1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
use std::{
future::Future,
marker::PhantomData,
mem,
panic::AssertUnwindSafe,
sync::Arc,
thread::{self, JoinHandle},
};
use async_task::FallibleTask;
use concurrent_queue::ConcurrentQueue;
use futures_lite::FutureExt;
use crate::{
block_on,
thread_executor::{ThreadExecutor, ThreadExecutorTicker},
Task,
};
struct CallOnDrop(Option<Arc<dyn Fn() + Send + Sync + 'static>>);
impl Drop for CallOnDrop {
fn drop(&mut self) {
if let Some(call) = self.0.as_ref() {
call();
}
}
}
/// Used to create a [`TaskPool`]
#[derive(Default)]
#[must_use]
pub struct TaskPoolBuilder {
/// If set, we'll set up the thread pool to use at most `num_threads` threads.
/// Otherwise use the logical core count of the system
num_threads: Option<usize>,
/// If set, we'll use the given stack size rather than the system default
stack_size: Option<usize>,
/// Allows customizing the name of the threads - helpful for debugging. If set, threads will
/// be named <thread_name> (<thread_index>), i.e. "MyThreadPool (2)"
thread_name: Option<String>,
on_thread_spawn: Option<Arc<dyn Fn() + Send + Sync + 'static>>,
on_thread_destroy: Option<Arc<dyn Fn() + Send + Sync + 'static>>,
}
impl TaskPoolBuilder {
/// Creates a new [`TaskPoolBuilder`] instance
pub fn new() -> Self {
Self::default()
}
/// Override the number of threads created for the pool. If unset, we default to the number
/// of logical cores of the system
pub fn num_threads(mut self, num_threads: usize) -> Self {
self.num_threads = Some(num_threads);
self
}
/// Override the stack size of the threads created for the pool
pub fn stack_size(mut self, stack_size: usize) -> Self {
self.stack_size = Some(stack_size);
self
}
/// Override the name of the threads created for the pool. If set, threads will
/// be named `<thread_name> (<thread_index>)`, i.e. `MyThreadPool (2)`
pub fn thread_name(mut self, thread_name: String) -> Self {
self.thread_name = Some(thread_name);
self
}
/// Sets a callback that is invoked once for every created thread as it starts.
///
/// This is called on the thread itself and has access to all thread-local storage.
/// This will block running async tasks on the thread until the callback completes.
pub fn on_thread_spawn(mut self, f: impl Fn() + Send + Sync + 'static) -> Self {
self.on_thread_spawn = Some(Arc::new(f));
self
}
/// Sets a callback that is invoked once for every created thread as it terminates.
///
/// This is called on the thread itself and has access to all thread-local storage.
/// This will block thread termination until the callback completes.
pub fn on_thread_destroy(mut self, f: impl Fn() + Send + Sync + 'static) -> Self {
self.on_thread_destroy = Some(Arc::new(f));
self
}
/// Creates a new [`TaskPool`] based on the current options.
pub fn build(self) -> TaskPool {
TaskPool::new_internal(self)
}
}
/// A thread pool for executing tasks.
///
/// While futures usually need to be polled to be executed, Bevy tasks are being
/// automatically driven by the pool on threads owned by the pool. The [`Task`]
/// future only needs to be polled in order to receive the result. (For that
/// purpose, it is often stored in a component or resource, see the
/// `async_compute` example.)
///
/// If the result is not required, one may also use [`Task::detach`] and the pool
/// will still execute a task, even if it is dropped.
#[derive(Debug)]
pub struct TaskPool {
/// The executor for the pool
///
/// This has to be separate from TaskPoolInner because we have to create an `Arc<Executor>` to
/// pass into the worker threads, and we must create the worker threads before we can create
/// the `Vec<Task<T>>` contained within `TaskPoolInner`
executor: Arc<async_executor::Executor<'static>>,
/// Inner state of the pool
threads: Vec<JoinHandle<()>>,
shutdown_tx: async_channel::Sender<()>,
}
impl TaskPool {
thread_local! {
static LOCAL_EXECUTOR: async_executor::LocalExecutor<'static> = const { async_executor::LocalExecutor::new() };
static THREAD_EXECUTOR: Arc<ThreadExecutor<'static>> = Arc::new(ThreadExecutor::new());
}
/// Each thread should only create one `ThreadExecutor`, otherwise, there are good chances they will deadlock
pub fn get_thread_executor() -> Arc<ThreadExecutor<'static>> {
Self::THREAD_EXECUTOR.with(|executor| executor.clone())
}
/// Create a `TaskPool` with the default configuration.
pub fn new() -> Self {
TaskPoolBuilder::new().build()
}
fn new_internal(builder: TaskPoolBuilder) -> Self {
let (shutdown_tx, shutdown_rx) = async_channel::unbounded::<()>();
let executor = Arc::new(async_executor::Executor::new());
let num_threads = builder
.num_threads
.unwrap_or_else(crate::available_parallelism);
let threads = (0..num_threads)
.map(|i| {
let ex = Arc::clone(&executor);
let shutdown_rx = shutdown_rx.clone();
let thread_name = if let Some(thread_name) = builder.thread_name.as_deref() {
format!("{thread_name} ({i})")
} else {
format!("TaskPool ({i})")
};
let mut thread_builder = thread::Builder::new().name(thread_name);
if let Some(stack_size) = builder.stack_size {
thread_builder = thread_builder.stack_size(stack_size);
}
let on_thread_spawn = builder.on_thread_spawn.clone();
let on_thread_destroy = builder.on_thread_destroy.clone();
thread_builder
.spawn(move || {
TaskPool::LOCAL_EXECUTOR.with(|local_executor| {
if let Some(on_thread_spawn) = on_thread_spawn {
on_thread_spawn();
drop(on_thread_spawn);
}
let _destructor = CallOnDrop(on_thread_destroy);
loop {
let res = std::panic::catch_unwind(|| {
let tick_forever = async move {
loop {
local_executor.tick().await;
}
};
block_on(ex.run(tick_forever.or(shutdown_rx.recv())))
});
if let Ok(value) = res {
// Use unwrap_err because we expect a Closed error
value.unwrap_err();
break;
}
}
});
})
.expect("Failed to spawn thread.")
})
.collect();
Self {
executor,
threads,
shutdown_tx,
}
}
/// Return the number of threads owned by the task pool
pub fn thread_num(&self) -> usize {
self.threads.len()
}
/// Allows spawning non-`'static` futures on the thread pool. The function takes a callback,
/// passing a scope object into it. The scope object provided to the callback can be used
/// to spawn tasks. This function will await the completion of all tasks before returning.
///
/// This is similar to [`thread::scope`] and `rayon::scope`.
///
/// # Example
///
/// ```
/// use bevy_tasks::TaskPool;
///
/// let pool = TaskPool::new();
/// let mut x = 0;
/// let results = pool.scope(|s| {
/// s.spawn(async {
/// // you can borrow the spawner inside a task and spawn tasks from within the task
/// s.spawn(async {
/// // borrow x and mutate it.
/// x = 2;
/// // return a value from the task
/// 1
/// });
/// // return some other value from the first task
/// 0
/// });
/// });
///
/// // The ordering of results is non-deterministic if you spawn from within tasks as above.
/// // If you're doing this, you'll have to write your code to not depend on the ordering.
/// assert!(results.contains(&0));
/// assert!(results.contains(&1));
///
/// // The ordering is deterministic if you only spawn directly from the closure function.
/// let results = pool.scope(|s| {
/// s.spawn(async { 0 });
/// s.spawn(async { 1 });
/// });
/// assert_eq!(&results[..], &[0, 1]);
///
/// // You can access x after scope runs, since it was only temporarily borrowed in the scope.
/// assert_eq!(x, 2);
/// ```
///
/// # Lifetimes
///
/// The [`Scope`] object takes two lifetimes: `'scope` and `'env`.
///
/// The `'scope` lifetime represents the lifetime of the scope. That is the time during
/// which the provided closure and tasks that are spawned into the scope are run.
///
/// The `'env` lifetime represents the lifetime of whatever is borrowed by the scope.
/// Thus this lifetime must outlive `'scope`.
///
/// ```compile_fail
/// use bevy_tasks::TaskPool;
/// fn scope_escapes_closure() {
/// let pool = TaskPool::new();
/// let foo = Box::new(42);
/// pool.scope(|scope| {
/// std::thread::spawn(move || {
/// // UB. This could spawn on the scope after `.scope` returns and the internal Scope is dropped.
/// scope.spawn(async move {
/// assert_eq!(*foo, 42);
/// });
/// });
/// });
/// }
/// ```
///
/// ```compile_fail
/// use bevy_tasks::TaskPool;
/// fn cannot_borrow_from_closure() {
/// let pool = TaskPool::new();
/// pool.scope(|scope| {
/// let x = 1;
/// let y = &x;
/// scope.spawn(async move {
/// assert_eq!(*y, 1);
/// });
/// });
/// }
pub fn scope<'env, F, T>(&self, f: F) -> Vec<T>
where
F: for<'scope> FnOnce(&'scope Scope<'scope, 'env, T>),
T: Send + 'static,
{
Self::THREAD_EXECUTOR.with(|scope_executor| {
self.scope_with_executor_inner(true, scope_executor, scope_executor, f)
})
}
/// This allows passing an external executor to spawn tasks on. When you pass an external executor
/// [`Scope::spawn_on_scope`] spawns is then run on the thread that [`ThreadExecutor`] is being ticked on.
/// If [`None`] is passed the scope will use a [`ThreadExecutor`] that is ticked on the current thread.
///
/// When `tick_task_pool_executor` is set to `true`, the multithreaded task stealing executor is ticked on the scope
/// thread. Disabling this can be useful when finishing the scope is latency sensitive. Pulling tasks from
/// global executor can run tasks unrelated to the scope and delay when the scope returns.
///
/// See [`Self::scope`] for more details in general about how scopes work.
pub fn scope_with_executor<'env, F, T>(
&self,
tick_task_pool_executor: bool,
external_executor: Option<&ThreadExecutor>,
f: F,
) -> Vec<T>
where
F: for<'scope> FnOnce(&'scope Scope<'scope, 'env, T>),
T: Send + 'static,
{
Self::THREAD_EXECUTOR.with(|scope_executor| {
// If a `external_executor` is passed use that. Otherwise get the executor stored
// in the `THREAD_EXECUTOR` thread local.
if let Some(external_executor) = external_executor {
self.scope_with_executor_inner(
tick_task_pool_executor,
external_executor,
scope_executor,
f,
)
} else {
self.scope_with_executor_inner(
tick_task_pool_executor,
scope_executor,
scope_executor,
f,
)
}
})
}
fn scope_with_executor_inner<'env, F, T>(
&self,
tick_task_pool_executor: bool,
external_executor: &ThreadExecutor,
scope_executor: &ThreadExecutor,
f: F,
) -> Vec<T>
where
F: for<'scope> FnOnce(&'scope Scope<'scope, 'env, T>),
T: Send + 'static,
{
// SAFETY: This safety comment applies to all references transmuted to 'env.
// Any futures spawned with these references need to return before this function completes.
// This is guaranteed because we drive all the futures spawned onto the Scope
// to completion in this function. However, rust has no way of knowing this so we
// transmute the lifetimes to 'env here to appease the compiler as it is unable to validate safety.
// Any usages of the references passed into `Scope` must be accessed through
// the transmuted reference for the rest of this function.
let executor: &async_executor::Executor = &self.executor;
// SAFETY: As above, all futures must complete in this function so we can change the lifetime
let executor: &'env async_executor::Executor = unsafe { mem::transmute(executor) };
// SAFETY: As above, all futures must complete in this function so we can change the lifetime
let external_executor: &'env ThreadExecutor<'env> =
unsafe { mem::transmute(external_executor) };
// SAFETY: As above, all futures must complete in this function so we can change the lifetime
let scope_executor: &'env ThreadExecutor<'env> = unsafe { mem::transmute(scope_executor) };
let spawned: ConcurrentQueue<FallibleTask<Result<T, Box<(dyn std::any::Any + Send)>>>> =
ConcurrentQueue::unbounded();
// shadow the variable so that the owned value cannot be used for the rest of the function
// SAFETY: As above, all futures must complete in this function so we can change the lifetime
let spawned: &'env ConcurrentQueue<
FallibleTask<Result<T, Box<(dyn std::any::Any + Send)>>>,
> = unsafe { mem::transmute(&spawned) };
let scope = Scope {
executor,
external_executor,
scope_executor,
spawned,
scope: PhantomData,
env: PhantomData,
};
// shadow the variable so that the owned value cannot be used for the rest of the function
// SAFETY: As above, all futures must complete in this function so we can change the lifetime
let scope: &'env Scope<'_, 'env, T> = unsafe { mem::transmute(&scope) };
f(scope);
if spawned.is_empty() {
Vec::new()
} else {
block_on(async move {
let get_results = async {
let mut results = Vec::with_capacity(spawned.len());
while let Ok(task) = spawned.pop() {
if let Some(res) = task.await {
match res {
Ok(res) => results.push(res),
Err(payload) => std::panic::resume_unwind(payload),
}
} else {
panic!("Failed to catch panic!");
}
}
results
};
let tick_task_pool_executor = tick_task_pool_executor || self.threads.is_empty();
// we get this from a thread local so we should always be on the scope executors thread.
// note: it is possible `scope_executor` and `external_executor` is the same executor,
// in that case, we should only tick one of them, otherwise, it may cause deadlock.
let scope_ticker = scope_executor.ticker().unwrap();
let external_ticker = if !external_executor.is_same(scope_executor) {
external_executor.ticker()
} else {
None
};
match (external_ticker, tick_task_pool_executor) {
(Some(external_ticker), true) => {
Self::execute_global_external_scope(
executor,
external_ticker,
scope_ticker,
get_results,
)
.await
}
(Some(external_ticker), false) => {
Self::execute_external_scope(external_ticker, scope_ticker, get_results)
.await
}
// either external_executor is none or it is same as scope_executor
(None, true) => {
Self::execute_global_scope(executor, scope_ticker, get_results).await
}
(None, false) => Self::execute_scope(scope_ticker, get_results).await,
}
})
}
}
#[inline]
async fn execute_global_external_scope<'scope, 'ticker, T>(
executor: &'scope async_executor::Executor<'scope>,
external_ticker: ThreadExecutorTicker<'scope, 'ticker>,
scope_ticker: ThreadExecutorTicker<'scope, 'ticker>,
get_results: impl Future<Output = Vec<T>>,
) -> Vec<T> {
// we restart the executors if a task errors. if a scoped
// task errors it will panic the scope on the call to get_results
let execute_forever = async move {
loop {
let tick_forever = async {
loop {
external_ticker.tick().or(scope_ticker.tick()).await;
}
};
// we don't care if it errors. If a scoped task errors it will propagate
// to get_results
let _result = AssertUnwindSafe(executor.run(tick_forever))
.catch_unwind()
.await
.is_ok();
}
};
execute_forever.or(get_results).await
}
#[inline]
async fn execute_external_scope<'scope, 'ticker, T>(
external_ticker: ThreadExecutorTicker<'scope, 'ticker>,
scope_ticker: ThreadExecutorTicker<'scope, 'ticker>,
get_results: impl Future<Output = Vec<T>>,
) -> Vec<T> {
let execute_forever = async {
loop {
let tick_forever = async {
loop {
external_ticker.tick().or(scope_ticker.tick()).await;
}
};
let _result = AssertUnwindSafe(tick_forever).catch_unwind().await.is_ok();
}
};
execute_forever.or(get_results).await
}
#[inline]
async fn execute_global_scope<'scope, 'ticker, T>(
executor: &'scope async_executor::Executor<'scope>,
scope_ticker: ThreadExecutorTicker<'scope, 'ticker>,
get_results: impl Future<Output = Vec<T>>,
) -> Vec<T> {
let execute_forever = async {
loop {
let tick_forever = async {
loop {
scope_ticker.tick().await;
}
};
let _result = AssertUnwindSafe(executor.run(tick_forever))
.catch_unwind()
.await
.is_ok();
}
};
execute_forever.or(get_results).await
}
#[inline]
async fn execute_scope<'scope, 'ticker, T>(
scope_ticker: ThreadExecutorTicker<'scope, 'ticker>,
get_results: impl Future<Output = Vec<T>>,
) -> Vec<T> {
let execute_forever = async {
loop {
let tick_forever = async {
loop {
scope_ticker.tick().await;
}
};
let _result = AssertUnwindSafe(tick_forever).catch_unwind().await.is_ok();
}
};
execute_forever.or(get_results).await
}
/// Spawns a static future onto the thread pool. The returned [`Task`] is a
/// future that can be polled for the result. It can also be canceled and
/// "detached", allowing the task to continue running even if dropped. In
/// any case, the pool will execute the task even without polling by the
/// end-user.
///
/// If the provided future is non-`Send`, [`TaskPool::spawn_local`] should
/// be used instead.
pub fn spawn<T>(&self, future: impl Future<Output = T> + Send + 'static) -> Task<T>
where
T: Send + 'static,
{
Task::new(self.executor.spawn(future))
}
/// Spawns a static future on the thread-local async executor for the
/// current thread. The task will run entirely on the thread the task was
/// spawned on.
///
/// The returned [`Task`] is a future that can be polled for the
/// result. It can also be canceled and "detached", allowing the task to
/// continue running even if dropped. In any case, the pool will execute the
/// task even without polling by the end-user.
///
/// Users should generally prefer to use [`TaskPool::spawn`] instead,
/// unless the provided future is not `Send`.
pub fn spawn_local<T>(&self, future: impl Future<Output = T> + 'static) -> Task<T>
where
T: 'static,
{
Task::new(TaskPool::LOCAL_EXECUTOR.with(|executor| executor.spawn(future)))
}
/// Runs a function with the local executor. Typically used to tick
/// the local executor on the main thread as it needs to share time with
/// other things.
///
/// ```
/// use bevy_tasks::TaskPool;
///
/// TaskPool::new().with_local_executor(|local_executor| {
/// local_executor.try_tick();
/// });
/// ```
pub fn with_local_executor<F, R>(&self, f: F) -> R
where
F: FnOnce(&async_executor::LocalExecutor) -> R,
{
Self::LOCAL_EXECUTOR.with(f)
}
}
impl Default for TaskPool {
fn default() -> Self {
Self::new()
}
}
impl Drop for TaskPool {
fn drop(&mut self) {
self.shutdown_tx.close();
let panicking = thread::panicking();
for join_handle in self.threads.drain(..) {
let res = join_handle.join();
if !panicking {
res.expect("Task thread panicked while executing.");
}
}
}
}
/// A [`TaskPool`] scope for running one or more non-`'static` futures.
///
/// For more information, see [`TaskPool::scope`].
#[derive(Debug)]
pub struct Scope<'scope, 'env: 'scope, T> {
executor: &'scope async_executor::Executor<'scope>,
external_executor: &'scope ThreadExecutor<'scope>,
scope_executor: &'scope ThreadExecutor<'scope>,
spawned: &'scope ConcurrentQueue<FallibleTask<Result<T, Box<(dyn std::any::Any + Send)>>>>,
// make `Scope` invariant over 'scope and 'env
scope: PhantomData<&'scope mut &'scope ()>,
env: PhantomData<&'env mut &'env ()>,
}
impl<'scope, 'env, T: Send + 'scope> Scope<'scope, 'env, T> {
/// Spawns a scoped future onto the thread pool. The scope *must* outlive
/// the provided future. The results of the future will be returned as a part of
/// [`TaskPool::scope`]'s return value.
///
/// For futures that should run on the thread `scope` is called on [`Scope::spawn_on_scope`] should be used
/// instead.
///
/// For more information, see [`TaskPool::scope`].
pub fn spawn<Fut: Future<Output = T> + 'scope + Send>(&self, f: Fut) {
let task = self
.executor
.spawn(AssertUnwindSafe(f).catch_unwind())
.fallible();
// ConcurrentQueue only errors when closed or full, but we never
// close and use an unbounded queue, so it is safe to unwrap
self.spawned.push(task).unwrap();
}
/// Spawns a scoped future onto the thread the scope is run on. The scope *must* outlive
/// the provided future. The results of the future will be returned as a part of
/// [`TaskPool::scope`]'s return value. Users should generally prefer to use
/// [`Scope::spawn`] instead, unless the provided future needs to run on the scope's thread.
///
/// For more information, see [`TaskPool::scope`].
pub fn spawn_on_scope<Fut: Future<Output = T> + 'scope + Send>(&self, f: Fut) {
let task = self
.scope_executor
.spawn(AssertUnwindSafe(f).catch_unwind())
.fallible();
// ConcurrentQueue only errors when closed or full, but we never
// close and use an unbounded queue, so it is safe to unwrap
self.spawned.push(task).unwrap();
}
/// Spawns a scoped future onto the thread of the external thread executor.
/// This is typically the main thread. The scope *must* outlive
/// the provided future. The results of the future will be returned as a part of
/// [`TaskPool::scope`]'s return value. Users should generally prefer to use
/// [`Scope::spawn`] instead, unless the provided future needs to run on the external thread.
///
/// For more information, see [`TaskPool::scope`].
pub fn spawn_on_external<Fut: Future<Output = T> + 'scope + Send>(&self, f: Fut) {
let task = self
.external_executor
.spawn(AssertUnwindSafe(f).catch_unwind())
.fallible();
// ConcurrentQueue only errors when closed or full, but we never
// close and use an unbounded queue, so it is safe to unwrap
self.spawned.push(task).unwrap();
}
}
impl<'scope, 'env, T> Drop for Scope<'scope, 'env, T>
where
T: 'scope,
{
fn drop(&mut self) {
block_on(async {
while let Ok(task) = self.spawned.pop() {
task.cancel().await;
}
});
}
}
#[cfg(test)]
#[allow(clippy::disallowed_types)]
mod tests {
use super::*;
use std::sync::{
atomic::{AtomicBool, AtomicI32, Ordering},
Barrier,
};
#[test]
fn test_spawn() {
let pool = TaskPool::new();
let foo = Box::new(42);
let foo = &*foo;
let count = Arc::new(AtomicI32::new(0));
let outputs = pool.scope(|scope| {
for _ in 0..100 {
let count_clone = count.clone();
scope.spawn(async move {
if *foo != 42 {
panic!("not 42!?!?")
} else {
count_clone.fetch_add(1, Ordering::Relaxed);
*foo
}
});
}
});
for output in &outputs {
assert_eq!(*output, 42);
}
assert_eq!(outputs.len(), 100);
assert_eq!(count.load(Ordering::Relaxed), 100);
}
#[test]
fn test_thread_callbacks() {
let counter = Arc::new(AtomicI32::new(0));
let start_counter = counter.clone();
{
let barrier = Arc::new(Barrier::new(11));
let last_barrier = barrier.clone();
// Build and immediately drop to terminate
let _pool = TaskPoolBuilder::new()
.num_threads(10)
.on_thread_spawn(move || {
start_counter.fetch_add(1, Ordering::Relaxed);
barrier.clone().wait();
})
.build();
last_barrier.wait();
assert_eq!(10, counter.load(Ordering::Relaxed));
}
assert_eq!(10, counter.load(Ordering::Relaxed));
let end_counter = counter.clone();
{
let _pool = TaskPoolBuilder::new()
.num_threads(20)
.on_thread_destroy(move || {
end_counter.fetch_sub(1, Ordering::Relaxed);
})
.build();
assert_eq!(10, counter.load(Ordering::Relaxed));
}
assert_eq!(-10, counter.load(Ordering::Relaxed));
let start_counter = counter.clone();
let end_counter = counter.clone();
{
let barrier = Arc::new(Barrier::new(6));
let last_barrier = barrier.clone();
let _pool = TaskPoolBuilder::new()
.num_threads(5)
.on_thread_spawn(move || {
start_counter.fetch_add(1, Ordering::Relaxed);
barrier.wait();
})
.on_thread_destroy(move || {
end_counter.fetch_sub(1, Ordering::Relaxed);
})
.build();
last_barrier.wait();
assert_eq!(-5, counter.load(Ordering::Relaxed));
}
assert_eq!(-10, counter.load(Ordering::Relaxed));
}
#[test]
fn test_mixed_spawn_on_scope_and_spawn() {
let pool = TaskPool::new();
let foo = Box::new(42);
let foo = &*foo;
let local_count = Arc::new(AtomicI32::new(0));
let non_local_count = Arc::new(AtomicI32::new(0));
let outputs = pool.scope(|scope| {
for i in 0..100 {
if i % 2 == 0 {
let count_clone = non_local_count.clone();
scope.spawn(async move {
if *foo != 42 {
panic!("not 42!?!?")
} else {
count_clone.fetch_add(1, Ordering::Relaxed);
*foo
}
});
} else {
let count_clone = local_count.clone();
scope.spawn_on_scope(async move {
if *foo != 42 {
panic!("not 42!?!?")
} else {
count_clone.fetch_add(1, Ordering::Relaxed);
*foo
}
});
}
}
});
for output in &outputs {
assert_eq!(*output, 42);
}
assert_eq!(outputs.len(), 100);
assert_eq!(local_count.load(Ordering::Relaxed), 50);
assert_eq!(non_local_count.load(Ordering::Relaxed), 50);
}
#[test]
fn test_thread_locality() {
let pool = Arc::new(TaskPool::new());
let count = Arc::new(AtomicI32::new(0));
let barrier = Arc::new(Barrier::new(101));
let thread_check_failed = Arc::new(AtomicBool::new(false));
for _ in 0..100 {
let inner_barrier = barrier.clone();
let count_clone = count.clone();
let inner_pool = pool.clone();
let inner_thread_check_failed = thread_check_failed.clone();
thread::spawn(move || {
inner_pool.scope(|scope| {
let inner_count_clone = count_clone.clone();
scope.spawn(async move {
inner_count_clone.fetch_add(1, Ordering::Release);
});
let spawner = thread::current().id();
let inner_count_clone = count_clone.clone();
scope.spawn_on_scope(async move {
inner_count_clone.fetch_add(1, Ordering::Release);
if thread::current().id() != spawner {
// NOTE: This check is using an atomic rather than simply panicking the
// thread to avoid deadlocking the barrier on failure
inner_thread_check_failed.store(true, Ordering::Release);
}
});
});
inner_barrier.wait();
});
}
barrier.wait();
assert!(!thread_check_failed.load(Ordering::Acquire));
assert_eq!(count.load(Ordering::Acquire), 200);
}
#[test]
fn test_nested_spawn() {
let pool = TaskPool::new();
let foo = Box::new(42);
let foo = &*foo;
let count = Arc::new(AtomicI32::new(0));
let outputs: Vec<i32> = pool.scope(|scope| {
for _ in 0..10 {
let count_clone = count.clone();
scope.spawn(async move {
for _ in 0..10 {
let count_clone_clone = count_clone.clone();
scope.spawn(async move {
if *foo != 42 {
panic!("not 42!?!?")
} else {
count_clone_clone.fetch_add(1, Ordering::Relaxed);
*foo
}
});
}
*foo
});
}
});
for output in &outputs {
assert_eq!(*output, 42);
}
// the inner loop runs 100 times and the outer one runs 10. 100 + 10
assert_eq!(outputs.len(), 110);
assert_eq!(count.load(Ordering::Relaxed), 100);
}
#[test]
fn test_nested_locality() {
let pool = Arc::new(TaskPool::new());
let count = Arc::new(AtomicI32::new(0));
let barrier = Arc::new(Barrier::new(101));
let thread_check_failed = Arc::new(AtomicBool::new(false));
for _ in 0..100 {
let inner_barrier = barrier.clone();
let count_clone = count.clone();
let inner_pool = pool.clone();
let inner_thread_check_failed = thread_check_failed.clone();
thread::spawn(move || {
inner_pool.scope(|scope| {
let spawner = thread::current().id();
let inner_count_clone = count_clone.clone();
scope.spawn(async move {
inner_count_clone.fetch_add(1, Ordering::Release);
// spawning on the scope from another thread runs the futures on the scope's thread
scope.spawn_on_scope(async move {
inner_count_clone.fetch_add(1, Ordering::Release);
if thread::current().id() != spawner {
// NOTE: This check is using an atomic rather than simply panicking the
// thread to avoid deadlocking the barrier on failure
inner_thread_check_failed.store(true, Ordering::Release);
}
});
});
});
inner_barrier.wait();
});
}
barrier.wait();
assert!(!thread_check_failed.load(Ordering::Acquire));
assert_eq!(count.load(Ordering::Acquire), 200);
}
// This test will often freeze on other executors.
#[test]
fn test_nested_scopes() {
let pool = TaskPool::new();
let count = Arc::new(AtomicI32::new(0));
pool.scope(|scope| {
scope.spawn(async {
pool.scope(|scope| {
scope.spawn(async {
count.fetch_add(1, Ordering::Relaxed);
});
});
});
});
assert_eq!(count.load(Ordering::Acquire), 1);
}
}