1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
use bevy_app::Plugin;
use bevy_asset::{load_internal_asset, AssetId, Handle};

use bevy_core_pipeline::core_2d::Transparent2d;
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::entity::EntityHashMap;
use bevy_ecs::{
    prelude::*,
    query::ROQueryItem,
    system::{lifetimeless::*, SystemParamItem, SystemState},
};
use bevy_math::{Affine3, Vec4};
use bevy_reflect::Reflect;
use bevy_render::{
    batching::{
        batch_and_prepare_render_phase, write_batched_instance_buffer, GetBatchData,
        NoAutomaticBatching,
    },
    globals::{GlobalsBuffer, GlobalsUniform},
    mesh::{GpuBufferInfo, Mesh, MeshVertexBufferLayout},
    render_asset::RenderAssets,
    render_phase::{PhaseItem, RenderCommand, RenderCommandResult, TrackedRenderPass},
    render_resource::{binding_types::uniform_buffer, *},
    renderer::{RenderDevice, RenderQueue},
    texture::{
        BevyDefault, DefaultImageSampler, GpuImage, Image, ImageSampler, TextureFormatPixelInfo,
    },
    view::{
        ExtractedView, ViewTarget, ViewUniform, ViewUniformOffset, ViewUniforms, ViewVisibility,
    },
    Extract, ExtractSchedule, Render, RenderApp, RenderSet,
};
use bevy_transform::components::GlobalTransform;

use crate::Material2dBindGroupId;

/// Component for rendering with meshes in the 2d pipeline, usually with a [2d material](crate::Material2d) such as [`ColorMaterial`](crate::ColorMaterial).
///
/// It wraps a [`Handle<Mesh>`] to differentiate from the 3d pipelines which use the handles directly as components
#[derive(Default, Clone, Component, Debug, Reflect, PartialEq, Eq)]
#[reflect(Component)]
pub struct Mesh2dHandle(pub Handle<Mesh>);

impl From<Handle<Mesh>> for Mesh2dHandle {
    fn from(handle: Handle<Mesh>) -> Self {
        Self(handle)
    }
}

#[derive(Default)]
pub struct Mesh2dRenderPlugin;

pub const MESH2D_VERTEX_OUTPUT: Handle<Shader> = Handle::weak_from_u128(7646632476603252194);
pub const MESH2D_VIEW_TYPES_HANDLE: Handle<Shader> = Handle::weak_from_u128(12677582416765805110);
pub const MESH2D_VIEW_BINDINGS_HANDLE: Handle<Shader> = Handle::weak_from_u128(6901431444735842434);
pub const MESH2D_TYPES_HANDLE: Handle<Shader> = Handle::weak_from_u128(8994673400261890424);
pub const MESH2D_BINDINGS_HANDLE: Handle<Shader> = Handle::weak_from_u128(8983617858458862856);
pub const MESH2D_FUNCTIONS_HANDLE: Handle<Shader> = Handle::weak_from_u128(4976379308250389413);
pub const MESH2D_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(2971387252468633715);

impl Plugin for Mesh2dRenderPlugin {
    fn build(&self, app: &mut bevy_app::App) {
        load_internal_asset!(
            app,
            MESH2D_VERTEX_OUTPUT,
            "mesh2d_vertex_output.wgsl",
            Shader::from_wgsl
        );
        load_internal_asset!(
            app,
            MESH2D_VIEW_TYPES_HANDLE,
            "mesh2d_view_types.wgsl",
            Shader::from_wgsl
        );
        load_internal_asset!(
            app,
            MESH2D_VIEW_BINDINGS_HANDLE,
            "mesh2d_view_bindings.wgsl",
            Shader::from_wgsl
        );
        load_internal_asset!(
            app,
            MESH2D_TYPES_HANDLE,
            "mesh2d_types.wgsl",
            Shader::from_wgsl
        );
        load_internal_asset!(
            app,
            MESH2D_FUNCTIONS_HANDLE,
            "mesh2d_functions.wgsl",
            Shader::from_wgsl
        );
        load_internal_asset!(app, MESH2D_SHADER_HANDLE, "mesh2d.wgsl", Shader::from_wgsl);

        if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
            render_app
                .init_resource::<RenderMesh2dInstances>()
                .init_resource::<SpecializedMeshPipelines<Mesh2dPipeline>>()
                .add_systems(ExtractSchedule, extract_mesh2d)
                .add_systems(
                    Render,
                    (
                        batch_and_prepare_render_phase::<Transparent2d, Mesh2dPipeline>
                            .in_set(RenderSet::PrepareResources),
                        write_batched_instance_buffer::<Mesh2dPipeline>
                            .in_set(RenderSet::PrepareResourcesFlush),
                        prepare_mesh2d_bind_group.in_set(RenderSet::PrepareBindGroups),
                        prepare_mesh2d_view_bind_groups.in_set(RenderSet::PrepareBindGroups),
                    ),
                );
        }
    }

    fn finish(&self, app: &mut bevy_app::App) {
        let mut mesh_bindings_shader_defs = Vec::with_capacity(1);

        if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
            if let Some(per_object_buffer_batch_size) = GpuArrayBuffer::<Mesh2dUniform>::batch_size(
                render_app.world.resource::<RenderDevice>(),
            ) {
                mesh_bindings_shader_defs.push(ShaderDefVal::UInt(
                    "PER_OBJECT_BUFFER_BATCH_SIZE".into(),
                    per_object_buffer_batch_size,
                ));
            }

            render_app
                .insert_resource(GpuArrayBuffer::<Mesh2dUniform>::new(
                    render_app.world.resource::<RenderDevice>(),
                ))
                .init_resource::<Mesh2dPipeline>();
        }

        // Load the mesh_bindings shader module here as it depends on runtime information about
        // whether storage buffers are supported, or the maximum uniform buffer binding size.
        load_internal_asset!(
            app,
            MESH2D_BINDINGS_HANDLE,
            "mesh2d_bindings.wgsl",
            Shader::from_wgsl_with_defs,
            mesh_bindings_shader_defs
        );
    }
}

#[derive(Component)]
pub struct Mesh2dTransforms {
    pub transform: Affine3,
    pub flags: u32,
}

#[derive(ShaderType, Clone)]
pub struct Mesh2dUniform {
    // Affine 4x3 matrix transposed to 3x4
    pub transform: [Vec4; 3],
    // 3x3 matrix packed in mat2x4 and f32 as:
    //   [0].xyz, [1].x,
    //   [1].yz, [2].xy
    //   [2].z
    pub inverse_transpose_model_a: [Vec4; 2],
    pub inverse_transpose_model_b: f32,
    pub flags: u32,
}

impl From<&Mesh2dTransforms> for Mesh2dUniform {
    fn from(mesh_transforms: &Mesh2dTransforms) -> Self {
        let (inverse_transpose_model_a, inverse_transpose_model_b) =
            mesh_transforms.transform.inverse_transpose_3x3();
        Self {
            transform: mesh_transforms.transform.to_transpose(),
            inverse_transpose_model_a,
            inverse_transpose_model_b,
            flags: mesh_transforms.flags,
        }
    }
}

// NOTE: These must match the bit flags in bevy_sprite/src/mesh2d/mesh2d.wgsl!
bitflags::bitflags! {
    #[repr(transparent)]
    pub struct MeshFlags: u32 {
        const NONE                       = 0;
        const UNINITIALIZED              = 0xFFFF;
    }
}

pub struct RenderMesh2dInstance {
    pub transforms: Mesh2dTransforms,
    pub mesh_asset_id: AssetId<Mesh>,
    pub material_bind_group_id: Material2dBindGroupId,
    pub automatic_batching: bool,
}

#[derive(Default, Resource, Deref, DerefMut)]
pub struct RenderMesh2dInstances(EntityHashMap<RenderMesh2dInstance>);

#[derive(Component)]
pub struct Mesh2d;

pub fn extract_mesh2d(
    mut commands: Commands,
    mut previous_len: Local<usize>,
    mut render_mesh_instances: ResMut<RenderMesh2dInstances>,
    query: Extract<
        Query<(
            Entity,
            &ViewVisibility,
            &GlobalTransform,
            &Mesh2dHandle,
            Has<NoAutomaticBatching>,
        )>,
    >,
) {
    render_mesh_instances.clear();
    let mut entities = Vec::with_capacity(*previous_len);

    for (entity, view_visibility, transform, handle, no_automatic_batching) in &query {
        if !view_visibility.get() {
            continue;
        }
        // FIXME: Remove this - it is just a workaround to enable rendering to work as
        // render commands require an entity to exist at the moment.
        entities.push((entity, Mesh2d));
        render_mesh_instances.insert(
            entity,
            RenderMesh2dInstance {
                transforms: Mesh2dTransforms {
                    transform: (&transform.affine()).into(),
                    flags: MeshFlags::empty().bits(),
                },
                mesh_asset_id: handle.0.id(),
                material_bind_group_id: Material2dBindGroupId::default(),
                automatic_batching: !no_automatic_batching,
            },
        );
    }
    *previous_len = entities.len();
    commands.insert_or_spawn_batch(entities);
}

#[derive(Resource, Clone)]
pub struct Mesh2dPipeline {
    pub view_layout: BindGroupLayout,
    pub mesh_layout: BindGroupLayout,
    // This dummy white texture is to be used in place of optional textures
    pub dummy_white_gpu_image: GpuImage,
    pub per_object_buffer_batch_size: Option<u32>,
}

impl FromWorld for Mesh2dPipeline {
    fn from_world(world: &mut World) -> Self {
        let mut system_state: SystemState<(
            Res<RenderDevice>,
            Res<RenderQueue>,
            Res<DefaultImageSampler>,
        )> = SystemState::new(world);
        let (render_device, render_queue, default_sampler) = system_state.get_mut(world);
        let render_device = render_device.into_inner();
        let view_layout = render_device.create_bind_group_layout(
            "mesh2d_view_layout",
            &BindGroupLayoutEntries::sequential(
                ShaderStages::VERTEX_FRAGMENT,
                (
                    // View
                    uniform_buffer::<ViewUniform>(true),
                    uniform_buffer::<GlobalsUniform>(false),
                ),
            ),
        );

        let mesh_layout = render_device.create_bind_group_layout(
            "mesh2d_layout",
            &BindGroupLayoutEntries::single(
                ShaderStages::VERTEX_FRAGMENT,
                GpuArrayBuffer::<Mesh2dUniform>::binding_layout(render_device),
            ),
        );
        // A 1x1x1 'all 1.0' texture to use as a dummy texture to use in place of optional StandardMaterial textures
        let dummy_white_gpu_image = {
            let image = Image::default();
            let texture = render_device.create_texture(&image.texture_descriptor);
            let sampler = match image.sampler {
                ImageSampler::Default => (**default_sampler).clone(),
                ImageSampler::Descriptor(ref descriptor) => {
                    render_device.create_sampler(&descriptor.as_wgpu())
                }
            };

            let format_size = image.texture_descriptor.format.pixel_size();
            render_queue.write_texture(
                texture.as_image_copy(),
                &image.data,
                ImageDataLayout {
                    offset: 0,
                    bytes_per_row: Some(image.width() * format_size as u32),
                    rows_per_image: None,
                },
                image.texture_descriptor.size,
            );

            let texture_view = texture.create_view(&TextureViewDescriptor::default());
            GpuImage {
                texture,
                texture_view,
                texture_format: image.texture_descriptor.format,
                sampler,
                size: image.size_f32(),
                mip_level_count: image.texture_descriptor.mip_level_count,
            }
        };
        Mesh2dPipeline {
            view_layout,
            mesh_layout,
            dummy_white_gpu_image,
            per_object_buffer_batch_size: GpuArrayBuffer::<Mesh2dUniform>::batch_size(
                render_device,
            ),
        }
    }
}

impl Mesh2dPipeline {
    pub fn get_image_texture<'a>(
        &'a self,
        gpu_images: &'a RenderAssets<Image>,
        handle_option: &Option<Handle<Image>>,
    ) -> Option<(&'a TextureView, &'a Sampler)> {
        if let Some(handle) = handle_option {
            let gpu_image = gpu_images.get(handle)?;
            Some((&gpu_image.texture_view, &gpu_image.sampler))
        } else {
            Some((
                &self.dummy_white_gpu_image.texture_view,
                &self.dummy_white_gpu_image.sampler,
            ))
        }
    }
}

impl GetBatchData for Mesh2dPipeline {
    type Param = SRes<RenderMesh2dInstances>;
    type CompareData = (Material2dBindGroupId, AssetId<Mesh>);
    type BufferData = Mesh2dUniform;

    fn get_batch_data(
        mesh_instances: &SystemParamItem<Self::Param>,
        entity: Entity,
    ) -> Option<(Self::BufferData, Option<Self::CompareData>)> {
        let mesh_instance = mesh_instances.get(&entity)?;
        Some((
            (&mesh_instance.transforms).into(),
            mesh_instance.automatic_batching.then_some((
                mesh_instance.material_bind_group_id,
                mesh_instance.mesh_asset_id,
            )),
        ))
    }
}

bitflags::bitflags! {
    #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
    #[repr(transparent)]
    // NOTE: Apparently quadro drivers support up to 64x MSAA.
    // MSAA uses the highest 3 bits for the MSAA log2(sample count) to support up to 128x MSAA.
    // FIXME: make normals optional?
    pub struct Mesh2dPipelineKey: u32 {
        const NONE                              = 0;
        const HDR                               = 1 << 0;
        const TONEMAP_IN_SHADER                 = 1 << 1;
        const DEBAND_DITHER                     = 1 << 2;
        const MSAA_RESERVED_BITS                = Self::MSAA_MASK_BITS << Self::MSAA_SHIFT_BITS;
        const PRIMITIVE_TOPOLOGY_RESERVED_BITS  = Self::PRIMITIVE_TOPOLOGY_MASK_BITS << Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS;
        const TONEMAP_METHOD_RESERVED_BITS      = Self::TONEMAP_METHOD_MASK_BITS << Self::TONEMAP_METHOD_SHIFT_BITS;
        const TONEMAP_METHOD_NONE               = 0 << Self::TONEMAP_METHOD_SHIFT_BITS;
        const TONEMAP_METHOD_REINHARD           = 1 << Self::TONEMAP_METHOD_SHIFT_BITS;
        const TONEMAP_METHOD_REINHARD_LUMINANCE = 2 << Self::TONEMAP_METHOD_SHIFT_BITS;
        const TONEMAP_METHOD_ACES_FITTED        = 3 << Self::TONEMAP_METHOD_SHIFT_BITS;
        const TONEMAP_METHOD_AGX                = 4 << Self::TONEMAP_METHOD_SHIFT_BITS;
        const TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM = 5 << Self::TONEMAP_METHOD_SHIFT_BITS;
        const TONEMAP_METHOD_TONY_MC_MAPFACE    = 6 << Self::TONEMAP_METHOD_SHIFT_BITS;
        const TONEMAP_METHOD_BLENDER_FILMIC     = 7 << Self::TONEMAP_METHOD_SHIFT_BITS;
    }
}

impl Mesh2dPipelineKey {
    const MSAA_MASK_BITS: u32 = 0b111;
    const MSAA_SHIFT_BITS: u32 = 32 - Self::MSAA_MASK_BITS.count_ones();
    const PRIMITIVE_TOPOLOGY_MASK_BITS: u32 = 0b111;
    const PRIMITIVE_TOPOLOGY_SHIFT_BITS: u32 = Self::MSAA_SHIFT_BITS - 3;
    const TONEMAP_METHOD_MASK_BITS: u32 = 0b111;
    const TONEMAP_METHOD_SHIFT_BITS: u32 =
        Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS - Self::TONEMAP_METHOD_MASK_BITS.count_ones();

    pub fn from_msaa_samples(msaa_samples: u32) -> Self {
        let msaa_bits =
            (msaa_samples.trailing_zeros() & Self::MSAA_MASK_BITS) << Self::MSAA_SHIFT_BITS;
        Self::from_bits_retain(msaa_bits)
    }

    pub fn from_hdr(hdr: bool) -> Self {
        if hdr {
            Mesh2dPipelineKey::HDR
        } else {
            Mesh2dPipelineKey::NONE
        }
    }

    pub fn msaa_samples(&self) -> u32 {
        1 << ((self.bits() >> Self::MSAA_SHIFT_BITS) & Self::MSAA_MASK_BITS)
    }

    pub fn from_primitive_topology(primitive_topology: PrimitiveTopology) -> Self {
        let primitive_topology_bits = ((primitive_topology as u32)
            & Self::PRIMITIVE_TOPOLOGY_MASK_BITS)
            << Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS;
        Self::from_bits_retain(primitive_topology_bits)
    }

    pub fn primitive_topology(&self) -> PrimitiveTopology {
        let primitive_topology_bits = (self.bits() >> Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS)
            & Self::PRIMITIVE_TOPOLOGY_MASK_BITS;
        match primitive_topology_bits {
            x if x == PrimitiveTopology::PointList as u32 => PrimitiveTopology::PointList,
            x if x == PrimitiveTopology::LineList as u32 => PrimitiveTopology::LineList,
            x if x == PrimitiveTopology::LineStrip as u32 => PrimitiveTopology::LineStrip,
            x if x == PrimitiveTopology::TriangleList as u32 => PrimitiveTopology::TriangleList,
            x if x == PrimitiveTopology::TriangleStrip as u32 => PrimitiveTopology::TriangleStrip,
            _ => PrimitiveTopology::default(),
        }
    }
}

impl SpecializedMeshPipeline for Mesh2dPipeline {
    type Key = Mesh2dPipelineKey;

    fn specialize(
        &self,
        key: Self::Key,
        layout: &MeshVertexBufferLayout,
    ) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
        let mut shader_defs = Vec::new();
        let mut vertex_attributes = Vec::new();

        if layout.contains(Mesh::ATTRIBUTE_POSITION) {
            shader_defs.push("VERTEX_POSITIONS".into());
            vertex_attributes.push(Mesh::ATTRIBUTE_POSITION.at_shader_location(0));
        }

        if layout.contains(Mesh::ATTRIBUTE_NORMAL) {
            shader_defs.push("VERTEX_NORMALS".into());
            vertex_attributes.push(Mesh::ATTRIBUTE_NORMAL.at_shader_location(1));
        }

        if layout.contains(Mesh::ATTRIBUTE_UV_0) {
            shader_defs.push("VERTEX_UVS".into());
            vertex_attributes.push(Mesh::ATTRIBUTE_UV_0.at_shader_location(2));
        }

        if layout.contains(Mesh::ATTRIBUTE_TANGENT) {
            shader_defs.push("VERTEX_TANGENTS".into());
            vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3));
        }

        if layout.contains(Mesh::ATTRIBUTE_COLOR) {
            shader_defs.push("VERTEX_COLORS".into());
            vertex_attributes.push(Mesh::ATTRIBUTE_COLOR.at_shader_location(4));
        }

        if key.contains(Mesh2dPipelineKey::TONEMAP_IN_SHADER) {
            shader_defs.push("TONEMAP_IN_SHADER".into());

            let method = key.intersection(Mesh2dPipelineKey::TONEMAP_METHOD_RESERVED_BITS);

            match method {
                Mesh2dPipelineKey::TONEMAP_METHOD_NONE => {
                    shader_defs.push("TONEMAP_METHOD_NONE".into());
                }
                Mesh2dPipelineKey::TONEMAP_METHOD_REINHARD => {
                    shader_defs.push("TONEMAP_METHOD_REINHARD".into());
                }
                Mesh2dPipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE => {
                    shader_defs.push("TONEMAP_METHOD_REINHARD_LUMINANCE".into());
                }
                Mesh2dPipelineKey::TONEMAP_METHOD_ACES_FITTED => {
                    shader_defs.push("TONEMAP_METHOD_ACES_FITTED".into());
                }
                Mesh2dPipelineKey::TONEMAP_METHOD_AGX => {
                    shader_defs.push("TONEMAP_METHOD_AGX".into());
                }
                Mesh2dPipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM => {
                    shader_defs.push("TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM".into());
                }
                Mesh2dPipelineKey::TONEMAP_METHOD_BLENDER_FILMIC => {
                    shader_defs.push("TONEMAP_METHOD_BLENDER_FILMIC".into());
                }
                Mesh2dPipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE => {
                    shader_defs.push("TONEMAP_METHOD_TONY_MC_MAPFACE".into());
                }
                _ => {}
            }
            // Debanding is tied to tonemapping in the shader, cannot run without it.
            if key.contains(Mesh2dPipelineKey::DEBAND_DITHER) {
                shader_defs.push("DEBAND_DITHER".into());
            }
        }

        let vertex_buffer_layout = layout.get_layout(&vertex_attributes)?;

        let format = match key.contains(Mesh2dPipelineKey::HDR) {
            true => ViewTarget::TEXTURE_FORMAT_HDR,
            false => TextureFormat::bevy_default(),
        };
        let mut push_constant_ranges = Vec::with_capacity(1);
        if cfg!(all(
            feature = "webgl",
            target_arch = "wasm32",
            not(feature = "webgpu")
        )) {
            push_constant_ranges.push(PushConstantRange {
                stages: ShaderStages::VERTEX,
                range: 0..4,
            });
        }

        Ok(RenderPipelineDescriptor {
            vertex: VertexState {
                shader: MESH2D_SHADER_HANDLE,
                entry_point: "vertex".into(),
                shader_defs: shader_defs.clone(),
                buffers: vec![vertex_buffer_layout],
            },
            fragment: Some(FragmentState {
                shader: MESH2D_SHADER_HANDLE,
                shader_defs,
                entry_point: "fragment".into(),
                targets: vec![Some(ColorTargetState {
                    format,
                    blend: Some(BlendState::ALPHA_BLENDING),
                    write_mask: ColorWrites::ALL,
                })],
            }),
            layout: vec![self.view_layout.clone(), self.mesh_layout.clone()],
            push_constant_ranges,
            primitive: PrimitiveState {
                front_face: FrontFace::Ccw,
                cull_mode: None,
                unclipped_depth: false,
                polygon_mode: PolygonMode::Fill,
                conservative: false,
                topology: key.primitive_topology(),
                strip_index_format: None,
            },
            depth_stencil: None,
            multisample: MultisampleState {
                count: key.msaa_samples(),
                mask: !0,
                alpha_to_coverage_enabled: false,
            },
            label: Some("transparent_mesh2d_pipeline".into()),
        })
    }
}

#[derive(Resource)]
pub struct Mesh2dBindGroup {
    pub value: BindGroup,
}

pub fn prepare_mesh2d_bind_group(
    mut commands: Commands,
    mesh2d_pipeline: Res<Mesh2dPipeline>,
    render_device: Res<RenderDevice>,
    mesh2d_uniforms: Res<GpuArrayBuffer<Mesh2dUniform>>,
) {
    if let Some(binding) = mesh2d_uniforms.binding() {
        commands.insert_resource(Mesh2dBindGroup {
            value: render_device.create_bind_group(
                "mesh2d_bind_group",
                &mesh2d_pipeline.mesh_layout,
                &BindGroupEntries::single(binding),
            ),
        });
    }
}

#[derive(Component)]
pub struct Mesh2dViewBindGroup {
    pub value: BindGroup,
}

pub fn prepare_mesh2d_view_bind_groups(
    mut commands: Commands,
    render_device: Res<RenderDevice>,
    mesh2d_pipeline: Res<Mesh2dPipeline>,
    view_uniforms: Res<ViewUniforms>,
    views: Query<Entity, With<ExtractedView>>,
    globals_buffer: Res<GlobalsBuffer>,
) {
    if let (Some(view_binding), Some(globals)) = (
        view_uniforms.uniforms.binding(),
        globals_buffer.buffer.binding(),
    ) {
        for entity in &views {
            let view_bind_group = render_device.create_bind_group(
                "mesh2d_view_bind_group",
                &mesh2d_pipeline.view_layout,
                &BindGroupEntries::sequential((view_binding.clone(), globals.clone())),
            );

            commands.entity(entity).insert(Mesh2dViewBindGroup {
                value: view_bind_group,
            });
        }
    }
}

pub struct SetMesh2dViewBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMesh2dViewBindGroup<I> {
    type Param = ();
    type ViewQuery = (Read<ViewUniformOffset>, Read<Mesh2dViewBindGroup>);
    type ItemQuery = ();

    #[inline]
    fn render<'w>(
        _item: &P,
        (view_uniform, mesh2d_view_bind_group): ROQueryItem<'w, Self::ViewQuery>,
        _view: Option<()>,
        _param: SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        pass.set_bind_group(I, &mesh2d_view_bind_group.value, &[view_uniform.offset]);

        RenderCommandResult::Success
    }
}

pub struct SetMesh2dBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMesh2dBindGroup<I> {
    type Param = SRes<Mesh2dBindGroup>;
    type ViewQuery = ();
    type ItemQuery = ();

    #[inline]
    fn render<'w>(
        item: &P,
        _view: (),
        _item_query: Option<()>,
        mesh2d_bind_group: SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        let mut dynamic_offsets: [u32; 1] = Default::default();
        let mut offset_count = 0;
        if let Some(dynamic_offset) = item.dynamic_offset() {
            dynamic_offsets[offset_count] = dynamic_offset.get();
            offset_count += 1;
        }
        pass.set_bind_group(
            I,
            &mesh2d_bind_group.into_inner().value,
            &dynamic_offsets[..offset_count],
        );
        RenderCommandResult::Success
    }
}

pub struct DrawMesh2d;
impl<P: PhaseItem> RenderCommand<P> for DrawMesh2d {
    type Param = (SRes<RenderAssets<Mesh>>, SRes<RenderMesh2dInstances>);
    type ViewQuery = ();
    type ItemQuery = ();

    #[inline]
    fn render<'w>(
        item: &P,
        _view: (),
        _item_query: Option<()>,
        (meshes, render_mesh2d_instances): SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        let meshes = meshes.into_inner();
        let render_mesh2d_instances = render_mesh2d_instances.into_inner();

        let Some(RenderMesh2dInstance { mesh_asset_id, .. }) =
            render_mesh2d_instances.get(&item.entity())
        else {
            return RenderCommandResult::Failure;
        };
        let Some(gpu_mesh) = meshes.get(*mesh_asset_id) else {
            return RenderCommandResult::Failure;
        };

        pass.set_vertex_buffer(0, gpu_mesh.vertex_buffer.slice(..));

        let batch_range = item.batch_range();
        #[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]
        pass.set_push_constants(
            ShaderStages::VERTEX,
            0,
            &(batch_range.start as i32).to_le_bytes(),
        );
        match &gpu_mesh.buffer_info {
            GpuBufferInfo::Indexed {
                buffer,
                index_format,
                count,
            } => {
                pass.set_index_buffer(buffer.slice(..), 0, *index_format);
                pass.draw_indexed(0..*count, 0, batch_range.clone());
            }
            GpuBufferInfo::NonIndexed => {
                pass.draw(0..gpu_mesh.vertex_count, batch_range.clone());
            }
        }
        RenderCommandResult::Success
    }
}