1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
use std::borrow::Borrow;
use bevy_ecs::{component::Component, entity::EntityHashMap, reflect::ReflectComponent};
use bevy_math::{Affine3A, Mat3A, Mat4, Vec3, Vec3A, Vec4, Vec4Swizzles};
use bevy_reflect::Reflect;
/// An axis-aligned bounding box, defined by:
/// - a center,
/// - the distances from the center to each faces along the axis,
/// the faces are orthogonal to the axis.
///
/// It is typically used as a component on an entity to represent the local space
/// occupied by this entity, with faces orthogonal to its local axis.
///
/// This component is notably used during "frustum culling", a process to determine
/// if an entity should be rendered by a [`Camera`] if its bounding box intersects
/// with the camera's [`Frustum`].
///
/// It will be added automatically by the systems in [`CalculateBounds`] to entities that:
/// - could be subject to frustum culling, for example with a [`Handle<Mesh>`]
/// or `Sprite` component,
/// - don't have the [`NoFrustumCulling`] component.
///
/// It won't be updated automatically if the space occupied by the entity changes,
/// for example if the vertex positions of a [`Mesh`] inside a `Handle<Mesh>` are
/// updated.
///
/// [`Camera`]: crate::camera::Camera
/// [`NoFrustumCulling`]: crate::view::visibility::NoFrustumCulling
/// [`CalculateBounds`]: crate::view::visibility::VisibilitySystems::CalculateBounds
/// [`Mesh`]: crate::mesh::Mesh
/// [`Handle<Mesh>`]: crate::mesh::Mesh
#[derive(Component, Clone, Copy, Debug, Default, Reflect, PartialEq)]
#[reflect(Component)]
pub struct Aabb {
pub center: Vec3A,
pub half_extents: Vec3A,
}
impl Aabb {
#[inline]
pub fn from_min_max(minimum: Vec3, maximum: Vec3) -> Self {
let minimum = Vec3A::from(minimum);
let maximum = Vec3A::from(maximum);
let center = 0.5 * (maximum + minimum);
let half_extents = 0.5 * (maximum - minimum);
Self {
center,
half_extents,
}
}
/// Returns a bounding box enclosing the specified set of points.
///
/// Returns `None` if the iterator is empty.
///
/// # Examples
///
/// ```
/// # use bevy_math::{Vec3, Vec3A};
/// # use bevy_render::primitives::Aabb;
/// let bb = Aabb::enclosing([Vec3::X, Vec3::Z * 2.0, Vec3::Y * -0.5]).unwrap();
/// assert_eq!(bb.min(), Vec3A::new(0.0, -0.5, 0.0));
/// assert_eq!(bb.max(), Vec3A::new(1.0, 0.0, 2.0));
/// ```
pub fn enclosing<T: Borrow<Vec3>>(iter: impl IntoIterator<Item = T>) -> Option<Self> {
let mut iter = iter.into_iter().map(|p| *p.borrow());
let mut min = iter.next()?;
let mut max = min;
for v in iter {
min = Vec3::min(min, v);
max = Vec3::max(max, v);
}
Some(Self::from_min_max(min, max))
}
/// Calculate the relative radius of the AABB with respect to a plane
#[inline]
pub fn relative_radius(&self, p_normal: &Vec3A, model: &Mat3A) -> f32 {
// NOTE: dot products on Vec3A use SIMD and even with the overhead of conversion are net faster than Vec3
let half_extents = self.half_extents;
Vec3A::new(
p_normal.dot(model.x_axis),
p_normal.dot(model.y_axis),
p_normal.dot(model.z_axis),
)
.abs()
.dot(half_extents)
}
#[inline]
pub fn min(&self) -> Vec3A {
self.center - self.half_extents
}
#[inline]
pub fn max(&self) -> Vec3A {
self.center + self.half_extents
}
}
impl From<Sphere> for Aabb {
#[inline]
fn from(sphere: Sphere) -> Self {
Self {
center: sphere.center,
half_extents: Vec3A::splat(sphere.radius),
}
}
}
#[derive(Clone, Debug, Default)]
pub struct Sphere {
pub center: Vec3A,
pub radius: f32,
}
impl Sphere {
#[inline]
pub fn intersects_obb(&self, aabb: &Aabb, local_to_world: &Affine3A) -> bool {
let aabb_center_world = local_to_world.transform_point3a(aabb.center);
let v = aabb_center_world - self.center;
let d = v.length();
let relative_radius = aabb.relative_radius(&(v / d), &local_to_world.matrix3);
d < self.radius + relative_radius
}
}
/// A region of 3D space, specifically an open set whose border is a bisecting 2D plane.
/// This bisecting plane partitions 3D space into two infinite regions,
/// the half-space is one of those regions and excludes the bisecting plane.
///
/// Each instance of this type is characterized by:
/// - the bisecting plane's unit normal, normalized and pointing "inside" the half-space,
/// - the signed distance along the normal from the bisecting plane to the origin of 3D space.
///
/// The distance can also be seen as:
/// - the distance along the inverse of the normal from the origin of 3D space to the bisecting plane,
/// - the opposite of the distance along the normal from the origin of 3D space to the bisecting plane.
///
/// Any point `p` is considered to be within the `HalfSpace` when the length of the projection
/// of p on the normal is greater or equal than the opposite of the distance,
/// meaning: if the equation `normal.dot(p) + distance > 0.` is satisfied.
///
/// For example, the half-space containing all the points with a z-coordinate lesser
/// or equal than `8.0` would be defined by: `HalfSpace::new(Vec3::NEG_Z.extend(-8.0))`.
/// It includes all the points from the bisecting plane towards `NEG_Z`, and the distance
/// from the plane to the origin is `-8.0` along `NEG_Z`.
///
/// It is used to define a [`Frustum`], but is also a useful mathematical primitive for rendering tasks such as light computation.
#[derive(Clone, Copy, Debug, Default)]
pub struct HalfSpace {
normal_d: Vec4,
}
impl HalfSpace {
/// Constructs a `HalfSpace` from a 4D vector whose first 3 components
/// represent the bisecting plane's unit normal, and the last component is
/// the signed distance along the normal from the plane to the origin.
/// The constructor ensures the normal vector is normalized and the distance is appropriately scaled.
#[inline]
pub fn new(normal_d: Vec4) -> Self {
Self {
normal_d: normal_d * normal_d.xyz().length_recip(),
}
}
/// Returns the unit normal vector of the bisecting plane that characterizes the `HalfSpace`.
#[inline]
pub fn normal(&self) -> Vec3A {
Vec3A::from(self.normal_d)
}
/// Returns the signed distance from the bisecting plane to the origin along
/// the plane's unit normal vector.
#[inline]
pub fn d(&self) -> f32 {
self.normal_d.w
}
/// Returns the bisecting plane's unit normal vector and the signed distance
/// from the plane to the origin.
#[inline]
pub fn normal_d(&self) -> Vec4 {
self.normal_d
}
}
/// A region of 3D space defined by the intersection of 6 [`HalfSpace`]s.
///
/// Frustums are typically an apex-truncated square pyramid (a pyramid without the top) or a cuboid.
///
/// Half spaces are ordered left, right, top, bottom, near, far. The normal vectors
/// of the half-spaces point towards the interior of the frustum.
///
/// A frustum component is used on an entity with a [`Camera`] component to
/// determine which entities will be considered for rendering by this camera.
/// All entities with an [`Aabb`] component that are not contained by (or crossing
/// the boundary of) the frustum will not be rendered, and not be used in rendering computations.
///
/// This process is called frustum culling, and entities can opt out of it using
/// the [`NoFrustumCulling`] component.
///
/// The frustum component is typically added from a bundle, either the `Camera2dBundle`
/// or the `Camera3dBundle`.
/// It is usually updated automatically by [`update_frusta`] from the
/// [`CameraProjection`] component and [`GlobalTransform`] of the camera entity.
///
/// [`Camera`]: crate::camera::Camera
/// [`NoFrustumCulling`]: crate::view::visibility::NoFrustumCulling
/// [`update_frusta`]: crate::view::visibility::update_frusta
/// [`CameraProjection`]: crate::camera::CameraProjection
/// [`GlobalTransform`]: bevy_transform::components::GlobalTransform
#[derive(Component, Clone, Copy, Debug, Default, Reflect)]
#[reflect(Component)]
pub struct Frustum {
#[reflect(ignore)]
pub half_spaces: [HalfSpace; 6],
}
impl Frustum {
/// Returns a frustum derived from `view_projection`.
#[inline]
pub fn from_view_projection(view_projection: &Mat4) -> Self {
let mut frustum = Frustum::from_view_projection_no_far(view_projection);
frustum.half_spaces[5] = HalfSpace::new(view_projection.row(2));
frustum
}
/// Returns a frustum derived from `view_projection`,
/// but with a custom far plane.
#[inline]
pub fn from_view_projection_custom_far(
view_projection: &Mat4,
view_translation: &Vec3,
view_backward: &Vec3,
far: f32,
) -> Self {
let mut frustum = Frustum::from_view_projection_no_far(view_projection);
let far_center = *view_translation - far * *view_backward;
frustum.half_spaces[5] =
HalfSpace::new(view_backward.extend(-view_backward.dot(far_center)));
frustum
}
// NOTE: This approach of extracting the frustum half-space from the view
// projection matrix is from Foundations of Game Engine Development 2
// Rendering by Lengyel.
/// Returns a frustum derived from `view_projection`,
/// without a far plane.
fn from_view_projection_no_far(view_projection: &Mat4) -> Self {
let row3 = view_projection.row(3);
let mut half_spaces = [HalfSpace::default(); 6];
for (i, half_space) in half_spaces.iter_mut().enumerate().take(5) {
let row = view_projection.row(i / 2);
*half_space = HalfSpace::new(if (i & 1) == 0 && i != 4 {
row3 + row
} else {
row3 - row
});
}
Self { half_spaces }
}
/// Checks if a sphere intersects the frustum.
#[inline]
pub fn intersects_sphere(&self, sphere: &Sphere, intersect_far: bool) -> bool {
let sphere_center = sphere.center.extend(1.0);
let max = if intersect_far { 6 } else { 5 };
for half_space in &self.half_spaces[..max] {
if half_space.normal_d().dot(sphere_center) + sphere.radius <= 0.0 {
return false;
}
}
true
}
/// Checks if an Oriented Bounding Box (obb) intersects the frustum.
#[inline]
pub fn intersects_obb(
&self,
aabb: &Aabb,
model_to_world: &Affine3A,
intersect_near: bool,
intersect_far: bool,
) -> bool {
let aabb_center_world = model_to_world.transform_point3a(aabb.center).extend(1.0);
for (idx, half_space) in self.half_spaces.into_iter().enumerate() {
if idx == 4 && !intersect_near {
continue;
}
if idx == 5 && !intersect_far {
continue;
}
let p_normal = half_space.normal();
let relative_radius = aabb.relative_radius(&p_normal, &model_to_world.matrix3);
if half_space.normal_d().dot(aabb_center_world) + relative_radius <= 0.0 {
return false;
}
}
true
}
}
#[derive(Component, Clone, Debug, Default, Reflect)]
#[reflect(Component)]
pub struct CubemapFrusta {
#[reflect(ignore)]
pub frusta: [Frustum; 6],
}
impl CubemapFrusta {
pub fn iter(&self) -> impl DoubleEndedIterator<Item = &Frustum> {
self.frusta.iter()
}
pub fn iter_mut(&mut self) -> impl DoubleEndedIterator<Item = &mut Frustum> {
self.frusta.iter_mut()
}
}
#[derive(Component, Debug, Default, Reflect)]
#[reflect(Component)]
pub struct CascadesFrusta {
#[reflect(ignore)]
pub frusta: EntityHashMap<Vec<Frustum>>,
}
#[cfg(test)]
mod tests {
use super::*;
// A big, offset frustum
fn big_frustum() -> Frustum {
Frustum {
half_spaces: [
HalfSpace::new(Vec4::new(-0.9701, -0.2425, -0.0000, 7.7611)),
HalfSpace::new(Vec4::new(-0.0000, 1.0000, -0.0000, 4.0000)),
HalfSpace::new(Vec4::new(-0.0000, -0.2425, -0.9701, 2.9104)),
HalfSpace::new(Vec4::new(-0.0000, -1.0000, -0.0000, 4.0000)),
HalfSpace::new(Vec4::new(-0.0000, -0.2425, 0.9701, 2.9104)),
HalfSpace::new(Vec4::new(0.9701, -0.2425, -0.0000, -1.9403)),
],
}
}
#[test]
fn intersects_sphere_big_frustum_outside() {
// Sphere outside frustum
let frustum = big_frustum();
let sphere = Sphere {
center: Vec3A::new(0.9167, 0.0000, 0.0000),
radius: 0.7500,
};
assert!(!frustum.intersects_sphere(&sphere, true));
}
#[test]
fn intersects_sphere_big_frustum_intersect() {
// Sphere intersects frustum boundary
let frustum = big_frustum();
let sphere = Sphere {
center: Vec3A::new(7.9288, 0.0000, 2.9728),
radius: 2.0000,
};
assert!(frustum.intersects_sphere(&sphere, true));
}
// A frustum
fn frustum() -> Frustum {
Frustum {
half_spaces: [
HalfSpace::new(Vec4::new(-0.9701, -0.2425, -0.0000, 0.7276)),
HalfSpace::new(Vec4::new(-0.0000, 1.0000, -0.0000, 1.0000)),
HalfSpace::new(Vec4::new(-0.0000, -0.2425, -0.9701, 0.7276)),
HalfSpace::new(Vec4::new(-0.0000, -1.0000, -0.0000, 1.0000)),
HalfSpace::new(Vec4::new(-0.0000, -0.2425, 0.9701, 0.7276)),
HalfSpace::new(Vec4::new(0.9701, -0.2425, -0.0000, 0.7276)),
],
}
}
#[test]
fn intersects_sphere_frustum_surrounding() {
// Sphere surrounds frustum
let frustum = frustum();
let sphere = Sphere {
center: Vec3A::new(0.0000, 0.0000, 0.0000),
radius: 3.0000,
};
assert!(frustum.intersects_sphere(&sphere, true));
}
#[test]
fn intersects_sphere_frustum_contained() {
// Sphere is contained in frustum
let frustum = frustum();
let sphere = Sphere {
center: Vec3A::new(0.0000, 0.0000, 0.0000),
radius: 0.7000,
};
assert!(frustum.intersects_sphere(&sphere, true));
}
#[test]
fn intersects_sphere_frustum_intersects_plane() {
// Sphere intersects a plane
let frustum = frustum();
let sphere = Sphere {
center: Vec3A::new(0.0000, 0.0000, 0.9695),
radius: 0.7000,
};
assert!(frustum.intersects_sphere(&sphere, true));
}
#[test]
fn intersects_sphere_frustum_intersects_2_planes() {
// Sphere intersects 2 planes
let frustum = frustum();
let sphere = Sphere {
center: Vec3A::new(1.2037, 0.0000, 0.9695),
radius: 0.7000,
};
assert!(frustum.intersects_sphere(&sphere, true));
}
#[test]
fn intersects_sphere_frustum_intersects_3_planes() {
// Sphere intersects 3 planes
let frustum = frustum();
let sphere = Sphere {
center: Vec3A::new(1.2037, -1.0988, 0.9695),
radius: 0.7000,
};
assert!(frustum.intersects_sphere(&sphere, true));
}
#[test]
fn intersects_sphere_frustum_dodges_1_plane() {
// Sphere avoids intersecting the frustum by 1 plane
let frustum = frustum();
let sphere = Sphere {
center: Vec3A::new(-1.7020, 0.0000, 0.0000),
radius: 0.7000,
};
assert!(!frustum.intersects_sphere(&sphere, true));
}
// A long frustum.
fn long_frustum() -> Frustum {
Frustum {
half_spaces: [
HalfSpace::new(Vec4::new(-0.9998, -0.0222, -0.0000, -1.9543)),
HalfSpace::new(Vec4::new(-0.0000, 1.0000, -0.0000, 45.1249)),
HalfSpace::new(Vec4::new(-0.0000, -0.0168, -0.9999, 2.2718)),
HalfSpace::new(Vec4::new(-0.0000, -1.0000, -0.0000, 45.1249)),
HalfSpace::new(Vec4::new(-0.0000, -0.0168, 0.9999, 2.2718)),
HalfSpace::new(Vec4::new(0.9998, -0.0222, -0.0000, 7.9528)),
],
}
}
#[test]
fn intersects_sphere_long_frustum_outside() {
// Sphere outside frustum
let frustum = long_frustum();
let sphere = Sphere {
center: Vec3A::new(-4.4889, 46.9021, 0.0000),
radius: 0.7500,
};
assert!(!frustum.intersects_sphere(&sphere, true));
}
#[test]
fn intersects_sphere_long_frustum_intersect() {
// Sphere intersects frustum boundary
let frustum = long_frustum();
let sphere = Sphere {
center: Vec3A::new(-4.9957, 0.0000, -0.7396),
radius: 4.4094,
};
assert!(frustum.intersects_sphere(&sphere, true));
}
#[test]
fn aabb_enclosing() {
assert_eq!(Aabb::enclosing(<[Vec3; 0]>::default()), None);
assert_eq!(
Aabb::enclosing(vec![Vec3::ONE]).unwrap(),
Aabb::from_min_max(Vec3::ONE, Vec3::ONE)
);
assert_eq!(
Aabb::enclosing(&[Vec3::Y, Vec3::X, Vec3::Z][..]).unwrap(),
Aabb::from_min_max(Vec3::ZERO, Vec3::ONE)
);
assert_eq!(
Aabb::enclosing([
Vec3::NEG_X,
Vec3::X * 2.0,
Vec3::NEG_Y * 5.0,
Vec3::Z,
Vec3::ZERO
])
.unwrap(),
Aabb::from_min_max(Vec3::new(-1.0, -5.0, 0.0), Vec3::new(2.0, 0.0, 1.0))
);
}
}