1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
use std::ops::Mul;
use super::Transform;
use bevy_ecs::{component::Component, reflect::ReflectComponent};
use bevy_math::{Affine3A, Mat4, Quat, Vec3, Vec3A};
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
/// Describe the position of an entity relative to the reference frame.
///
/// * To place or move an entity, you should set its [`Transform`].
/// * [`GlobalTransform`] is fully managed by bevy, you cannot mutate it, use
/// [`Transform`] instead.
/// * To get the global transform of an entity, you should get its [`GlobalTransform`].
/// * For transform hierarchies to work correctly, you must have both a [`Transform`] and a [`GlobalTransform`].
/// * You may use the [`TransformBundle`](crate::TransformBundle) to guarantee this.
///
/// ## [`Transform`] and [`GlobalTransform`]
///
/// [`Transform`] is the position of an entity relative to its parent position, or the reference
/// frame if it doesn't have a [`Parent`](bevy_hierarchy::Parent).
///
/// [`GlobalTransform`] is the position of an entity relative to the reference frame.
///
/// [`GlobalTransform`] is updated from [`Transform`] by systems in the system set
/// [`TransformPropagate`](crate::TransformSystem::TransformPropagate).
///
/// This system runs during [`PostUpdate`](bevy_app::PostUpdate). If you
/// update the [`Transform`] of an entity in this schedule or after, you will notice a 1 frame lag
/// before the [`GlobalTransform`] is updated.
///
/// # Examples
///
/// - [`transform`]
///
/// [`transform`]: https://github.com/bevyengine/bevy/blob/latest/examples/transforms/transform.rs
#[derive(Component, Debug, PartialEq, Clone, Copy, Reflect)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[reflect(Component, Default, PartialEq)]
pub struct GlobalTransform(Affine3A);
macro_rules! impl_local_axis {
($pos_name: ident, $neg_name: ident, $axis: ident) => {
#[doc=std::concat!("Return the local ", std::stringify!($pos_name), " vector (", std::stringify!($axis) ,").")]
#[inline]
pub fn $pos_name(&self) -> Vec3 {
(self.0.matrix3 * Vec3::$axis).normalize()
}
#[doc=std::concat!("Return the local ", std::stringify!($neg_name), " vector (-", std::stringify!($axis) ,").")]
#[inline]
pub fn $neg_name(&self) -> Vec3 {
-self.$pos_name()
}
};
}
impl GlobalTransform {
/// An identity [`GlobalTransform`] that maps all points in space to themselves.
pub const IDENTITY: Self = Self(Affine3A::IDENTITY);
#[doc(hidden)]
#[inline]
pub fn from_xyz(x: f32, y: f32, z: f32) -> Self {
Self::from_translation(Vec3::new(x, y, z))
}
#[doc(hidden)]
#[inline]
pub fn from_translation(translation: Vec3) -> Self {
GlobalTransform(Affine3A::from_translation(translation))
}
#[doc(hidden)]
#[inline]
pub fn from_rotation(rotation: Quat) -> Self {
GlobalTransform(Affine3A::from_rotation_translation(rotation, Vec3::ZERO))
}
#[doc(hidden)]
#[inline]
pub fn from_scale(scale: Vec3) -> Self {
GlobalTransform(Affine3A::from_scale(scale))
}
/// Returns the 3d affine transformation matrix as a [`Mat4`].
#[inline]
pub fn compute_matrix(&self) -> Mat4 {
Mat4::from(self.0)
}
/// Returns the 3d affine transformation matrix as an [`Affine3A`].
#[inline]
pub fn affine(&self) -> Affine3A {
self.0
}
/// Returns the transformation as a [`Transform`].
///
/// The transform is expected to be non-degenerate and without shearing, or the output
/// will be invalid.
#[inline]
pub fn compute_transform(&self) -> Transform {
let (scale, rotation, translation) = self.0.to_scale_rotation_translation();
Transform {
translation,
rotation,
scale,
}
}
/// Returns the [`Transform`] `self` would have if it was a child of an entity
/// with the `parent` [`GlobalTransform`].
///
/// This is useful if you want to "reparent" an [`Entity`](bevy_ecs::entity::Entity).
/// Say you have an entity `e1` that you want to turn into a child of `e2`,
/// but you want `e1` to keep the same global transform, even after re-parenting. You would use:
///
/// ```
/// # use bevy_transform::prelude::{GlobalTransform, Transform};
/// # use bevy_ecs::prelude::{Entity, Query, Component, Commands};
/// # use bevy_hierarchy::{prelude::Parent, BuildChildren};
/// #[derive(Component)]
/// struct ToReparent {
/// new_parent: Entity,
/// }
/// fn reparent_system(
/// mut commands: Commands,
/// mut targets: Query<(&mut Transform, Entity, &GlobalTransform, &ToReparent)>,
/// transforms: Query<&GlobalTransform>,
/// ) {
/// for (mut transform, entity, initial, to_reparent) in targets.iter_mut() {
/// if let Ok(parent_transform) = transforms.get(to_reparent.new_parent) {
/// *transform = initial.reparented_to(parent_transform);
/// commands.entity(entity)
/// .remove::<ToReparent>()
/// .set_parent(to_reparent.new_parent);
/// }
/// }
/// }
/// ```
///
/// The transform is expected to be non-degenerate and without shearing, or the output
/// will be invalid.
#[inline]
pub fn reparented_to(&self, parent: &GlobalTransform) -> Transform {
let relative_affine = parent.affine().inverse() * self.affine();
let (scale, rotation, translation) = relative_affine.to_scale_rotation_translation();
Transform {
translation,
rotation,
scale,
}
}
/// Extracts `scale`, `rotation` and `translation` from `self`.
///
/// The transform is expected to be non-degenerate and without shearing, or the output
/// will be invalid.
#[inline]
pub fn to_scale_rotation_translation(&self) -> (Vec3, Quat, Vec3) {
self.0.to_scale_rotation_translation()
}
impl_local_axis!(right, left, X);
impl_local_axis!(up, down, Y);
impl_local_axis!(back, forward, Z);
/// Get the translation as a [`Vec3`].
#[inline]
pub fn translation(&self) -> Vec3 {
self.0.translation.into()
}
/// Get the translation as a [`Vec3A`].
#[inline]
pub fn translation_vec3a(&self) -> Vec3A {
self.0.translation
}
/// Get an upper bound of the radius from the given `extents`.
#[inline]
pub fn radius_vec3a(&self, extents: Vec3A) -> f32 {
(self.0.matrix3 * extents).length()
}
/// Transforms the given `point`, applying shear, scale, rotation and translation.
///
/// This moves `point` into the local space of this [`GlobalTransform`].
#[inline]
pub fn transform_point(&self, point: Vec3) -> Vec3 {
self.0.transform_point3(point)
}
/// Multiplies `self` with `transform` component by component, returning the
/// resulting [`GlobalTransform`]
#[inline]
pub fn mul_transform(&self, transform: Transform) -> Self {
Self(self.0 * transform.compute_affine())
}
}
impl Default for GlobalTransform {
fn default() -> Self {
Self::IDENTITY
}
}
impl From<Transform> for GlobalTransform {
fn from(transform: Transform) -> Self {
Self(transform.compute_affine())
}
}
impl From<Affine3A> for GlobalTransform {
fn from(affine: Affine3A) -> Self {
Self(affine)
}
}
impl From<Mat4> for GlobalTransform {
fn from(matrix: Mat4) -> Self {
Self(Affine3A::from_mat4(matrix))
}
}
impl Mul<GlobalTransform> for GlobalTransform {
type Output = GlobalTransform;
#[inline]
fn mul(self, global_transform: GlobalTransform) -> Self::Output {
GlobalTransform(self.0 * global_transform.0)
}
}
impl Mul<Transform> for GlobalTransform {
type Output = GlobalTransform;
#[inline]
fn mul(self, transform: Transform) -> Self::Output {
self.mul_transform(transform)
}
}
impl Mul<Vec3> for GlobalTransform {
type Output = Vec3;
#[inline]
fn mul(self, value: Vec3) -> Self::Output {
self.transform_point(value)
}
}
#[cfg(test)]
mod test {
use super::*;
use bevy_math::EulerRot::XYZ;
fn transform_equal(left: GlobalTransform, right: Transform) -> bool {
left.0.abs_diff_eq(right.compute_affine(), 0.01)
}
#[test]
fn reparented_to_transform_identity() {
fn reparent_to_same(t1: GlobalTransform, t2: GlobalTransform) -> Transform {
t2.mul_transform(t1.into()).reparented_to(&t2)
}
let t1 = GlobalTransform::from(Transform {
translation: Vec3::new(1034.0, 34.0, -1324.34),
rotation: Quat::from_euler(XYZ, 1.0, 0.9, 2.1),
scale: Vec3::new(1.0, 1.0, 1.0),
});
let t2 = GlobalTransform::from(Transform {
translation: Vec3::new(0.0, -54.493, 324.34),
rotation: Quat::from_euler(XYZ, 1.9, 0.3, 3.0),
scale: Vec3::new(1.345, 1.345, 1.345),
});
let retransformed = reparent_to_same(t1, t2);
assert!(
transform_equal(t1, retransformed),
"t1:{:#?} retransformed:{:#?}",
t1.compute_transform(),
retransformed,
);
}
#[test]
fn reparented_usecase() {
let t1 = GlobalTransform::from(Transform {
translation: Vec3::new(1034.0, 34.0, -1324.34),
rotation: Quat::from_euler(XYZ, 0.8, 1.9, 2.1),
scale: Vec3::new(10.9, 10.9, 10.9),
});
let t2 = GlobalTransform::from(Transform {
translation: Vec3::new(28.0, -54.493, 324.34),
rotation: Quat::from_euler(XYZ, 0.0, 3.1, 0.1),
scale: Vec3::new(0.9, 0.9, 0.9),
});
// goal: find `X` such as `t2 * X = t1`
let reparented = t1.reparented_to(&t2);
let t1_prime = t2 * reparented;
assert!(
transform_equal(t1, t1_prime.into()),
"t1:{:#?} t1_prime:{:#?}",
t1.compute_transform(),
t1_prime.compute_transform(),
);
}
}