1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
use std::borrow::Borrow;

use bevy_ecs::{component::Component, entity::EntityHashMap, reflect::ReflectComponent};
use bevy_math::{Affine3A, Mat3A, Mat4, Vec3, Vec3A, Vec4, Vec4Swizzles};
use bevy_reflect::Reflect;

/// An axis-aligned bounding box, defined by:
/// - a center,
/// - the distances from the center to each faces along the axis,
/// the faces are orthogonal to the axis.
///
/// It is typically used as a component on an entity to represent the local space
/// occupied by this entity, with faces orthogonal to its local axis.
///
/// This component is notably used during "frustum culling", a process to determine
/// if an entity should be rendered by a [`Camera`] if its bounding box intersects
/// with the camera's [`Frustum`].
///
/// It will be added automatically by the systems in [`CalculateBounds`] to entities that:
/// - could be subject to frustum culling, for example with a [`Handle<Mesh>`]
/// or `Sprite` component,
/// - don't have the [`NoFrustumCulling`] component.
///
/// It won't be updated automatically if the space occupied by the entity changes,
/// for example if the vertex positions of a [`Mesh`] inside a `Handle<Mesh>` are
/// updated.
///
/// [`Camera`]: crate::camera::Camera
/// [`NoFrustumCulling`]: crate::view::visibility::NoFrustumCulling
/// [`CalculateBounds`]: crate::view::visibility::VisibilitySystems::CalculateBounds
/// [`Mesh`]: crate::mesh::Mesh
/// [`Handle<Mesh>`]: crate::mesh::Mesh
#[derive(Component, Clone, Copy, Debug, Default, Reflect, PartialEq)]
#[reflect(Component)]
pub struct Aabb {
    pub center: Vec3A,
    pub half_extents: Vec3A,
}

impl Aabb {
    #[inline]
    pub fn from_min_max(minimum: Vec3, maximum: Vec3) -> Self {
        let minimum = Vec3A::from(minimum);
        let maximum = Vec3A::from(maximum);
        let center = 0.5 * (maximum + minimum);
        let half_extents = 0.5 * (maximum - minimum);
        Self {
            center,
            half_extents,
        }
    }

    /// Returns a bounding box enclosing the specified set of points.
    ///
    /// Returns `None` if the iterator is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// # use bevy_math::{Vec3, Vec3A};
    /// # use bevy_render::primitives::Aabb;
    /// let bb = Aabb::enclosing([Vec3::X, Vec3::Z * 2.0, Vec3::Y * -0.5]).unwrap();
    /// assert_eq!(bb.min(), Vec3A::new(0.0, -0.5, 0.0));
    /// assert_eq!(bb.max(), Vec3A::new(1.0, 0.0, 2.0));
    /// ```
    pub fn enclosing<T: Borrow<Vec3>>(iter: impl IntoIterator<Item = T>) -> Option<Self> {
        let mut iter = iter.into_iter().map(|p| *p.borrow());
        let mut min = iter.next()?;
        let mut max = min;
        for v in iter {
            min = Vec3::min(min, v);
            max = Vec3::max(max, v);
        }
        Some(Self::from_min_max(min, max))
    }

    /// Calculate the relative radius of the AABB with respect to a plane
    #[inline]
    pub fn relative_radius(&self, p_normal: &Vec3A, model: &Mat3A) -> f32 {
        // NOTE: dot products on Vec3A use SIMD and even with the overhead of conversion are net faster than Vec3
        let half_extents = self.half_extents;
        Vec3A::new(
            p_normal.dot(model.x_axis),
            p_normal.dot(model.y_axis),
            p_normal.dot(model.z_axis),
        )
        .abs()
        .dot(half_extents)
    }

    #[inline]
    pub fn min(&self) -> Vec3A {
        self.center - self.half_extents
    }

    #[inline]
    pub fn max(&self) -> Vec3A {
        self.center + self.half_extents
    }
}

impl From<Sphere> for Aabb {
    #[inline]
    fn from(sphere: Sphere) -> Self {
        Self {
            center: sphere.center,
            half_extents: Vec3A::splat(sphere.radius),
        }
    }
}

#[derive(Clone, Debug, Default)]
pub struct Sphere {
    pub center: Vec3A,
    pub radius: f32,
}

impl Sphere {
    #[inline]
    pub fn intersects_obb(&self, aabb: &Aabb, local_to_world: &Affine3A) -> bool {
        let aabb_center_world = local_to_world.transform_point3a(aabb.center);
        let v = aabb_center_world - self.center;
        let d = v.length();
        let relative_radius = aabb.relative_radius(&(v / d), &local_to_world.matrix3);
        d < self.radius + relative_radius
    }
}

/// A region of 3D space, specifically an open set whose border is a bisecting 2D plane.
/// This bisecting plane partitions 3D space into two infinite regions,
/// the half-space is one of those regions and excludes the bisecting plane.
///
/// Each instance of this type is characterized by:
/// - the bisecting plane's unit normal, normalized and pointing "inside" the half-space,
/// - the signed distance along the normal from the bisecting plane to the origin of 3D space.
///
/// The distance can also be seen as:
/// - the distance along the inverse of the normal from the origin of 3D space to the bisecting plane,
/// - the opposite of the distance along the normal from the origin of 3D space to the bisecting plane.
///
/// Any point `p` is considered to be within the `HalfSpace` when the length of the projection
/// of p on the normal is greater or equal than the opposite of the distance,
/// meaning: if the equation `normal.dot(p) + distance > 0.` is satisfied.
///
/// For example, the half-space containing all the points with a z-coordinate lesser
/// or equal than `8.0` would be defined by: `HalfSpace::new(Vec3::NEG_Z.extend(-8.0))`.
/// It includes all the points from the bisecting plane towards `NEG_Z`, and the distance
/// from the plane to the origin is `-8.0` along `NEG_Z`.
///
/// It is used to define a [`Frustum`], but is also a useful mathematical primitive for rendering tasks such as  light computation.
#[derive(Clone, Copy, Debug, Default)]
pub struct HalfSpace {
    normal_d: Vec4,
}

impl HalfSpace {
    /// Constructs a `HalfSpace` from a 4D vector whose first 3 components
    /// represent the bisecting plane's unit normal, and the last component is
    /// the signed distance along the normal from the plane to the origin.
    /// The constructor ensures the normal vector is normalized and the distance is appropriately scaled.
    #[inline]
    pub fn new(normal_d: Vec4) -> Self {
        Self {
            normal_d: normal_d * normal_d.xyz().length_recip(),
        }
    }

    /// Returns the unit normal vector of the bisecting plane that characterizes the `HalfSpace`.
    #[inline]
    pub fn normal(&self) -> Vec3A {
        Vec3A::from(self.normal_d)
    }

    /// Returns the signed distance from the bisecting plane to the origin along
    /// the plane's unit normal vector.
    #[inline]
    pub fn d(&self) -> f32 {
        self.normal_d.w
    }

    /// Returns the bisecting plane's unit normal vector and the signed distance
    /// from the plane to the origin.
    #[inline]
    pub fn normal_d(&self) -> Vec4 {
        self.normal_d
    }
}

/// A region of 3D space defined by the intersection of 6 [`HalfSpace`]s.
///
/// Frustums are typically an apex-truncated square pyramid (a pyramid without the top) or a cuboid.
///
/// Half spaces are ordered left, right, top, bottom, near, far. The normal vectors
/// of the half-spaces point towards the interior of the frustum.
///
/// A frustum component is used on an entity with a [`Camera`] component to
/// determine which entities will be considered for rendering by this camera.
/// All entities with an [`Aabb`] component that are not contained by (or crossing
/// the boundary of) the frustum will not be rendered, and not be used in rendering computations.
///
/// This process is called frustum culling, and entities can opt out of it using
/// the [`NoFrustumCulling`] component.
///
/// The frustum component is typically added from a bundle, either the `Camera2dBundle`
/// or the `Camera3dBundle`.
/// It is usually updated automatically by [`update_frusta`] from the
/// [`CameraProjection`] component and [`GlobalTransform`] of the camera entity.
///
/// [`Camera`]: crate::camera::Camera
/// [`NoFrustumCulling`]: crate::view::visibility::NoFrustumCulling
/// [`update_frusta`]: crate::view::visibility::update_frusta
/// [`CameraProjection`]: crate::camera::CameraProjection
/// [`GlobalTransform`]: bevy_transform::components::GlobalTransform
#[derive(Component, Clone, Copy, Debug, Default, Reflect)]
#[reflect(Component)]
pub struct Frustum {
    #[reflect(ignore)]
    pub half_spaces: [HalfSpace; 6],
}

impl Frustum {
    /// Returns a frustum derived from `view_projection`.
    #[inline]
    pub fn from_view_projection(view_projection: &Mat4) -> Self {
        let mut frustum = Frustum::from_view_projection_no_far(view_projection);
        frustum.half_spaces[5] = HalfSpace::new(view_projection.row(2));
        frustum
    }

    /// Returns a frustum derived from `view_projection`,
    /// but with a custom far plane.
    #[inline]
    pub fn from_view_projection_custom_far(
        view_projection: &Mat4,
        view_translation: &Vec3,
        view_backward: &Vec3,
        far: f32,
    ) -> Self {
        let mut frustum = Frustum::from_view_projection_no_far(view_projection);
        let far_center = *view_translation - far * *view_backward;
        frustum.half_spaces[5] =
            HalfSpace::new(view_backward.extend(-view_backward.dot(far_center)));
        frustum
    }

    // NOTE: This approach of extracting the frustum half-space from the view
    // projection matrix is from Foundations of Game Engine Development 2
    // Rendering by Lengyel.
    /// Returns a frustum derived from `view_projection`,
    /// without a far plane.
    fn from_view_projection_no_far(view_projection: &Mat4) -> Self {
        let row3 = view_projection.row(3);
        let mut half_spaces = [HalfSpace::default(); 6];
        for (i, half_space) in half_spaces.iter_mut().enumerate().take(5) {
            let row = view_projection.row(i / 2);
            *half_space = HalfSpace::new(if (i & 1) == 0 && i != 4 {
                row3 + row
            } else {
                row3 - row
            });
        }
        Self { half_spaces }
    }

    /// Checks if a sphere intersects the frustum.
    #[inline]
    pub fn intersects_sphere(&self, sphere: &Sphere, intersect_far: bool) -> bool {
        let sphere_center = sphere.center.extend(1.0);
        let max = if intersect_far { 6 } else { 5 };
        for half_space in &self.half_spaces[..max] {
            if half_space.normal_d().dot(sphere_center) + sphere.radius <= 0.0 {
                return false;
            }
        }
        true
    }

    /// Checks if an Oriented Bounding Box (obb) intersects the frustum.
    #[inline]
    pub fn intersects_obb(
        &self,
        aabb: &Aabb,
        model_to_world: &Affine3A,
        intersect_near: bool,
        intersect_far: bool,
    ) -> bool {
        let aabb_center_world = model_to_world.transform_point3a(aabb.center).extend(1.0);
        for (idx, half_space) in self.half_spaces.into_iter().enumerate() {
            if idx == 4 && !intersect_near {
                continue;
            }
            if idx == 5 && !intersect_far {
                continue;
            }
            let p_normal = half_space.normal();
            let relative_radius = aabb.relative_radius(&p_normal, &model_to_world.matrix3);
            if half_space.normal_d().dot(aabb_center_world) + relative_radius <= 0.0 {
                return false;
            }
        }
        true
    }
}

#[derive(Component, Clone, Debug, Default, Reflect)]
#[reflect(Component)]
pub struct CubemapFrusta {
    #[reflect(ignore)]
    pub frusta: [Frustum; 6],
}

impl CubemapFrusta {
    pub fn iter(&self) -> impl DoubleEndedIterator<Item = &Frustum> {
        self.frusta.iter()
    }
    pub fn iter_mut(&mut self) -> impl DoubleEndedIterator<Item = &mut Frustum> {
        self.frusta.iter_mut()
    }
}

#[derive(Component, Debug, Default, Reflect)]
#[reflect(Component)]
pub struct CascadesFrusta {
    #[reflect(ignore)]
    pub frusta: EntityHashMap<Vec<Frustum>>,
}

#[cfg(test)]
mod tests {
    use super::*;

    // A big, offset frustum
    fn big_frustum() -> Frustum {
        Frustum {
            half_spaces: [
                HalfSpace::new(Vec4::new(-0.9701, -0.2425, -0.0000, 7.7611)),
                HalfSpace::new(Vec4::new(-0.0000, 1.0000, -0.0000, 4.0000)),
                HalfSpace::new(Vec4::new(-0.0000, -0.2425, -0.9701, 2.9104)),
                HalfSpace::new(Vec4::new(-0.0000, -1.0000, -0.0000, 4.0000)),
                HalfSpace::new(Vec4::new(-0.0000, -0.2425, 0.9701, 2.9104)),
                HalfSpace::new(Vec4::new(0.9701, -0.2425, -0.0000, -1.9403)),
            ],
        }
    }

    #[test]
    fn intersects_sphere_big_frustum_outside() {
        // Sphere outside frustum
        let frustum = big_frustum();
        let sphere = Sphere {
            center: Vec3A::new(0.9167, 0.0000, 0.0000),
            radius: 0.7500,
        };
        assert!(!frustum.intersects_sphere(&sphere, true));
    }

    #[test]
    fn intersects_sphere_big_frustum_intersect() {
        // Sphere intersects frustum boundary
        let frustum = big_frustum();
        let sphere = Sphere {
            center: Vec3A::new(7.9288, 0.0000, 2.9728),
            radius: 2.0000,
        };
        assert!(frustum.intersects_sphere(&sphere, true));
    }

    // A frustum
    fn frustum() -> Frustum {
        Frustum {
            half_spaces: [
                HalfSpace::new(Vec4::new(-0.9701, -0.2425, -0.0000, 0.7276)),
                HalfSpace::new(Vec4::new(-0.0000, 1.0000, -0.0000, 1.0000)),
                HalfSpace::new(Vec4::new(-0.0000, -0.2425, -0.9701, 0.7276)),
                HalfSpace::new(Vec4::new(-0.0000, -1.0000, -0.0000, 1.0000)),
                HalfSpace::new(Vec4::new(-0.0000, -0.2425, 0.9701, 0.7276)),
                HalfSpace::new(Vec4::new(0.9701, -0.2425, -0.0000, 0.7276)),
            ],
        }
    }

    #[test]
    fn intersects_sphere_frustum_surrounding() {
        // Sphere surrounds frustum
        let frustum = frustum();
        let sphere = Sphere {
            center: Vec3A::new(0.0000, 0.0000, 0.0000),
            radius: 3.0000,
        };
        assert!(frustum.intersects_sphere(&sphere, true));
    }

    #[test]
    fn intersects_sphere_frustum_contained() {
        // Sphere is contained in frustum
        let frustum = frustum();
        let sphere = Sphere {
            center: Vec3A::new(0.0000, 0.0000, 0.0000),
            radius: 0.7000,
        };
        assert!(frustum.intersects_sphere(&sphere, true));
    }

    #[test]
    fn intersects_sphere_frustum_intersects_plane() {
        // Sphere intersects a plane
        let frustum = frustum();
        let sphere = Sphere {
            center: Vec3A::new(0.0000, 0.0000, 0.9695),
            radius: 0.7000,
        };
        assert!(frustum.intersects_sphere(&sphere, true));
    }

    #[test]
    fn intersects_sphere_frustum_intersects_2_planes() {
        // Sphere intersects 2 planes
        let frustum = frustum();
        let sphere = Sphere {
            center: Vec3A::new(1.2037, 0.0000, 0.9695),
            radius: 0.7000,
        };
        assert!(frustum.intersects_sphere(&sphere, true));
    }

    #[test]
    fn intersects_sphere_frustum_intersects_3_planes() {
        // Sphere intersects 3 planes
        let frustum = frustum();
        let sphere = Sphere {
            center: Vec3A::new(1.2037, -1.0988, 0.9695),
            radius: 0.7000,
        };
        assert!(frustum.intersects_sphere(&sphere, true));
    }

    #[test]
    fn intersects_sphere_frustum_dodges_1_plane() {
        // Sphere avoids intersecting the frustum by 1 plane
        let frustum = frustum();
        let sphere = Sphere {
            center: Vec3A::new(-1.7020, 0.0000, 0.0000),
            radius: 0.7000,
        };
        assert!(!frustum.intersects_sphere(&sphere, true));
    }

    // A long frustum.
    fn long_frustum() -> Frustum {
        Frustum {
            half_spaces: [
                HalfSpace::new(Vec4::new(-0.9998, -0.0222, -0.0000, -1.9543)),
                HalfSpace::new(Vec4::new(-0.0000, 1.0000, -0.0000, 45.1249)),
                HalfSpace::new(Vec4::new(-0.0000, -0.0168, -0.9999, 2.2718)),
                HalfSpace::new(Vec4::new(-0.0000, -1.0000, -0.0000, 45.1249)),
                HalfSpace::new(Vec4::new(-0.0000, -0.0168, 0.9999, 2.2718)),
                HalfSpace::new(Vec4::new(0.9998, -0.0222, -0.0000, 7.9528)),
            ],
        }
    }

    #[test]
    fn intersects_sphere_long_frustum_outside() {
        // Sphere outside frustum
        let frustum = long_frustum();
        let sphere = Sphere {
            center: Vec3A::new(-4.4889, 46.9021, 0.0000),
            radius: 0.7500,
        };
        assert!(!frustum.intersects_sphere(&sphere, true));
    }

    #[test]
    fn intersects_sphere_long_frustum_intersect() {
        // Sphere intersects frustum boundary
        let frustum = long_frustum();
        let sphere = Sphere {
            center: Vec3A::new(-4.9957, 0.0000, -0.7396),
            radius: 4.4094,
        };
        assert!(frustum.intersects_sphere(&sphere, true));
    }

    #[test]
    fn aabb_enclosing() {
        assert_eq!(Aabb::enclosing(<[Vec3; 0]>::default()), None);
        assert_eq!(
            Aabb::enclosing(vec![Vec3::ONE]).unwrap(),
            Aabb::from_min_max(Vec3::ONE, Vec3::ONE)
        );
        assert_eq!(
            Aabb::enclosing(&[Vec3::Y, Vec3::X, Vec3::Z][..]).unwrap(),
            Aabb::from_min_max(Vec3::ZERO, Vec3::ONE)
        );
        assert_eq!(
            Aabb::enclosing([
                Vec3::NEG_X,
                Vec3::X * 2.0,
                Vec3::NEG_Y * 5.0,
                Vec3::Z,
                Vec3::ZERO
            ])
            .unwrap(),
            Aabb::from_min_max(Vec3::new(-1.0, -5.0, 0.0), Vec3::new(2.0, 0.0, 1.0))
        );
    }
}