul<f32> for ScalingMode {
    type Output = ScalingMode;

    /// Scale the `ScalingMode`. For example, multiplying by 2 makes the viewport twice as large.
    fn mul(self, rhs: f32) -> ScalingMode {
        match self {
            ScalingMode::Fixed { width, height } => ScalingMode::Fixed {
                width: width * rhs,
                height: height * rhs,
            },
            ScalingMode::WindowSize(pixels_per_world_unit) => {
                ScalingMode::WindowSize(pixels_per_world_unit / rhs)
            }
            ScalingMode::AutoMin {
                min_width,
                min_height,
            } => ScalingMode::AutoMin {
                min_width: min_width * rhs,
                min_height: min_height * rhs,
            },
            ScalingMode::AutoMax {
                max_width,
                max_height,
            } => ScalingMode::AutoMax {
                max_width: max_width * rhs,
                max_height: max_height * rhs,
            },
            ScalingMode::FixedVertical(size) => ScalingMode::FixedVertical(size * rhs),
            ScalingMode::FixedHorizontal(size) => ScalingMode::FixedHorizontal(size * rhs),
        }
    }
}

impl MulAssign<f32> for ScalingMode {
    fn mul_assign(&mut self, rhs: f32) {
        *self = *self * rhs;
    }
}

impl Div<f32> for ScalingMode {
    type Output = ScalingMode;

    /// Scale the `ScalingMode`. For example, dividing by 2 makes the viewport half as large.
    fn div(self, rhs: f32) -> ScalingMode {
        self * (1.0 / rhs)
    }
}

impl DivAssign<f32> for ScalingMode {
    fn div_assign(&mut self, rhs: f32) {
        *self = *self / rhs;
    }
}

/// Project a 3D space onto a 2D surface using parallel lines, i.e., unlike [`PerspectiveProjection`],
/// the size of objects remains the same regardless of their distance to the camera.
///
/// The volume contained in the projection is called the *view frustum*. Since the viewport is rectangular
/// and projection lines are parallel, the view frustum takes the shape of a cuboid.
///
/// Note that the scale of the projection and the apparent size of objects are inversely proportional.
/// As the size of the projection increases, the size of objects decreases.
///
/// # Examples
///
/// Configure the orthographic projection to one world unit per 100 window pixels:
///
/// ```
/// # use bevy_render::camera::{OrthographicProjection, Projection, ScalingMode};
/// let projection = Projection::Orthographic(OrthographicProjection {
///     scaling_mode: ScalingMode::WindowSize(100.0),
///     ..OrthographicProjection::default()
/// });
/// ```
#[derive(Component, Debug, Clone, Reflect)]
#[reflect(Component, Default)]
pub struct OrthographicProjection {
    /// The distance of the near clipping plane in world units.
    ///
    /// Objects closer than this will not be rendered.
    ///
    /// Defaults to `0.0`
    pub near: f32,
    /// The distance of the far clipping plane in world units.
    ///
    /// Objects further than this will not be rendered.
    ///
    /// Defaults to `1000.0`
    pub far: f32,
    /// Specifies the origin of the viewport as a normalized position from 0 to 1, where (0, 0) is the bottom left
    /// and (1, 1) is the top right. This determines where the camera's position sits inside the viewport.
    ///
    /// When the projection scales due to viewport resizing, the position of the camera, and thereby `viewport_origin`,
    /// remains at the same relative point.
    ///
    /// Consequently, this is pivot point when scaling. With a bottom left pivot, the projection will expand
    /// upwards and to the right. With a top right pivot, the projection will expand downwards and to the left.
    /// Values in between will caused the projection to scale proportionally on each axis.
    ///
    /// Defaults to `(0.5, 0.5)`, which makes scaling affect opposite sides equally, keeping the center
    /// point of the viewport centered.
    pub viewport_origin: Vec2,
    /// How the projection will scale to the viewport.
    ///
    /// Defaults to `ScalingMode::WindowSize(1.0)`
    pub scaling_mode: ScalingMode,
    /// Scales the projection.
    ///
    /// As scale increases, the apparent size of objects decreases, and vice versa.
    ///
    /// Note: scaling can be set by [`scaling_mode`](Self::scaling_mode) as well.
    /// This parameter scales on top of that.
    ///
    /// This property is particularly useful in implementing zoom functionality.
    ///
    /// Defaults to `1.0`.
    pub scale: f32,
    /// The area that the projection covers relative to `viewport_origin`.
    ///
    /// Bevy's [`camera_system`](crate::camera::camera_system) automatically
    /// updates this value when the viewport is resized depending on `OrthographicProjection`'s other fields.
    /// In this case, `area` should not be manually modified.
    ///
    /// It may be necessary to set this manually for shadow projections and such.
    pub area: Rect,
}

impl CameraProjection for OrthographicProjection {
    fn get_projection_matrix(&self) -> Mat4 {
        Mat4::orthographic_rh(
            self.area.min.x,
            self.area.max.x,
            self.area.min.y,
            self.area.max.y,
            // NOTE: near and far are swapped to invert the depth range from [0,1] to [1,0]
            // This is for interoperability with pipelines using infinite reverse perspective projections.
            self.far,
            self.near,
        )
    }

    fn update(&mut self, width: f32, height: f32) {
        let (projection_width, projection_height) = match self.scaling_mode {
            ScalingMode::WindowSize(pixel_scale) => (width / pixel_scale, height / pixel_scale),
            ScalingMode::AutoMin {
                min_width,
                min_height,
            } => {
                // Compare Pixels of current width and minimal height and Pixels of minimal width with current height.
                // Then use bigger (min_height when true) as what it refers to (height when true) and calculate rest so it can't get under minimum.
                if width * min_height > min_width * height {
                    (width * min_height / height, min_height)
                } else {
                    (min_width, height * min_width / width)
                }
            }
            ScalingMode::AutoMax {
                max_width,
                max_height,
            } => {
                // Compare Pixels of current width and maximal height and Pixels of maximal width with current height.
                // Then use smaller (max_height when true) as what it refers to (height when true) and calculate rest so it can't get over maximum.
                if width * max_height < max_width * height {
                    (width * max_height / height, max_height)
                } else {
                    (max_width, height * max_width / width)
                }
            }
            ScalingMode::FixedVertical(viewport_height) => {
                (width * viewport_height / height, viewport_height)
            }
            ScalingMode::FixedHorizontal(viewport_width) => {
                (viewport_width, height * viewport_width / width)
            }
            ScalingMode::Fixed { width, height } => (width, height),
        };

        let origin_x = projection_width * self.viewport_origin.x;
        let origin_y = projection_height * self.viewport_origin.y;

        self.area = Rect::new(
            self.scale * -origin_x,
            self.scale * -origin_y,
            self.scale * (projection_width - origin_x),
            self.scale * (projection_height - origin_y),
        );
    }

    fn far(&self) -> f32 {
        self.far
    }

    fn get_frustum_corners(&self, z_near: f32, z_far: f32) -> [Vec3A; 8] {
        let area = self.area;
        // NOTE: These vertices are in the specific order required by [`calculate_cascade`].
        [
            Vec3A::new(area.max.x, area.min.y, z_near), // bottom right
            Vec3A::new(area.max.x, area.max.y, z_near), // top right
            Vec3A::new(area.min.x, area.max.y, z_near), // top left
            Vec3A::new(area.min.x, area.min.y, z_near), // bottom left
            Vec3A::new(area.max.x, area.min.y, z_far),  // bottom right
            Vec3A::new(area.max.x, area.max.y, z_far),  // top right
            Vec3A::new(area.min.x, area.max.y, z_far),  // top left
            Vec3A::new(area.min.x, area.min.y, z_far),  // bottom left
        ]
    }
}

impl Default for OrthographicProjection {
    fn default() -> Self {
        OrthographicProjection {
            scale: 1.0,
            near: 0.0,
            far: 1000.0,
            viewport_origin: Vec2::new(0.5, 0.5),
            scaling_mode: ScalingMode::WindowSize(1.0),
            area: Rect::new(-1.0, -1.0, 1.0, 1.0),
        }
    }
}