1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
#[cfg(feature = "basis-universal")]
use super::basis::*;
#[cfg(feature = "dds")]
use super::dds::*;
#[cfg(feature = "ktx2")]
use super::ktx2::*;

use crate::{
    render_asset::{PrepareAssetError, RenderAsset, RenderAssetUsages},
    render_resource::{Sampler, Texture, TextureView},
    renderer::{RenderDevice, RenderQueue},
    texture::BevyDefault,
};
use bevy_asset::Asset;
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::system::{lifetimeless::SRes, Resource, SystemParamItem};
use bevy_math::{AspectRatio, UVec2, Vec2};
use bevy_reflect::Reflect;
use serde::{Deserialize, Serialize};
use std::hash::Hash;
use thiserror::Error;
use wgpu::{Extent3d, TextureDimension, TextureFormat, TextureViewDescriptor};

pub const TEXTURE_ASSET_INDEX: u64 = 0;
pub const SAMPLER_ASSET_INDEX: u64 = 1;

#[derive(Debug, Serialize, Deserialize, Copy, Clone)]
pub enum ImageFormat {
    Avif,
    Basis,
    Bmp,
    Dds,
    Farbfeld,
    Gif,
    OpenExr,
    Hdr,
    Ico,
    Jpeg,
    Ktx2,
    Png,
    Pnm,
    Tga,
    Tiff,
    WebP,
}

impl ImageFormat {
    pub fn from_mime_type(mime_type: &str) -> Option<Self> {
        Some(match mime_type.to_ascii_lowercase().as_str() {
            "image/bmp" | "image/x-bmp" => ImageFormat::Bmp,
            "image/vnd-ms.dds" => ImageFormat::Dds,
            "image/jpeg" => ImageFormat::Jpeg,
            "image/ktx2" => ImageFormat::Ktx2,
            "image/png" => ImageFormat::Png,
            "image/x-exr" => ImageFormat::OpenExr,
            "image/x-targa" | "image/x-tga" => ImageFormat::Tga,
            _ => return None,
        })
    }

    pub fn from_extension(extension: &str) -> Option<Self> {
        Some(match extension.to_ascii_lowercase().as_str() {
            "avif" => ImageFormat::Avif,
            "basis" => ImageFormat::Basis,
            "bmp" => ImageFormat::Bmp,
            "dds" => ImageFormat::Dds,
            "ff" | "farbfeld" => ImageFormat::Farbfeld,
            "gif" => ImageFormat::Gif,
            "exr" => ImageFormat::OpenExr,
            "hdr" => ImageFormat::Hdr,
            "ico" => ImageFormat::Ico,
            "jpg" | "jpeg" => ImageFormat::Jpeg,
            "ktx2" => ImageFormat::Ktx2,
            "pbm" | "pam" | "ppm" | "pgm" => ImageFormat::Pnm,
            "png" => ImageFormat::Png,
            "tga" => ImageFormat::Tga,
            "tif" | "tiff" => ImageFormat::Tiff,
            "webp" => ImageFormat::WebP,
            _ => return None,
        })
    }

    pub fn as_image_crate_format(&self) -> Option<image::ImageFormat> {
        Some(match self {
            ImageFormat::Avif => image::ImageFormat::Avif,
            ImageFormat::Bmp => image::ImageFormat::Bmp,
            ImageFormat::Dds => image::ImageFormat::Dds,
            ImageFormat::Farbfeld => image::ImageFormat::Farbfeld,
            ImageFormat::Gif => image::ImageFormat::Gif,
            ImageFormat::OpenExr => image::ImageFormat::OpenExr,
            ImageFormat::Hdr => image::ImageFormat::Hdr,
            ImageFormat::Ico => image::ImageFormat::Ico,
            ImageFormat::Jpeg => image::ImageFormat::Jpeg,
            ImageFormat::Png => image::ImageFormat::Png,
            ImageFormat::Pnm => image::ImageFormat::Pnm,
            ImageFormat::Tga => image::ImageFormat::Tga,
            ImageFormat::Tiff => image::ImageFormat::Tiff,
            ImageFormat::WebP => image::ImageFormat::WebP,
            ImageFormat::Basis | ImageFormat::Ktx2 => return None,
        })
    }
}

#[derive(Asset, Reflect, Debug, Clone)]
#[reflect_value]
pub struct Image {
    pub data: Vec<u8>,
    // TODO: this nesting makes accessing Image metadata verbose. Either flatten out descriptor or add accessors
    pub texture_descriptor: wgpu::TextureDescriptor<'static>,
    /// The [`ImageSampler`] to use during rendering.
    pub sampler: ImageSampler,
    pub texture_view_descriptor: Option<TextureViewDescriptor<'static>>,
    pub asset_usage: RenderAssetUsages,
}

/// Used in [`Image`], this determines what image sampler to use when rendering. The default setting,
/// [`ImageSampler::Default`], will read the sampler from the [`ImagePlugin`](super::ImagePlugin) at setup.
/// Setting this to [`ImageSampler::Descriptor`] will override the global default descriptor for this [`Image`].
#[derive(Debug, Default, Clone, Serialize, Deserialize)]
pub enum ImageSampler {
    /// Default image sampler, derived from the [`ImagePlugin`](super::ImagePlugin) setup.
    #[default]
    Default,
    /// Custom sampler for this image which will override global default.
    Descriptor(ImageSamplerDescriptor),
}

impl ImageSampler {
    /// Returns an image sampler with [`ImageFilterMode::Linear`] min and mag filters
    #[inline]
    pub fn linear() -> ImageSampler {
        ImageSampler::Descriptor(ImageSamplerDescriptor::linear())
    }

    /// Returns an image sampler with [`ImageFilterMode::Nearest`] min and mag filters
    #[inline]
    pub fn nearest() -> ImageSampler {
        ImageSampler::Descriptor(ImageSamplerDescriptor::nearest())
    }
}

/// A rendering resource for the default image sampler which is set during renderer
/// initialization.
///
/// The [`ImagePlugin`](super::ImagePlugin) can be set during app initialization to change the default
/// image sampler.
#[derive(Resource, Debug, Clone, Deref, DerefMut)]
pub struct DefaultImageSampler(pub(crate) Sampler);

/// How edges should be handled in texture addressing.
///
/// See [`ImageSamplerDescriptor`] for information how to configure this.
///
/// This type mirrors [`wgpu::AddressMode`].
#[derive(Clone, Copy, Debug, Default, Serialize, Deserialize)]
pub enum ImageAddressMode {
    /// Clamp the value to the edge of the texture.
    ///
    /// -0.25 -> 0.0
    /// 1.25  -> 1.0
    #[default]
    ClampToEdge,
    /// Repeat the texture in a tiling fashion.
    ///
    /// -0.25 -> 0.75
    /// 1.25 -> 0.25
    Repeat,
    /// Repeat the texture, mirroring it every repeat.
    ///
    /// -0.25 -> 0.25
    /// 1.25 -> 0.75
    MirrorRepeat,
    /// Clamp the value to the border of the texture
    /// Requires the wgpu feature [`wgpu::Features::ADDRESS_MODE_CLAMP_TO_BORDER`].
    ///
    /// -0.25 -> border
    /// 1.25 -> border
    ClampToBorder,
}

/// Texel mixing mode when sampling between texels.
///
/// This type mirrors [`wgpu::FilterMode`].
#[derive(Clone, Copy, Debug, Default, Serialize, Deserialize)]
pub enum ImageFilterMode {
    /// Nearest neighbor sampling.
    ///
    /// This creates a pixelated effect when used as a mag filter.
    #[default]
    Nearest,
    /// Linear Interpolation.
    ///
    /// This makes textures smooth but blurry when used as a mag filter.
    Linear,
}

/// Comparison function used for depth and stencil operations.
///
/// This type mirrors [`wgpu::CompareFunction`].
#[derive(Clone, Copy, Debug, Serialize, Deserialize)]
pub enum ImageCompareFunction {
    /// Function never passes
    Never,
    /// Function passes if new value less than existing value
    Less,
    /// Function passes if new value is equal to existing value. When using
    /// this compare function, make sure to mark your Vertex Shader's `@builtin(position)`
    /// output as `@invariant` to prevent artifacting.
    Equal,
    /// Function passes if new value is less than or equal to existing value
    LessEqual,
    /// Function passes if new value is greater than existing value
    Greater,
    /// Function passes if new value is not equal to existing value. When using
    /// this compare function, make sure to mark your Vertex Shader's `@builtin(position)`
    /// output as `@invariant` to prevent artifacting.
    NotEqual,
    /// Function passes if new value is greater than or equal to existing value
    GreaterEqual,
    /// Function always passes
    Always,
}

/// Color variation to use when the sampler addressing mode is [`ImageAddressMode::ClampToBorder`].
///
/// This type mirrors [`wgpu::SamplerBorderColor`].
#[derive(Clone, Copy, Debug, Serialize, Deserialize)]
pub enum ImageSamplerBorderColor {
    /// RGBA color `[0, 0, 0, 0]`.
    TransparentBlack,
    /// RGBA color `[0, 0, 0, 1]`.
    OpaqueBlack,
    /// RGBA color `[1, 1, 1, 1]`.
    OpaqueWhite,
    /// On the Metal wgpu backend, this is equivalent to [`Self::TransparentBlack`] for
    /// textures that have an alpha component, and equivalent to [`Self::OpaqueBlack`]
    /// for textures that do not have an alpha component. On other backends,
    /// this is equivalent to [`Self::TransparentBlack`]. Requires
    /// [`wgpu::Features::ADDRESS_MODE_CLAMP_TO_ZERO`]. Not supported on the web.
    Zero,
}

/// Indicates to an [`ImageLoader`](super::ImageLoader) how an [`Image`] should be sampled.
/// As this type is part of the [`ImageLoaderSettings`](super::ImageLoaderSettings),
/// it will be serialized to an image asset `.meta` file which might require a migration in case of
/// a breaking change.
///
/// This types mirrors [`wgpu::SamplerDescriptor`], but that might change in future versions.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct ImageSamplerDescriptor {
    pub label: Option<String>,
    /// How to deal with out of bounds accesses in the u (i.e. x) direction.
    pub address_mode_u: ImageAddressMode,
    /// How to deal with out of bounds accesses in the v (i.e. y) direction.
    pub address_mode_v: ImageAddressMode,
    /// How to deal with out of bounds accesses in the w (i.e. z) direction.
    pub address_mode_w: ImageAddressMode,
    /// How to filter the texture when it needs to be magnified (made larger).
    pub mag_filter: ImageFilterMode,
    /// How to filter the texture when it needs to be minified (made smaller).
    pub min_filter: ImageFilterMode,
    /// How to filter between mip map levels
    pub mipmap_filter: ImageFilterMode,
    /// Minimum level of detail (i.e. mip level) to use.
    pub lod_min_clamp: f32,
    /// Maximum level of detail (i.e. mip level) to use.
    pub lod_max_clamp: f32,
    /// If this is enabled, this is a comparison sampler using the given comparison function.
    pub compare: Option<ImageCompareFunction>,
    /// Must be at least 1. If this is not 1, all filter modes must be linear.
    pub anisotropy_clamp: u16,
    /// Border color to use when `address_mode`` is [`ImageAddressMode::ClampToBorder`].
    pub border_color: Option<ImageSamplerBorderColor>,
}

impl Default for ImageSamplerDescriptor {
    fn default() -> Self {
        Self {
            address_mode_u: Default::default(),
            address_mode_v: Default::default(),
            address_mode_w: Default::default(),
            mag_filter: Default::default(),
            min_filter: Default::default(),
            mipmap_filter: Default::default(),
            lod_min_clamp: 0.0,
            lod_max_clamp: 32.0,
            compare: None,
            anisotropy_clamp: 1,
            border_color: None,
            label: None,
        }
    }
}

impl ImageSamplerDescriptor {
    /// Returns a sampler descriptor with [`Linear`](crate::render_resource::FilterMode::Linear) min and mag filters
    #[inline]
    pub fn linear() -> ImageSamplerDescriptor {
        ImageSamplerDescriptor {
            mag_filter: ImageFilterMode::Linear,
            min_filter: ImageFilterMode::Linear,
            mipmap_filter: ImageFilterMode::Linear,
            ..Default::default()
        }
    }

    /// Returns a sampler descriptor with [`Nearest`](crate::render_resource::FilterMode::Nearest) min and mag filters
    #[inline]
    pub fn nearest() -> ImageSamplerDescriptor {
        ImageSamplerDescriptor {
            mag_filter: ImageFilterMode::Nearest,
            min_filter: ImageFilterMode::Nearest,
            mipmap_filter: ImageFilterMode::Nearest,
            ..Default::default()
        }
    }

    pub fn as_wgpu(&self) -> wgpu::SamplerDescriptor {
        wgpu::SamplerDescriptor {
            label: self.label.as_deref(),
            address_mode_u: self.address_mode_u.into(),
            address_mode_v: self.address_mode_v.into(),
            address_mode_w: self.address_mode_w.into(),
            mag_filter: self.mag_filter.into(),
            min_filter: self.min_filter.into(),
            mipmap_filter: self.mipmap_filter.into(),
            lod_min_clamp: self.lod_min_clamp,
            lod_max_clamp: self.lod_max_clamp,
            compare: self.compare.map(Into::into),
            anisotropy_clamp: self.anisotropy_clamp,
            border_color: self.border_color.map(Into::into),
        }
    }
}

impl From<ImageAddressMode> for wgpu::AddressMode {
    fn from(value: ImageAddressMode) -> Self {
        match value {
            ImageAddressMode::ClampToEdge => wgpu::AddressMode::ClampToEdge,
            ImageAddressMode::Repeat => wgpu::AddressMode::Repeat,
            ImageAddressMode::MirrorRepeat => wgpu::AddressMode::MirrorRepeat,
            ImageAddressMode::ClampToBorder => wgpu::AddressMode::ClampToBorder,
        }
    }
}

impl From<ImageFilterMode> for wgpu::FilterMode {
    fn from(value: ImageFilterMode) -> Self {
        match value {
            ImageFilterMode::Nearest => wgpu::FilterMode::Nearest,
            ImageFilterMode::Linear => wgpu::FilterMode::Linear,
        }
    }
}

impl From<ImageCompareFunction> for wgpu::CompareFunction {
    fn from(value: ImageCompareFunction) -> Self {
        match value {
            ImageCompareFunction::Never => wgpu::CompareFunction::Never,
            ImageCompareFunction::Less => wgpu::CompareFunction::Less,
            ImageCompareFunction::Equal => wgpu::CompareFunction::Equal,
            ImageCompareFunction::LessEqual => wgpu::CompareFunction::LessEqual,
            ImageCompareFunction::Greater => wgpu::CompareFunction::Greater,
            ImageCompareFunction::NotEqual => wgpu::CompareFunction::NotEqual,
            ImageCompareFunction::GreaterEqual => wgpu::CompareFunction::GreaterEqual,
            ImageCompareFunction::Always => wgpu::CompareFunction::Always,
        }
    }
}

impl From<ImageSamplerBorderColor> for wgpu::SamplerBorderColor {
    fn from(value: ImageSamplerBorderColor) -> Self {
        match value {
            ImageSamplerBorderColor::TransparentBlack => wgpu::SamplerBorderColor::TransparentBlack,
            ImageSamplerBorderColor::OpaqueBlack => wgpu::SamplerBorderColor::OpaqueBlack,
            ImageSamplerBorderColor::OpaqueWhite => wgpu::SamplerBorderColor::OpaqueWhite,
            ImageSamplerBorderColor::Zero => wgpu::SamplerBorderColor::Zero,
        }
    }
}

impl From<wgpu::AddressMode> for ImageAddressMode {
    fn from(value: wgpu::AddressMode) -> Self {
        match value {
            wgpu::AddressMode::ClampToEdge => ImageAddressMode::ClampToEdge,
            wgpu::AddressMode::Repeat => ImageAddressMode::Repeat,
            wgpu::AddressMode::MirrorRepeat => ImageAddressMode::MirrorRepeat,
            wgpu::AddressMode::ClampToBorder => ImageAddressMode::ClampToBorder,
        }
    }
}

impl From<wgpu::FilterMode> for ImageFilterMode {
    fn from(value: wgpu::FilterMode) -> Self {
        match value {
            wgpu::FilterMode::Nearest => ImageFilterMode::Nearest,
            wgpu::FilterMode::Linear => ImageFilterMode::Linear,
        }
    }
}

impl From<wgpu::CompareFunction> for ImageCompareFunction {
    fn from(value: wgpu::CompareFunction) -> Self {
        match value {
            wgpu::CompareFunction::Never => ImageCompareFunction::Never,
            wgpu::CompareFunction::Less => ImageCompareFunction::Less,
            wgpu::CompareFunction::Equal => ImageCompareFunction::Equal,
            wgpu::CompareFunction::LessEqual => ImageCompareFunction::LessEqual,
            wgpu::CompareFunction::Greater => ImageCompareFunction::Greater,
            wgpu::CompareFunction::NotEqual => ImageCompareFunction::NotEqual,
            wgpu::CompareFunction::GreaterEqual => ImageCompareFunction::GreaterEqual,
            wgpu::CompareFunction::Always => ImageCompareFunction::Always,
        }
    }
}

impl From<wgpu::SamplerBorderColor> for ImageSamplerBorderColor {
    fn from(value: wgpu::SamplerBorderColor) -> Self {
        match value {
            wgpu::SamplerBorderColor::TransparentBlack => ImageSamplerBorderColor::TransparentBlack,
            wgpu::SamplerBorderColor::OpaqueBlack => ImageSamplerBorderColor::OpaqueBlack,
            wgpu::SamplerBorderColor::OpaqueWhite => ImageSamplerBorderColor::OpaqueWhite,
            wgpu::SamplerBorderColor::Zero => ImageSamplerBorderColor::Zero,
        }
    }
}

impl<'a> From<wgpu::SamplerDescriptor<'a>> for ImageSamplerDescriptor {
    fn from(value: wgpu::SamplerDescriptor) -> Self {
        ImageSamplerDescriptor {
            label: value.label.map(|l| l.to_string()),
            address_mode_u: value.address_mode_u.into(),
            address_mode_v: value.address_mode_v.into(),
            address_mode_w: value.address_mode_w.into(),
            mag_filter: value.mag_filter.into(),
            min_filter: value.min_filter.into(),
            mipmap_filter: value.mipmap_filter.into(),
            lod_min_clamp: value.lod_min_clamp,
            lod_max_clamp: value.lod_max_clamp,
            compare: value.compare.map(Into::into),
            anisotropy_clamp: value.anisotropy_clamp,
            border_color: value.border_color.map(Into::into),
        }
    }
}

impl Default for Image {
    /// default is a 1x1x1 all '1.0' texture
    fn default() -> Self {
        let format = TextureFormat::bevy_default();
        let data = vec![255; format.pixel_size()];
        Image {
            data,
            texture_descriptor: wgpu::TextureDescriptor {
                size: Extent3d {
                    width: 1,
                    height: 1,
                    depth_or_array_layers: 1,
                },
                format,
                dimension: TextureDimension::D2,
                label: None,
                mip_level_count: 1,
                sample_count: 1,
                usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST,
                view_formats: &[],
            },
            sampler: ImageSampler::Default,
            texture_view_descriptor: None,
            asset_usage: RenderAssetUsages::default(),
        }
    }
}

impl Image {
    /// Creates a new image from raw binary data and the corresponding metadata.
    ///
    /// # Panics
    /// Panics if the length of the `data`, volume of the `size` and the size of the `format`
    /// do not match.
    pub fn new(
        size: Extent3d,
        dimension: TextureDimension,
        data: Vec<u8>,
        format: TextureFormat,
        asset_usage: RenderAssetUsages,
    ) -> Self {
        debug_assert_eq!(
            size.volume() * format.pixel_size(),
            data.len(),
            "Pixel data, size and format have to match",
        );
        let mut image = Self {
            data,
            ..Default::default()
        };
        image.texture_descriptor.dimension = dimension;
        image.texture_descriptor.size = size;
        image.texture_descriptor.format = format;
        image.asset_usage = asset_usage;
        image
    }

    /// Creates a new image from raw binary data and the corresponding metadata, by filling
    /// the image data with the `pixel` data repeated multiple times.
    ///
    /// # Panics
    /// Panics if the size of the `format` is not a multiple of the length of the `pixel` data.
    pub fn new_fill(
        size: Extent3d,
        dimension: TextureDimension,
        pixel: &[u8],
        format: TextureFormat,
        asset_usage: RenderAssetUsages,
    ) -> Self {
        let mut value = Image::default();
        value.texture_descriptor.format = format;
        value.texture_descriptor.dimension = dimension;
        value.asset_usage = asset_usage;
        value.resize(size);

        debug_assert_eq!(
            pixel.len() % format.pixel_size(),
            0,
            "Must not have incomplete pixel data."
        );
        debug_assert!(
            pixel.len() <= value.data.len(),
            "Fill data must fit within pixel buffer."
        );

        for current_pixel in value.data.chunks_exact_mut(pixel.len()) {
            current_pixel.copy_from_slice(pixel);
        }
        value
    }

    /// Returns the width of a 2D image.
    #[inline]
    pub fn width(&self) -> u32 {
        self.texture_descriptor.size.width
    }

    /// Returns the height of a 2D image.
    #[inline]
    pub fn height(&self) -> u32 {
        self.texture_descriptor.size.height
    }

    /// Returns the aspect ratio (width / height) of a 2D image.
    #[inline]
    pub fn aspect_ratio(&self) -> AspectRatio {
        AspectRatio::from_pixels(self.width(), self.height())
    }

    /// Returns the size of a 2D image as f32.
    #[inline]
    pub fn size_f32(&self) -> Vec2 {
        Vec2::new(self.width() as f32, self.height() as f32)
    }

    /// Returns the size of a 2D image.
    #[inline]
    pub fn size(&self) -> UVec2 {
        UVec2::new(self.width(), self.height())
    }

    /// Resizes the image to the new size, by removing information or appending 0 to the `data`.
    /// Does not properly resize the contents of the image, but only its internal `data` buffer.
    pub fn resize(&mut self, size: Extent3d) {
        self.texture_descriptor.size = size;
        self.data.resize(
            size.volume() * self.texture_descriptor.format.pixel_size(),
            0,
        );
    }

    /// Changes the `size`, asserting that the total number of data elements (pixels) remains the
    /// same.
    ///
    /// # Panics
    /// Panics if the `new_size` does not have the same volume as to old one.
    pub fn reinterpret_size(&mut self, new_size: Extent3d) {
        assert_eq!(
            new_size.volume(),
            self.texture_descriptor.size.volume(),
            "Incompatible sizes: old = {:?} new = {:?}",
            self.texture_descriptor.size,
            new_size
        );

        self.texture_descriptor.size = new_size;
    }

    /// Takes a 2D image containing vertically stacked images of the same size, and reinterprets
    /// it as a 2D array texture, where each of the stacked images becomes one layer of the
    /// array. This is primarily for use with the `texture2DArray` shader uniform type.
    ///
    /// # Panics
    /// Panics if the texture is not 2D, has more than one layers or is not evenly dividable into
    /// the `layers`.
    pub fn reinterpret_stacked_2d_as_array(&mut self, layers: u32) {
        // Must be a stacked image, and the height must be divisible by layers.
        assert_eq!(self.texture_descriptor.dimension, TextureDimension::D2);
        assert_eq!(self.texture_descriptor.size.depth_or_array_layers, 1);
        assert_eq!(self.height() % layers, 0);

        self.reinterpret_size(Extent3d {
            width: self.width(),
            height: self.height() / layers,
            depth_or_array_layers: layers,
        });
    }

    /// Convert a texture from a format to another. Only a few formats are
    /// supported as input and output:
    /// - `TextureFormat::R8Unorm`
    /// - `TextureFormat::Rg8Unorm`
    /// - `TextureFormat::Rgba8UnormSrgb`
    ///
    /// To get [`Image`] as a [`image::DynamicImage`] see:
    /// [`Image::try_into_dynamic`].
    pub fn convert(&self, new_format: TextureFormat) -> Option<Self> {
        self.clone()
            .try_into_dynamic()
            .ok()
            .and_then(|img| match new_format {
                TextureFormat::R8Unorm => {
                    Some((image::DynamicImage::ImageLuma8(img.into_luma8()), false))
                }
                TextureFormat::Rg8Unorm => Some((
                    image::DynamicImage::ImageLumaA8(img.into_luma_alpha8()),
                    false,
                )),
                TextureFormat::Rgba8UnormSrgb => {
                    Some((image::DynamicImage::ImageRgba8(img.into_rgba8()), true))
                }
                _ => None,
            })
            .map(|(dyn_img, is_srgb)| Self::from_dynamic(dyn_img, is_srgb, self.asset_usage))
    }

    /// Load a bytes buffer in a [`Image`], according to type `image_type`, using the `image`
    /// crate
    pub fn from_buffer(
        #[cfg(all(debug_assertions, feature = "dds"))] name: String,
        buffer: &[u8],
        image_type: ImageType,
        #[allow(unused_variables)] supported_compressed_formats: CompressedImageFormats,
        is_srgb: bool,
        image_sampler: ImageSampler,
        asset_usage: RenderAssetUsages,
    ) -> Result<Image, TextureError> {
        let format = image_type.to_image_format()?;

        // Load the image in the expected format.
        // Some formats like PNG allow for R or RG textures too, so the texture
        // format needs to be determined. For RGB textures an alpha channel
        // needs to be added, so the image data needs to be converted in those
        // cases.

        let mut image = match format {
            #[cfg(feature = "basis-universal")]
            ImageFormat::Basis => {
                basis_buffer_to_image(buffer, supported_compressed_formats, is_srgb)?
            }
            #[cfg(feature = "dds")]
            ImageFormat::Dds => dds_buffer_to_image(
                #[cfg(debug_assertions)]
                name,
                buffer,
                supported_compressed_formats,
                is_srgb,
            )?,
            #[cfg(feature = "ktx2")]
            ImageFormat::Ktx2 => {
                ktx2_buffer_to_image(buffer, supported_compressed_formats, is_srgb)?
            }
            _ => {
                let image_crate_format = format
                    .as_image_crate_format()
                    .ok_or_else(|| TextureError::UnsupportedTextureFormat(format!("{format:?}")))?;
                let mut reader = image::io::Reader::new(std::io::Cursor::new(buffer));
                reader.set_format(image_crate_format);
                reader.no_limits();
                let dyn_img = reader.decode()?;
                Self::from_dynamic(dyn_img, is_srgb, asset_usage)
            }
        };
        image.sampler = image_sampler;
        Ok(image)
    }

    /// Whether the texture format is compressed or uncompressed
    pub fn is_compressed(&self) -> bool {
        let format_description = self.texture_descriptor.format;
        format_description
            .required_features()
            .contains(wgpu::Features::TEXTURE_COMPRESSION_ASTC)
            || format_description
                .required_features()
                .contains(wgpu::Features::TEXTURE_COMPRESSION_BC)
            || format_description
                .required_features()
                .contains(wgpu::Features::TEXTURE_COMPRESSION_ETC2)
    }
}

#[derive(Clone, Copy, Debug)]
pub enum DataFormat {
    Rgb,
    Rgba,
    Rrr,
    Rrrg,
    Rg,
}

#[derive(Clone, Copy, Debug)]
pub enum TranscodeFormat {
    Etc1s,
    Uastc(DataFormat),
    // Has to be transcoded to R8Unorm for use with `wgpu`
    R8UnormSrgb,
    // Has to be transcoded to R8G8Unorm for use with `wgpu`
    Rg8UnormSrgb,
    // Has to be transcoded to Rgba8 for use with `wgpu`
    Rgb8,
}

/// An error that occurs when loading a texture
#[derive(Error, Debug)]
pub enum TextureError {
    #[error("invalid image mime type: {0}")]
    InvalidImageMimeType(String),
    #[error("invalid image extension: {0}")]
    InvalidImageExtension(String),
    #[error("failed to load an image: {0}")]
    ImageError(#[from] image::ImageError),
    #[error("unsupported texture format: {0}")]
    UnsupportedTextureFormat(String),
    #[error("supercompression not supported: {0}")]
    SuperCompressionNotSupported(String),
    #[error("failed to load an image: {0}")]
    SuperDecompressionError(String),
    #[error("invalid data: {0}")]
    InvalidData(String),
    #[error("transcode error: {0}")]
    TranscodeError(String),
    #[error("format requires transcoding: {0:?}")]
    FormatRequiresTranscodingError(TranscodeFormat),
    /// Only cubemaps with six faces are supported.
    #[error("only cubemaps with six faces are supported")]
    IncompleteCubemap,
}

/// The type of a raw image buffer.
#[derive(Debug)]
pub enum ImageType<'a> {
    /// The mime type of an image, for example `"image/png"`.
    MimeType(&'a str),
    /// The extension of an image file, for example `"png"`.
    Extension(&'a str),
    /// The direct format of the image
    Format(ImageFormat),
}

impl<'a> ImageType<'a> {
    pub fn to_image_format(&self) -> Result<ImageFormat, TextureError> {
        match self {
            ImageType::MimeType(mime_type) => ImageFormat::from_mime_type(mime_type)
                .ok_or_else(|| TextureError::InvalidImageMimeType(mime_type.to_string())),
            ImageType::Extension(extension) => ImageFormat::from_extension(extension)
                .ok_or_else(|| TextureError::InvalidImageExtension(extension.to_string())),
            ImageType::Format(format) => Ok(*format),
        }
    }
}

/// Used to calculate the volume of an item.
pub trait Volume {
    fn volume(&self) -> usize;
}

impl Volume for Extent3d {
    /// Calculates the volume of the [`Extent3d`].
    fn volume(&self) -> usize {
        (self.width * self.height * self.depth_or_array_layers) as usize
    }
}

/// Extends the wgpu [`TextureFormat`] with information about the pixel.
pub trait TextureFormatPixelInfo {
    /// Returns the size of a pixel in bytes of the format.
    fn pixel_size(&self) -> usize;
}

impl TextureFormatPixelInfo for TextureFormat {
    fn pixel_size(&self) -> usize {
        let info = self;
        match info.block_dimensions() {
            (1, 1) => info.block_copy_size(None).unwrap() as usize,
            _ => panic!("Using pixel_size for compressed textures is invalid"),
        }
    }
}

/// The GPU-representation of an [`Image`].
/// Consists of the [`Texture`], its [`TextureView`] and the corresponding [`Sampler`], and the texture's size.
#[derive(Debug, Clone)]
pub struct GpuImage {
    pub texture: Texture,
    pub texture_view: TextureView,
    pub texture_format: TextureFormat,
    pub sampler: Sampler,
    pub size: Vec2,
    pub mip_level_count: u32,
}

impl RenderAsset for Image {
    type PreparedAsset = GpuImage;
    type Param = (
        SRes<RenderDevice>,
        SRes<RenderQueue>,
        SRes<DefaultImageSampler>,
    );

    fn asset_usage(&self) -> RenderAssetUsages {
        self.asset_usage
    }

    /// Converts the extracted image into a [`GpuImage`].
    fn prepare_asset(
        self,
        (render_device, render_queue, default_sampler): &mut SystemParamItem<Self::Param>,
    ) -> Result<Self::PreparedAsset, PrepareAssetError<Self>> {
        let texture = render_device.create_texture_with_data(
            render_queue,
            &self.texture_descriptor,
            // TODO: Is this correct? Do we need to use `MipMajor` if it's a ktx2 file?
            wgpu::util::TextureDataOrder::default(),
            &self.data,
        );

        let texture_view = texture.create_view(
            self.texture_view_descriptor
                .or_else(|| Some(TextureViewDescriptor::default()))
                .as_ref()
                .unwrap(),
        );
        let size = Vec2::new(
            self.texture_descriptor.size.width as f32,
            self.texture_descriptor.size.height as f32,
        );
        let sampler = match self.sampler {
            ImageSampler::Default => (***default_sampler).clone(),
            ImageSampler::Descriptor(descriptor) => {
                render_device.create_sampler(&descriptor.as_wgpu())
            }
        };

        Ok(GpuImage {
            texture,
            texture_view,
            texture_format: self.texture_descriptor.format,
            sampler,
            size,
            mip_level_count: self.texture_descriptor.mip_level_count,
        })
    }
}

bitflags::bitflags! {
    #[derive(Default, Clone, Copy, Eq, PartialEq, Debug)]
    #[repr(transparent)]
    pub struct CompressedImageFormats: u32 {
        const NONE     = 0;
        const ASTC_LDR = 1 << 0;
        const BC       = 1 << 1;
        const ETC2     = 1 << 2;
    }
}

impl CompressedImageFormats {
    pub fn from_features(features: wgpu::Features) -> Self {
        let mut supported_compressed_formats = Self::default();
        if features.contains(wgpu::Features::TEXTURE_COMPRESSION_ASTC) {
            supported_compressed_formats |= Self::ASTC_LDR;
        }
        if features.contains(wgpu::Features::TEXTURE_COMPRESSION_BC) {
            supported_compressed_formats |= Self::BC;
        }
        if features.contains(wgpu::Features::TEXTURE_COMPRESSION_ETC2) {
            supported_compressed_formats |= Self::ETC2;
        }
        supported_compressed_formats
    }

    pub fn supports(&self, format: TextureFormat) -> bool {
        match format {
            TextureFormat::Bc1RgbaUnorm
            | TextureFormat::Bc1RgbaUnormSrgb
            | TextureFormat::Bc2RgbaUnorm
            | TextureFormat::Bc2RgbaUnormSrgb
            | TextureFormat::Bc3RgbaUnorm
            | TextureFormat::Bc3RgbaUnormSrgb
            | TextureFormat::Bc4RUnorm
            | TextureFormat::Bc4RSnorm
            | TextureFormat::Bc5RgUnorm
            | TextureFormat::Bc5RgSnorm
            | TextureFormat::Bc6hRgbUfloat
            | TextureFormat::Bc6hRgbFloat
            | TextureFormat::Bc7RgbaUnorm
            | TextureFormat::Bc7RgbaUnormSrgb => self.contains(CompressedImageFormats::BC),
            TextureFormat::Etc2Rgb8Unorm
            | TextureFormat::Etc2Rgb8UnormSrgb
            | TextureFormat::Etc2Rgb8A1Unorm
            | TextureFormat::Etc2Rgb8A1UnormSrgb
            | TextureFormat::Etc2Rgba8Unorm
            | TextureFormat::Etc2Rgba8UnormSrgb
            | TextureFormat::EacR11Unorm
            | TextureFormat::EacR11Snorm
            | TextureFormat::EacRg11Unorm
            | TextureFormat::EacRg11Snorm => self.contains(CompressedImageFormats::ETC2),
            TextureFormat::Astc { .. } => self.contains(CompressedImageFormats::ASTC_LDR),
            _ => true,
        }
    }
}

#[cfg(test)]
mod test {

    use super::*;
    use crate::render_asset::RenderAssetUsages;

    #[test]
    fn image_size() {
        let size = Extent3d {
            width: 200,
            height: 100,
            depth_or_array_layers: 1,
        };
        let image = Image::new_fill(
            size,
            TextureDimension::D2,
            &[0, 0, 0, 255],
            TextureFormat::Rgba8Unorm,
            RenderAssetUsages::MAIN_WORLD,
        );
        assert_eq!(
            Vec2::new(size.width as f32, size.height as f32),
            image.size_f32()
        );
    }
    #[test]
    fn image_default_size() {
        let image = Image::default();
        assert_eq!(Vec2::ONE, image.size_f32());
    }
}