1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
use bevy_app::FixedMain;
use bevy_ecs::world::World;
use bevy_reflect::Reflect;
use bevy_utils::Duration;
use crate::{time::Time, virt::Virtual};
/// The fixed timestep game clock following virtual time.
///
/// A specialization of the [`Time`] structure. **For method documentation, see
/// [`Time<Fixed>#impl-Time<Fixed>`].**
///
/// It is automatically inserted as a resource by
/// [`TimePlugin`](crate::TimePlugin) and updated based on
/// [`Time<Virtual>`](Virtual). The fixed clock is automatically set as the
/// generic [`Time`] resource during [`FixedUpdate`](bevy_app::FixedUpdate)
/// schedule processing.
///
/// The fixed timestep clock advances in fixed-size increments, which is
/// extremely useful for writing logic (like physics) that should have
/// consistent behavior, regardless of framerate.
///
/// The default [`timestep()`](Time::timestep) is 64 hertz, or 15625
/// microseconds. This value was chosen because using 60 hertz has the potential
/// for a pathological interaction with the monitor refresh rate where the game
/// alternates between running two fixed timesteps and zero fixed timesteps per
/// frame (for example when running two fixed timesteps takes longer than a
/// frame). Additionally, the value is a power of two which losslessly converts
/// into [`f32`] and [`f64`].
///
/// To run a system on a fixed timestep, add it to one of the [`FixedMain`]
/// schedules, most commonly [`FixedUpdate`](bevy_app::FixedUpdate).
///
/// This schedule is run a number of times between
/// [`PreUpdate`](bevy_app::PreUpdate) and [`Update`](bevy_app::Update)
/// according to the accumulated [`overstep()`](Time::overstep) time divided by
/// the [`timestep()`](Time::timestep). This means the schedule may run 0, 1 or
/// more times during a single update (which typically corresponds to a rendered
/// frame).
///
/// `Time<Fixed>` and the generic [`Time`] resource will report a
/// [`delta()`](Time::delta) equal to [`timestep()`](Time::timestep) and always
/// grow [`elapsed()`](Time::elapsed) by one [`timestep()`](Time::timestep) per
/// iteration.
///
/// The fixed timestep clock follows the [`Time<Virtual>`](Virtual) clock, which
/// means it is affected by [`pause()`](Time::pause),
/// [`set_relative_speed()`](Time::set_relative_speed) and
/// [`set_max_delta()`](Time::set_max_delta) from virtual time. If the virtual
/// clock is paused, the [`FixedUpdate`](bevy_app::FixedUpdate) schedule will
/// not run. It is guaranteed that the [`elapsed()`](Time::elapsed) time in
/// `Time<Fixed>` is always between the previous `elapsed()` and the current
/// `elapsed()` value in `Time<Virtual>`, so the values are compatible.
///
/// Changing the timestep size while the game is running should not normally be
/// done, as having a regular interval is the point of this schedule, but it may
/// be necessary for effects like "bullet-time" if the normal granularity of the
/// fixed timestep is too big for the slowed down time. In this case,
/// [`set_timestep()`](Time::set_timestep) and be called to set a new value. The
/// new value will be used immediately for the next run of the
/// [`FixedUpdate`](bevy_app::FixedUpdate) schedule, meaning that it will affect
/// the [`delta()`](Time::delta) value for the very next
/// [`FixedUpdate`](bevy_app::FixedUpdate), even if it is still during the same
/// frame. Any [`overstep()`](Time::overstep) present in the accumulator will be
/// processed according to the new [`timestep()`](Time::timestep) value.
#[derive(Debug, Copy, Clone, Reflect)]
pub struct Fixed {
timestep: Duration,
overstep: Duration,
}
impl Time<Fixed> {
/// Corresponds to 64 Hz.
const DEFAULT_TIMESTEP: Duration = Duration::from_micros(15625);
/// Return new fixed time clock with given timestep as [`Duration`]
///
/// # Panics
///
/// Panics if `timestep` is zero.
pub fn from_duration(timestep: Duration) -> Self {
let mut ret = Self::default();
ret.set_timestep(timestep);
ret
}
/// Return new fixed time clock with given timestep seconds as `f64`
///
/// # Panics
///
/// Panics if `seconds` is zero, negative or not finite.
pub fn from_seconds(seconds: f64) -> Self {
let mut ret = Self::default();
ret.set_timestep_seconds(seconds);
ret
}
/// Return new fixed time clock with given timestep frequency in Hertz (1/seconds)
///
/// # Panics
///
/// Panics if `hz` is zero, negative or not finite.
pub fn from_hz(hz: f64) -> Self {
let mut ret = Self::default();
ret.set_timestep_hz(hz);
ret
}
/// Returns the amount of virtual time that must pass before the fixed
/// timestep schedule is run again.
#[inline]
pub fn timestep(&self) -> Duration {
self.context().timestep
}
/// Sets the amount of virtual time that must pass before the fixed timestep
/// schedule is run again, as [`Duration`].
///
/// Takes effect immediately on the next run of the schedule, respecting
/// what is currently in [`Self::overstep`].
///
/// # Panics
///
/// Panics if `timestep` is zero.
#[inline]
pub fn set_timestep(&mut self, timestep: Duration) {
assert_ne!(
timestep,
Duration::ZERO,
"attempted to set fixed timestep to zero"
);
self.context_mut().timestep = timestep;
}
/// Sets the amount of virtual time that must pass before the fixed timestep
/// schedule is run again, as seconds.
///
/// Timestep is stored as a [`Duration`], which has fixed nanosecond
/// resolution and will be converted from the floating point number.
///
/// Takes effect immediately on the next run of the schedule, respecting
/// what is currently in [`Self::overstep`].
///
/// # Panics
///
/// Panics if `seconds` is zero, negative or not finite.
#[inline]
pub fn set_timestep_seconds(&mut self, seconds: f64) {
assert!(
seconds.is_sign_positive(),
"seconds less than or equal to zero"
);
assert!(seconds.is_finite(), "seconds is infinite");
self.set_timestep(Duration::from_secs_f64(seconds));
}
/// Sets the amount of virtual time that must pass before the fixed timestep
/// schedule is run again, as frequency.
///
/// The timestep value is set to `1 / hz`, converted to a [`Duration`] which
/// has fixed nanosecond resolution.
///
/// Takes effect immediately on the next run of the schedule, respecting
/// what is currently in [`Self::overstep`].
///
/// # Panics
///
/// Panics if `hz` is zero, negative or not finite.
#[inline]
pub fn set_timestep_hz(&mut self, hz: f64) {
assert!(hz.is_sign_positive(), "Hz less than or equal to zero");
assert!(hz.is_finite(), "Hz is infinite");
self.set_timestep_seconds(1.0 / hz);
}
/// Returns the amount of overstep time accumulated toward new steps, as
/// [`Duration`].
#[inline]
pub fn overstep(&self) -> Duration {
self.context().overstep
}
/// Discard a part of the overstep amount.
///
/// If `discard` is higher than overstep, the overstep becomes zero.
#[inline]
pub fn discard_overstep(&mut self, discard: Duration) {
let context = self.context_mut();
context.overstep = context.overstep.saturating_sub(discard);
}
/// Returns the amount of overstep time accumulated toward new steps, as an
/// [`f32`] fraction of the timestep.
#[inline]
pub fn overstep_fraction(&self) -> f32 {
self.context().overstep.as_secs_f32() / self.context().timestep.as_secs_f32()
}
/// Returns the amount of overstep time accumulated toward new steps, as an
/// [`f64`] fraction of the timestep.
#[inline]
pub fn overstep_fraction_f64(&self) -> f64 {
self.context().overstep.as_secs_f64() / self.context().timestep.as_secs_f64()
}
fn accumulate(&mut self, delta: Duration) {
self.context_mut().overstep += delta;
}
fn expend(&mut self) -> bool {
let timestep = self.timestep();
if let Some(new_value) = self.context_mut().overstep.checked_sub(timestep) {
// reduce accumulated and increase elapsed by period
self.context_mut().overstep = new_value;
self.advance_by(timestep);
true
} else {
// no more periods left in accumulated
false
}
}
}
impl Default for Fixed {
fn default() -> Self {
Self {
timestep: Time::<Fixed>::DEFAULT_TIMESTEP,
overstep: Duration::ZERO,
}
}
}
/// Runs [`FixedMain`] zero or more times based on delta of
/// [`Time<Virtual>`](Virtual) and [`Time::overstep`]
pub fn run_fixed_main_schedule(world: &mut World) {
let delta = world.resource::<Time<Virtual>>().delta();
world.resource_mut::<Time<Fixed>>().accumulate(delta);
// Run the schedule until we run out of accumulated time
let _ = world.try_schedule_scope(FixedMain, |world, schedule| {
while world.resource_mut::<Time<Fixed>>().expend() {
*world.resource_mut::<Time>() = world.resource::<Time<Fixed>>().as_generic();
schedule.run(world);
}
});
*world.resource_mut::<Time>() = world.resource::<Time<Virtual>>().as_generic();
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_set_timestep() {
let mut time = Time::<Fixed>::default();
assert_eq!(time.timestep(), Time::<Fixed>::DEFAULT_TIMESTEP);
time.set_timestep(Duration::from_millis(500));
assert_eq!(time.timestep(), Duration::from_millis(500));
time.set_timestep_seconds(0.25);
assert_eq!(time.timestep(), Duration::from_millis(250));
time.set_timestep_hz(8.0);
assert_eq!(time.timestep(), Duration::from_millis(125));
}
#[test]
fn test_expend() {
let mut time = Time::<Fixed>::from_seconds(2.0);
assert_eq!(time.delta(), Duration::ZERO);
assert_eq!(time.elapsed(), Duration::ZERO);
time.accumulate(Duration::from_secs(1));
assert_eq!(time.delta(), Duration::ZERO);
assert_eq!(time.elapsed(), Duration::ZERO);
assert_eq!(time.overstep(), Duration::from_secs(1));
assert_eq!(time.overstep_fraction(), 0.5);
assert_eq!(time.overstep_fraction_f64(), 0.5);
assert!(!time.expend()); // false
assert_eq!(time.delta(), Duration::ZERO);
assert_eq!(time.elapsed(), Duration::ZERO);
assert_eq!(time.overstep(), Duration::from_secs(1));
assert_eq!(time.overstep_fraction(), 0.5);
assert_eq!(time.overstep_fraction_f64(), 0.5);
time.accumulate(Duration::from_secs(1));
assert_eq!(time.delta(), Duration::ZERO);
assert_eq!(time.elapsed(), Duration::ZERO);
assert_eq!(time.overstep(), Duration::from_secs(2));
assert_eq!(time.overstep_fraction(), 1.0);
assert_eq!(time.overstep_fraction_f64(), 1.0);
assert!(time.expend()); // true
assert_eq!(time.delta(), Duration::from_secs(2));
assert_eq!(time.elapsed(), Duration::from_secs(2));
assert_eq!(time.overstep(), Duration::ZERO);
assert_eq!(time.overstep_fraction(), 0.0);
assert_eq!(time.overstep_fraction_f64(), 0.0);
assert!(!time.expend()); // false
assert_eq!(time.delta(), Duration::from_secs(2));
assert_eq!(time.elapsed(), Duration::from_secs(2));
assert_eq!(time.overstep(), Duration::ZERO);
assert_eq!(time.overstep_fraction(), 0.0);
assert_eq!(time.overstep_fraction_f64(), 0.0);
time.accumulate(Duration::from_secs(1));
assert_eq!(time.delta(), Duration::from_secs(2));
assert_eq!(time.elapsed(), Duration::from_secs(2));
assert_eq!(time.overstep(), Duration::from_secs(1));
assert_eq!(time.overstep_fraction(), 0.5);
assert_eq!(time.overstep_fraction_f64(), 0.5);
assert!(!time.expend()); // false
assert_eq!(time.delta(), Duration::from_secs(2));
assert_eq!(time.elapsed(), Duration::from_secs(2));
assert_eq!(time.overstep(), Duration::from_secs(1));
assert_eq!(time.overstep_fraction(), 0.5);
assert_eq!(time.overstep_fraction_f64(), 0.5);
}
#[test]
fn test_expend_multiple() {
let mut time = Time::<Fixed>::from_seconds(2.0);
time.accumulate(Duration::from_secs(7));
assert_eq!(time.overstep(), Duration::from_secs(7));
assert!(time.expend()); // true
assert_eq!(time.elapsed(), Duration::from_secs(2));
assert_eq!(time.overstep(), Duration::from_secs(5));
assert!(time.expend()); // true
assert_eq!(time.elapsed(), Duration::from_secs(4));
assert_eq!(time.overstep(), Duration::from_secs(3));
assert!(time.expend()); // true
assert_eq!(time.elapsed(), Duration::from_secs(6));
assert_eq!(time.overstep(), Duration::from_secs(1));
assert!(!time.expend()); // false
assert_eq!(time.elapsed(), Duration::from_secs(6));
assert_eq!(time.overstep(), Duration::from_secs(1));
}
}