1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
use std::f32::consts::PI;
use crate::{
mesh::{Indices, Mesh, Meshable},
render_asset::RenderAssetUsages,
};
use bevy_math::primitives::Sphere;
use hexasphere::shapes::IcoSphere;
use thiserror::Error;
use wgpu::PrimitiveTopology;
/// An error when creating an icosphere [`Mesh`] from a [`SphereMeshBuilder`].
#[derive(Clone, Copy, Debug, Error)]
pub enum IcosphereError {
/// The icosphere has too many vertices.
#[error("Cannot create an icosphere of {subdivisions} subdivisions due to there being too many vertices being generated: {number_of_resulting_points}. (Limited to 65535 vertices or 79 subdivisions)")]
TooManyVertices {
/// The number of subdivisions used. 79 is the largest allowed value for a mesh to be generated.
subdivisions: usize,
/// The number of vertices generated. 65535 is the largest allowed value for a mesh to be generated.
number_of_resulting_points: usize,
},
}
/// A type of sphere mesh.
#[derive(Clone, Copy, Debug)]
pub enum SphereKind {
/// An icosphere, a spherical mesh that consists of equally sized triangles.
Ico {
/// The number of subdivisions applied.
/// The number of faces quadruples with each subdivision.
subdivisions: usize,
},
/// A UV sphere, a spherical mesh that consists of quadrilaterals
/// apart from triangles at the top and bottom.
Uv {
/// The number of longitudinal sectors, aka the horizontal resolution.
#[doc(alias = "horizontal_resolution")]
sectors: usize,
/// The number of latitudinal stacks, aka the vertical resolution.
#[doc(alias = "vertical_resolution")]
stacks: usize,
},
}
impl Default for SphereKind {
fn default() -> Self {
Self::Ico { subdivisions: 5 }
}
}
/// A builder used for creating a [`Mesh`] with an [`Sphere`] shape.
#[derive(Clone, Copy, Debug, Default)]
pub struct SphereMeshBuilder {
/// The [`Sphere`] shape.
pub sphere: Sphere,
/// The type of sphere mesh that will be built.
pub kind: SphereKind,
}
impl SphereMeshBuilder {
/// Creates a new [`SphereMeshBuilder`] from a radius and [`SphereKind`].
#[inline]
pub const fn new(radius: f32, kind: SphereKind) -> Self {
Self {
sphere: Sphere { radius },
kind,
}
}
/// Sets the [`SphereKind`] that will be used for building the mesh.
#[inline]
pub const fn kind(mut self, kind: SphereKind) -> Self {
self.kind = kind;
self
}
/// Builds a [`Mesh`] according to the configuration in `self`.
///
/// # Panics
///
/// Panics if the sphere is a [`SphereKind::Ico`] with a subdivision count
/// that is greater than or equal to `80` because there will be too many vertices.
pub fn build(&self) -> Mesh {
match self.kind {
SphereKind::Ico { subdivisions } => self.ico(subdivisions).unwrap(),
SphereKind::Uv { sectors, stacks } => self.uv(sectors, stacks),
}
}
/// Creates an icosphere mesh with the given number of subdivisions.
///
/// The number of faces quadruples with each subdivision.
/// If there are `80` or more subdivisions, the vertex count will be too large,
/// and an [`IcosphereError`] is returned.
///
/// A good default is `5` subdivisions.
pub fn ico(&self, subdivisions: usize) -> Result<Mesh, IcosphereError> {
if subdivisions >= 80 {
/*
Number of triangles:
N = 20
Number of edges:
E = 30
Number of vertices:
V = 12
Number of points within a triangle (triangular numbers):
inner(s) = (s^2 + s) / 2
Number of points on an edge:
edges(s) = s
Add up all vertices on the surface:
vertices(s) = edges(s) * E + inner(s - 1) * N + V
Expand and simplify. Notice that the triangular number formula has roots at -1, and 0, so translating it one to the right fixes it.
subdivisions(s) = 30s + 20((s^2 - 2s + 1 + s - 1) / 2) + 12
subdivisions(s) = 30s + 10s^2 - 10s + 12
subdivisions(s) = 10(s^2 + 2s) + 12
Factor an (s + 1) term to simplify in terms of calculation
subdivisions(s) = 10(s + 1)^2 + 12 - 10
resulting_vertices(s) = 10(s + 1)^2 + 2
*/
let temp = subdivisions + 1;
let number_of_resulting_points = temp * temp * 10 + 2;
return Err(IcosphereError::TooManyVertices {
subdivisions,
number_of_resulting_points,
});
}
let generated = IcoSphere::new(subdivisions, |point| {
let inclination = point.y.acos();
let azimuth = point.z.atan2(point.x);
let norm_inclination = inclination / std::f32::consts::PI;
let norm_azimuth = 0.5 - (azimuth / std::f32::consts::TAU);
[norm_azimuth, norm_inclination]
});
let raw_points = generated.raw_points();
let points = raw_points
.iter()
.map(|&p| (p * self.sphere.radius).into())
.collect::<Vec<[f32; 3]>>();
let normals = raw_points
.iter()
.copied()
.map(Into::into)
.collect::<Vec<[f32; 3]>>();
let uvs = generated.raw_data().to_owned();
let mut indices = Vec::with_capacity(generated.indices_per_main_triangle() * 20);
for i in 0..20 {
generated.get_indices(i, &mut indices);
}
let indices = Indices::U32(indices);
Ok(Mesh::new(
PrimitiveTopology::TriangleList,
RenderAssetUsages::default(),
)
.with_inserted_indices(indices)
.with_inserted_attribute(Mesh::ATTRIBUTE_POSITION, points)
.with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, normals)
.with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, uvs))
}
/// Creates a UV sphere [`Mesh`] with the given number of
/// longitudinal sectors and latitudinal stacks, aka horizontal and vertical resolution.
///
/// A good default is `32` sectors and `18` stacks.
pub fn uv(&self, sectors: usize, stacks: usize) -> Mesh {
// Largely inspired from http://www.songho.ca/opengl/gl_sphere.html
let sectors_f32 = sectors as f32;
let stacks_f32 = stacks as f32;
let length_inv = 1. / self.sphere.radius;
let sector_step = 2. * PI / sectors_f32;
let stack_step = PI / stacks_f32;
let mut vertices: Vec<[f32; 3]> = Vec::with_capacity(stacks * sectors);
let mut normals: Vec<[f32; 3]> = Vec::with_capacity(stacks * sectors);
let mut uvs: Vec<[f32; 2]> = Vec::with_capacity(stacks * sectors);
let mut indices: Vec<u32> = Vec::with_capacity(stacks * sectors * 2 * 3);
for i in 0..stacks + 1 {
let stack_angle = PI / 2. - (i as f32) * stack_step;
let xy = self.sphere.radius * stack_angle.cos();
let z = self.sphere.radius * stack_angle.sin();
for j in 0..sectors + 1 {
let sector_angle = (j as f32) * sector_step;
let x = xy * sector_angle.cos();
let y = xy * sector_angle.sin();
vertices.push([x, y, z]);
normals.push([x * length_inv, y * length_inv, z * length_inv]);
uvs.push([(j as f32) / sectors_f32, (i as f32) / stacks_f32]);
}
}
// indices
// k1--k1+1
// | / |
// | / |
// k2--k2+1
for i in 0..stacks {
let mut k1 = i * (sectors + 1);
let mut k2 = k1 + sectors + 1;
for _j in 0..sectors {
if i != 0 {
indices.push(k1 as u32);
indices.push(k2 as u32);
indices.push((k1 + 1) as u32);
}
if i != stacks - 1 {
indices.push((k1 + 1) as u32);
indices.push(k2 as u32);
indices.push((k2 + 1) as u32);
}
k1 += 1;
k2 += 1;
}
}
Mesh::new(
PrimitiveTopology::TriangleList,
RenderAssetUsages::default(),
)
.with_inserted_indices(Indices::U32(indices))
.with_inserted_attribute(Mesh::ATTRIBUTE_POSITION, vertices)
.with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, normals)
.with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, uvs)
}
}
impl Meshable for Sphere {
type Output = SphereMeshBuilder;
fn mesh(&self) -> Self::Output {
SphereMeshBuilder {
sphere: *self,
..Default::default()
}
}
}
impl From<Sphere> for Mesh {
fn from(sphere: Sphere) -> Self {
sphere.mesh().build()
}
}
impl From<SphereMeshBuilder> for Mesh {
fn from(sphere: SphereMeshBuilder) -> Self {
sphere.build()
}
}