1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
#![cfg(feature = "extern_crate_alloc")]

//! Stuff to boost things in the `alloc` crate.
//!
//! * You must enable the `extern_crate_alloc` feature of `bytemuck` or you will
//!   not be able to use this module! This is generally done by adding the
//!   feature to the dependency in Cargo.toml like so:
//!
//!   `bytemuck = { version = "VERSION_YOU_ARE_USING", features =
//! ["extern_crate_alloc"]}`

use super::*;
#[cfg(target_has_atomic = "ptr")]
use alloc::sync::Arc;
use alloc::{
  alloc::{alloc_zeroed, Layout},
  boxed::Box,
  rc::Rc,
  vec,
  vec::Vec,
};
use core::ops::{Deref, DerefMut};

/// As [`try_cast_box`](try_cast_box), but unwraps for you.
#[inline]
pub fn cast_box<A: NoUninit, B: AnyBitPattern>(input: Box<A>) -> Box<B> {
  try_cast_box(input).map_err(|(e, _v)| e).unwrap()
}

/// Attempts to cast the content type of a [`Box`](alloc::boxed::Box).
///
/// On failure you get back an error along with the starting `Box`.
///
/// ## Failure
///
/// * The start and end content type of the `Box` must have the exact same
///   alignment.
/// * The start and end size of the `Box` must have the exact same size.
#[inline]
pub fn try_cast_box<A: NoUninit, B: AnyBitPattern>(
  input: Box<A>,
) -> Result<Box<B>, (PodCastError, Box<A>)> {
  if align_of::<A>() != align_of::<B>() {
    Err((PodCastError::AlignmentMismatch, input))
  } else if size_of::<A>() != size_of::<B>() {
    Err((PodCastError::SizeMismatch, input))
  } else {
    // Note(Lokathor): This is much simpler than with the Vec casting!
    let ptr: *mut B = Box::into_raw(input) as *mut B;
    Ok(unsafe { Box::from_raw(ptr) })
  }
}

/// Allocates a `Box<T>` with all of the contents being zeroed out.
///
/// This uses the global allocator to create a zeroed allocation and _then_
/// turns it into a Box. In other words, it's 100% assured that the zeroed data
/// won't be put temporarily on the stack. You can make a box of any size
/// without fear of a stack overflow.
///
/// ## Failure
///
/// This fails if the allocation fails.
#[inline]
pub fn try_zeroed_box<T: Zeroable>() -> Result<Box<T>, ()> {
  if size_of::<T>() == 0 {
    // This will not allocate but simply create a dangling pointer.
    let dangling = core::ptr::NonNull::dangling().as_ptr();
    return Ok(unsafe { Box::from_raw(dangling) });
  }
  let layout = Layout::new::<T>();
  let ptr = unsafe { alloc_zeroed(layout) };
  if ptr.is_null() {
    // we don't know what the error is because `alloc_zeroed` is a dumb API
    Err(())
  } else {
    Ok(unsafe { Box::<T>::from_raw(ptr as *mut T) })
  }
}

/// As [`try_zeroed_box`], but unwraps for you.
#[inline]
pub fn zeroed_box<T: Zeroable>() -> Box<T> {
  try_zeroed_box().unwrap()
}

/// Allocates a `Vec<T>` of length and capacity exactly equal to `length` and
/// all elements zeroed.
///
/// ## Failure
///
/// This fails if the allocation fails, or if a layout cannot be calculated for
/// the allocation.
pub fn try_zeroed_vec<T: Zeroable>(length: usize) -> Result<Vec<T>, ()> {
  if length == 0 {
    Ok(Vec::new())
  } else {
    let boxed_slice = try_zeroed_slice_box(length)?;
    Ok(boxed_slice.into_vec())
  }
}

/// As [`try_zeroed_vec`] but unwraps for you
pub fn zeroed_vec<T: Zeroable>(length: usize) -> Vec<T> {
  try_zeroed_vec(length).unwrap()
}

/// Allocates a `Box<[T]>` with all contents being zeroed out.
///
/// This uses the global allocator to create a zeroed allocation and _then_
/// turns it into a Box. In other words, it's 100% assured that the zeroed data
/// won't be put temporarily on the stack. You can make a box of any size
/// without fear of a stack overflow.
///
/// ## Failure
///
/// This fails if the allocation fails, or if a layout cannot be calculated for
/// the allocation.
#[inline]
pub fn try_zeroed_slice_box<T: Zeroable>(
  length: usize,
) -> Result<Box<[T]>, ()> {
  if size_of::<T>() == 0 || length == 0 {
    // This will not allocate but simply create a dangling slice pointer.
    let dangling = core::ptr::NonNull::dangling().as_ptr();
    let dangling_slice = core::ptr::slice_from_raw_parts_mut(dangling, length);
    return Ok(unsafe { Box::from_raw(dangling_slice) });
  }
  let layout = core::alloc::Layout::array::<T>(length).map_err(|_| ())?;
  let ptr = unsafe { alloc_zeroed(layout) };
  if ptr.is_null() {
    // we don't know what the error is because `alloc_zeroed` is a dumb API
    Err(())
  } else {
    let slice =
      unsafe { core::slice::from_raw_parts_mut(ptr as *mut T, length) };
    Ok(unsafe { Box::<[T]>::from_raw(slice) })
  }
}

/// As [`try_zeroed_slice_box`](try_zeroed_slice_box), but unwraps for you.
pub fn zeroed_slice_box<T: Zeroable>(length: usize) -> Box<[T]> {
  try_zeroed_slice_box(length).unwrap()
}

/// As [`try_cast_slice_box`](try_cast_slice_box), but unwraps for you.
#[inline]
pub fn cast_slice_box<A: NoUninit, B: AnyBitPattern>(
  input: Box<[A]>,
) -> Box<[B]> {
  try_cast_slice_box(input).map_err(|(e, _v)| e).unwrap()
}

/// Attempts to cast the content type of a `Box<[T]>`.
///
/// On failure you get back an error along with the starting `Box<[T]>`.
///
/// ## Failure
///
/// * The start and end content type of the `Box<[T]>` must have the exact same
///   alignment.
/// * The start and end content size in bytes of the `Box<[T]>` must be the
///   exact same.
#[inline]
pub fn try_cast_slice_box<A: NoUninit, B: AnyBitPattern>(
  input: Box<[A]>,
) -> Result<Box<[B]>, (PodCastError, Box<[A]>)> {
  if align_of::<A>() != align_of::<B>() {
    Err((PodCastError::AlignmentMismatch, input))
  } else if size_of::<A>() != size_of::<B>() {
    if size_of::<A>() * input.len() % size_of::<B>() != 0 {
      // If the size in bytes of the underlying buffer does not match an exact
      // multiple of the size of B, we cannot cast between them.
      Err((PodCastError::SizeMismatch, input))
    } else {
      // Because the size is an exact multiple, we can now change the length
      // of the slice and recreate the Box
      // NOTE: This is a valid operation because according to the docs of
      // std::alloc::GlobalAlloc::dealloc(), the Layout that was used to alloc
      // the block must be the same Layout that is used to dealloc the block.
      // Luckily, Layout only stores two things, the alignment, and the size in
      // bytes. So as long as both of those stay the same, the Layout will
      // remain a valid input to dealloc.
      let length = size_of::<A>() * input.len() / size_of::<B>();
      let box_ptr: *mut A = Box::into_raw(input) as *mut A;
      let ptr: *mut [B] =
        unsafe { core::slice::from_raw_parts_mut(box_ptr as *mut B, length) };
      Ok(unsafe { Box::<[B]>::from_raw(ptr) })
    }
  } else {
    let box_ptr: *mut [A] = Box::into_raw(input);
    let ptr: *mut [B] = box_ptr as *mut [B];
    Ok(unsafe { Box::<[B]>::from_raw(ptr) })
  }
}

/// As [`try_cast_vec`](try_cast_vec), but unwraps for you.
#[inline]
pub fn cast_vec<A: NoUninit, B: AnyBitPattern>(input: Vec<A>) -> Vec<B> {
  try_cast_vec(input).map_err(|(e, _v)| e).unwrap()
}

/// Attempts to cast the content type of a [`Vec`](alloc::vec::Vec).
///
/// On failure you get back an error along with the starting `Vec`.
///
/// ## Failure
///
/// * The start and end content type of the `Vec` must have the exact same
///   alignment.
/// * The start and end content size in bytes of the `Vec` must be the exact
///   same.
/// * The start and end capacity in bytes of the `Vec` must be the exact same.
#[inline]
pub fn try_cast_vec<A: NoUninit, B: AnyBitPattern>(
  input: Vec<A>,
) -> Result<Vec<B>, (PodCastError, Vec<A>)> {
  if align_of::<A>() != align_of::<B>() {
    Err((PodCastError::AlignmentMismatch, input))
  } else if size_of::<A>() != size_of::<B>() {
    if size_of::<A>() * input.len() % size_of::<B>() != 0
      || size_of::<A>() * input.capacity() % size_of::<B>() != 0
    {
      // If the size in bytes of the underlying buffer does not match an exact
      // multiple of the size of B, we cannot cast between them.
      // Note that we have to pay special attention to make sure that both
      // length and capacity are valid under B, as we do not want to
      // change which bytes are considered part of the initialized slice
      // of the Vec
      Err((PodCastError::SizeMismatch, input))
    } else {
      // Because the size is an exact multiple, we can now change the length and
      // capacity and recreate the Vec
      // NOTE: This is a valid operation because according to the docs of
      // std::alloc::GlobalAlloc::dealloc(), the Layout that was used to alloc
      // the block must be the same Layout that is used to dealloc the block.
      // Luckily, Layout only stores two things, the alignment, and the size in
      // bytes. So as long as both of those stay the same, the Layout will
      // remain a valid input to dealloc.

      // Note(Lokathor): First we record the length and capacity, which don't
      // have any secret provenance metadata.
      let length: usize = size_of::<A>() * input.len() / size_of::<B>();
      let capacity: usize = size_of::<A>() * input.capacity() / size_of::<B>();
      // Note(Lokathor): Next we "pre-forget" the old Vec by wrapping with
      // ManuallyDrop, because if we used `core::mem::forget` after taking the
      // pointer then that would invalidate our pointer. In nightly there's a
      // "into raw parts" method, which we can switch this too eventually.
      let mut manual_drop_vec = ManuallyDrop::new(input);
      let vec_ptr: *mut A = manual_drop_vec.as_mut_ptr();
      let ptr: *mut B = vec_ptr as *mut B;
      Ok(unsafe { Vec::from_raw_parts(ptr, length, capacity) })
    }
  } else {
    // Note(Lokathor): First we record the length and capacity, which don't have
    // any secret provenance metadata.
    let length: usize = input.len();
    let capacity: usize = input.capacity();
    // Note(Lokathor): Next we "pre-forget" the old Vec by wrapping with
    // ManuallyDrop, because if we used `core::mem::forget` after taking the
    // pointer then that would invalidate our pointer. In nightly there's a
    // "into raw parts" method, which we can switch this too eventually.
    let mut manual_drop_vec = ManuallyDrop::new(input);
    let vec_ptr: *mut A = manual_drop_vec.as_mut_ptr();
    let ptr: *mut B = vec_ptr as *mut B;
    Ok(unsafe { Vec::from_raw_parts(ptr, length, capacity) })
  }
}

/// This "collects" a slice of pod data into a vec of a different pod type.
///
/// Unlike with [`cast_slice`] and [`cast_slice_mut`], this will always work.
///
/// The output vec will be of a minimal size/capacity to hold the slice given.
///
/// ```rust
/// # use bytemuck::*;
/// let halfwords: [u16; 4] = [5, 6, 7, 8];
/// let vec_of_words: Vec<u32> = pod_collect_to_vec(&halfwords);
/// if cfg!(target_endian = "little") {
///   assert_eq!(&vec_of_words[..], &[0x0006_0005, 0x0008_0007][..])
/// } else {
///   assert_eq!(&vec_of_words[..], &[0x0005_0006, 0x0007_0008][..])
/// }
/// ```
pub fn pod_collect_to_vec<A: NoUninit, B: NoUninit + AnyBitPattern>(
  src: &[A],
) -> Vec<B> {
  let src_size = size_of_val(src);
  // Note(Lokathor): dst_count is rounded up so that the dest will always be at
  // least as many bytes as the src.
  let dst_count = src_size / size_of::<B>()
    + if src_size % size_of::<B>() != 0 { 1 } else { 0 };
  let mut dst = vec![B::zeroed(); dst_count];

  let src_bytes: &[u8] = cast_slice(src);
  let dst_bytes: &mut [u8] = cast_slice_mut(&mut dst[..]);
  dst_bytes[..src_size].copy_from_slice(src_bytes);
  dst
}

/// As [`try_cast_rc`](try_cast_rc), but unwraps for you.
#[inline]
pub fn cast_rc<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>(
  input: Rc<A>,
) -> Rc<B> {
  try_cast_rc(input).map_err(|(e, _v)| e).unwrap()
}

/// Attempts to cast the content type of a [`Rc`](alloc::rc::Rc).
///
/// On failure you get back an error along with the starting `Rc`.
///
/// The bounds on this function are the same as [`cast_mut`], because a user
/// could call `Rc::get_unchecked_mut` on the output, which could be observable
/// in the input.
///
/// ## Failure
///
/// * The start and end content type of the `Rc` must have the exact same
///   alignment.
/// * The start and end size of the `Rc` must have the exact same size.
#[inline]
pub fn try_cast_rc<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>(
  input: Rc<A>,
) -> Result<Rc<B>, (PodCastError, Rc<A>)> {
  if align_of::<A>() != align_of::<B>() {
    Err((PodCastError::AlignmentMismatch, input))
  } else if size_of::<A>() != size_of::<B>() {
    Err((PodCastError::SizeMismatch, input))
  } else {
    // Safety: Rc::from_raw requires size and alignment match, which is met.
    let ptr: *const B = Rc::into_raw(input) as *const B;
    Ok(unsafe { Rc::from_raw(ptr) })
  }
}

/// As [`try_cast_arc`](try_cast_arc), but unwraps for you.
#[inline]
#[cfg(target_has_atomic = "ptr")]
pub fn cast_arc<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>(
  input: Arc<A>,
) -> Arc<B> {
  try_cast_arc(input).map_err(|(e, _v)| e).unwrap()
}

/// Attempts to cast the content type of a [`Arc`](alloc::sync::Arc).
///
/// On failure you get back an error along with the starting `Arc`.
///
/// The bounds on this function are the same as [`cast_mut`], because a user
/// could call `Rc::get_unchecked_mut` on the output, which could be observable
/// in the input.
///
/// ## Failure
///
/// * The start and end content type of the `Arc` must have the exact same
///   alignment.
/// * The start and end size of the `Arc` must have the exact same size.
#[inline]
#[cfg(target_has_atomic = "ptr")]
pub fn try_cast_arc<
  A: NoUninit + AnyBitPattern,
  B: NoUninit + AnyBitPattern,
>(
  input: Arc<A>,
) -> Result<Arc<B>, (PodCastError, Arc<A>)> {
  if align_of::<A>() != align_of::<B>() {
    Err((PodCastError::AlignmentMismatch, input))
  } else if size_of::<A>() != size_of::<B>() {
    Err((PodCastError::SizeMismatch, input))
  } else {
    // Safety: Arc::from_raw requires size and alignment match, which is met.
    let ptr: *const B = Arc::into_raw(input) as *const B;
    Ok(unsafe { Arc::from_raw(ptr) })
  }
}

/// As [`try_cast_slice_rc`](try_cast_slice_rc), but unwraps for you.
#[inline]
pub fn cast_slice_rc<
  A: NoUninit + AnyBitPattern,
  B: NoUninit + AnyBitPattern,
>(
  input: Rc<[A]>,
) -> Rc<[B]> {
  try_cast_slice_rc(input).map_err(|(e, _v)| e).unwrap()
}

/// Attempts to cast the content type of a `Rc<[T]>`.
///
/// On failure you get back an error along with the starting `Rc<[T]>`.
///
/// The bounds on this function are the same as [`cast_mut`], because a user
/// could call `Rc::get_unchecked_mut` on the output, which could be observable
/// in the input.
///
/// ## Failure
///
/// * The start and end content type of the `Rc<[T]>` must have the exact same
///   alignment.
/// * The start and end content size in bytes of the `Rc<[T]>` must be the exact
///   same.
#[inline]
pub fn try_cast_slice_rc<
  A: NoUninit + AnyBitPattern,
  B: NoUninit + AnyBitPattern,
>(
  input: Rc<[A]>,
) -> Result<Rc<[B]>, (PodCastError, Rc<[A]>)> {
  if align_of::<A>() != align_of::<B>() {
    Err((PodCastError::AlignmentMismatch, input))
  } else if size_of::<A>() != size_of::<B>() {
    if size_of::<A>() * input.len() % size_of::<B>() != 0 {
      // If the size in bytes of the underlying buffer does not match an exact
      // multiple of the size of B, we cannot cast between them.
      Err((PodCastError::SizeMismatch, input))
    } else {
      // Because the size is an exact multiple, we can now change the length
      // of the slice and recreate the Rc
      // NOTE: This is a valid operation because according to the docs of
      // std::rc::Rc::from_raw(), the type U that was in the original Rc<U>
      // acquired from Rc::into_raw() must have the same size alignment and
      // size of the type T in the new Rc<T>. So as long as both the size
      // and alignment stay the same, the Rc will remain a valid Rc.
      let length = size_of::<A>() * input.len() / size_of::<B>();
      let rc_ptr: *const A = Rc::into_raw(input) as *const A;
      // Must use ptr::slice_from_raw_parts, because we cannot make an
      // intermediate const reference, because it has mutable provenance,
      // nor an intermediate mutable reference, because it could be aliased.
      let ptr = core::ptr::slice_from_raw_parts(rc_ptr as *const B, length);
      Ok(unsafe { Rc::<[B]>::from_raw(ptr) })
    }
  } else {
    let rc_ptr: *const [A] = Rc::into_raw(input);
    let ptr: *const [B] = rc_ptr as *const [B];
    Ok(unsafe { Rc::<[B]>::from_raw(ptr) })
  }
}

/// As [`try_cast_slice_arc`](try_cast_slice_arc), but unwraps for you.
#[inline]
#[cfg(target_has_atomic = "ptr")]
pub fn cast_slice_arc<
  A: NoUninit + AnyBitPattern,
  B: NoUninit + AnyBitPattern,
>(
  input: Arc<[A]>,
) -> Arc<[B]> {
  try_cast_slice_arc(input).map_err(|(e, _v)| e).unwrap()
}

/// Attempts to cast the content type of a `Arc<[T]>`.
///
/// On failure you get back an error along with the starting `Arc<[T]>`.
///
/// The bounds on this function are the same as [`cast_mut`], because a user
/// could call `Rc::get_unchecked_mut` on the output, which could be observable
/// in the input.
///
/// ## Failure
///
/// * The start and end content type of the `Arc<[T]>` must have the exact same
///   alignment.
/// * The start and end content size in bytes of the `Arc<[T]>` must be the
///   exact same.
#[inline]
#[cfg(target_has_atomic = "ptr")]
pub fn try_cast_slice_arc<
  A: NoUninit + AnyBitPattern,
  B: NoUninit + AnyBitPattern,
>(
  input: Arc<[A]>,
) -> Result<Arc<[B]>, (PodCastError, Arc<[A]>)> {
  if align_of::<A>() != align_of::<B>() {
    Err((PodCastError::AlignmentMismatch, input))
  } else if size_of::<A>() != size_of::<B>() {
    if size_of::<A>() * input.len() % size_of::<B>() != 0 {
      // If the size in bytes of the underlying buffer does not match an exact
      // multiple of the size of B, we cannot cast between them.
      Err((PodCastError::SizeMismatch, input))
    } else {
      // Because the size is an exact multiple, we can now change the length
      // of the slice and recreate the Arc
      // NOTE: This is a valid operation because according to the docs of
      // std::sync::Arc::from_raw(), the type U that was in the original Arc<U>
      // acquired from Arc::into_raw() must have the same size alignment and
      // size of the type T in the new Arc<T>. So as long as both the size
      // and alignment stay the same, the Arc will remain a valid Arc.
      let length = size_of::<A>() * input.len() / size_of::<B>();
      let arc_ptr: *const A = Arc::into_raw(input) as *const A;
      // Must use ptr::slice_from_raw_parts, because we cannot make an
      // intermediate const reference, because it has mutable provenance,
      // nor an intermediate mutable reference, because it could be aliased.
      let ptr = core::ptr::slice_from_raw_parts(arc_ptr as *const B, length);
      Ok(unsafe { Arc::<[B]>::from_raw(ptr) })
    }
  } else {
    let arc_ptr: *const [A] = Arc::into_raw(input);
    let ptr: *const [B] = arc_ptr as *const [B];
    Ok(unsafe { Arc::<[B]>::from_raw(ptr) })
  }
}

/// An extension trait for `TransparentWrapper` and alloc types.
pub trait TransparentWrapperAlloc<Inner: ?Sized>:
  TransparentWrapper<Inner>
{
  /// Convert a vec of the inner type into a vec of the wrapper type.
  fn wrap_vec(s: Vec<Inner>) -> Vec<Self>
  where
    Self: Sized,
    Inner: Sized,
  {
    let mut s = core::mem::ManuallyDrop::new(s);

    let length = s.len();
    let capacity = s.capacity();
    let ptr = s.as_mut_ptr();

    unsafe {
      // SAFETY:
      // * ptr comes from Vec (and will not be double-dropped)
      // * the two types have the identical representation
      // * the len and capacity fields are valid
      Vec::from_raw_parts(ptr as *mut Self, length, capacity)
    }
  }

  /// Convert a box to the inner type into a box to the wrapper
  /// type.
  #[inline]
  fn wrap_box(s: Box<Inner>) -> Box<Self> {
    assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());

    unsafe {
      // A pointer cast doesn't work here because rustc can't tell that
      // the vtables match (because of the `?Sized` restriction relaxation).
      // A `transmute` doesn't work because the sizes are unspecified.
      //
      // SAFETY:
      // * The unsafe contract requires that pointers to Inner and Self have
      //   identical representations
      // * Box is guaranteed to have representation identical to a (non-null)
      //   pointer
      // * The pointer comes from a box (and thus satisfies all safety
      //   requirements of Box)
      let inner_ptr: *mut Inner = Box::into_raw(s);
      let wrapper_ptr: *mut Self = transmute!(inner_ptr);
      Box::from_raw(wrapper_ptr)
    }
  }

  /// Convert an [`Rc`](alloc::rc::Rc) to the inner type into an `Rc` to the
  /// wrapper type.
  #[inline]
  fn wrap_rc(s: Rc<Inner>) -> Rc<Self> {
    assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());

    unsafe {
      // A pointer cast doesn't work here because rustc can't tell that
      // the vtables match (because of the `?Sized` restriction relaxation).
      // A `transmute` doesn't work because the layout of Rc is unspecified.
      //
      // SAFETY:
      // * The unsafe contract requires that pointers to Inner and Self have
      //   identical representations, and that the size and alignment of Inner
      //   and Self are the same, which meets the safety requirements of
      //   Rc::from_raw
      let inner_ptr: *const Inner = Rc::into_raw(s);
      let wrapper_ptr: *const Self = transmute!(inner_ptr);
      Rc::from_raw(wrapper_ptr)
    }
  }

  /// Convert an [`Arc`](alloc::sync::Arc) to the inner type into an `Arc` to
  /// the wrapper type.
  #[inline]
  #[cfg(target_has_atomic = "ptr")]
  fn wrap_arc(s: Arc<Inner>) -> Arc<Self> {
    assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());

    unsafe {
      // A pointer cast doesn't work here because rustc can't tell that
      // the vtables match (because of the `?Sized` restriction relaxation).
      // A `transmute` doesn't work because the layout of Arc is unspecified.
      //
      // SAFETY:
      // * The unsafe contract requires that pointers to Inner and Self have
      //   identical representations, and that the size and alignment of Inner
      //   and Self are the same, which meets the safety requirements of
      //   Arc::from_raw
      let inner_ptr: *const Inner = Arc::into_raw(s);
      let wrapper_ptr: *const Self = transmute!(inner_ptr);
      Arc::from_raw(wrapper_ptr)
    }
  }

  /// Convert a vec of the wrapper type into a vec of the inner type.
  fn peel_vec(s: Vec<Self>) -> Vec<Inner>
  where
    Self: Sized,
    Inner: Sized,
  {
    let mut s = core::mem::ManuallyDrop::new(s);

    let length = s.len();
    let capacity = s.capacity();
    let ptr = s.as_mut_ptr();

    unsafe {
      // SAFETY:
      // * ptr comes from Vec (and will not be double-dropped)
      // * the two types have the identical representation
      // * the len and capacity fields are valid
      Vec::from_raw_parts(ptr as *mut Inner, length, capacity)
    }
  }

  /// Convert a box to the wrapper type into a box to the inner
  /// type.
  #[inline]
  fn peel_box(s: Box<Self>) -> Box<Inner> {
    assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());

    unsafe {
      // A pointer cast doesn't work here because rustc can't tell that
      // the vtables match (because of the `?Sized` restriction relaxation).
      // A `transmute` doesn't work because the sizes are unspecified.
      //
      // SAFETY:
      // * The unsafe contract requires that pointers to Inner and Self have
      //   identical representations
      // * Box is guaranteed to have representation identical to a (non-null)
      //   pointer
      // * The pointer comes from a box (and thus satisfies all safety
      //   requirements of Box)
      let wrapper_ptr: *mut Self = Box::into_raw(s);
      let inner_ptr: *mut Inner = transmute!(wrapper_ptr);
      Box::from_raw(inner_ptr)
    }
  }

  /// Convert an [`Rc`](alloc::rc::Rc) to the wrapper type into an `Rc` to the
  /// inner type.
  #[inline]
  fn peel_rc(s: Rc<Self>) -> Rc<Inner> {
    assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());

    unsafe {
      // A pointer cast doesn't work here because rustc can't tell that
      // the vtables match (because of the `?Sized` restriction relaxation).
      // A `transmute` doesn't work because the layout of Rc is unspecified.
      //
      // SAFETY:
      // * The unsafe contract requires that pointers to Inner and Self have
      //   identical representations, and that the size and alignment of Inner
      //   and Self are the same, which meets the safety requirements of
      //   Rc::from_raw
      let wrapper_ptr: *const Self = Rc::into_raw(s);
      let inner_ptr: *const Inner = transmute!(wrapper_ptr);
      Rc::from_raw(inner_ptr)
    }
  }

  /// Convert an [`Arc`](alloc::sync::Arc) to the wrapper type into an `Arc` to
  /// the inner type.
  #[inline]
  #[cfg(target_has_atomic = "ptr")]
  fn peel_arc(s: Arc<Self>) -> Arc<Inner> {
    assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());

    unsafe {
      // A pointer cast doesn't work here because rustc can't tell that
      // the vtables match (because of the `?Sized` restriction relaxation).
      // A `transmute` doesn't work because the layout of Arc is unspecified.
      //
      // SAFETY:
      // * The unsafe contract requires that pointers to Inner and Self have
      //   identical representations, and that the size and alignment of Inner
      //   and Self are the same, which meets the safety requirements of
      //   Arc::from_raw
      let wrapper_ptr: *const Self = Arc::into_raw(s);
      let inner_ptr: *const Inner = transmute!(wrapper_ptr);
      Arc::from_raw(inner_ptr)
    }
  }
}

impl<I: ?Sized, T: ?Sized + TransparentWrapper<I>> TransparentWrapperAlloc<I>
  for T
{
}

/// As `Box<[u8]>`, but remembers the original alignment.
pub struct BoxBytes {
  // SAFETY: `ptr` is owned, was allocated with `layout`, and points to
  // `layout.size()` initialized bytes.
  ptr: NonNull<u8>,
  layout: Layout,
}

impl Deref for BoxBytes {
  type Target = [u8];

  fn deref(&self) -> &Self::Target {
    // SAFETY: See type invariant.
    unsafe {
      core::slice::from_raw_parts(self.ptr.as_ptr(), self.layout.size())
    }
  }
}

impl DerefMut for BoxBytes {
  fn deref_mut(&mut self) -> &mut Self::Target {
    // SAFETY: See type invariant.
    unsafe {
      core::slice::from_raw_parts_mut(self.ptr.as_ptr(), self.layout.size())
    }
  }
}

impl Drop for BoxBytes {
  fn drop(&mut self) {
    // SAFETY: See type invariant.
    unsafe { alloc::alloc::dealloc(self.ptr.as_ptr(), self.layout) };
  }
}

impl<T: NoUninit> From<Box<T>> for BoxBytes {
  fn from(value: Box<T>) -> Self {
    let layout = Layout::new::<T>();
    let ptr = Box::into_raw(value) as *mut u8;
    // SAFETY: Box::into_raw() returns a non-null pointer.
    let ptr = unsafe { NonNull::new_unchecked(ptr) };
    BoxBytes { ptr, layout }
  }
}

/// Re-interprets `Box<T>` as `BoxBytes`.
#[inline]
pub fn box_bytes_of<T: NoUninit>(input: Box<T>) -> BoxBytes {
  input.into()
}

/// Re-interprets `BoxBytes` as `Box<T>`.
///
/// ## Panics
///
/// This is [`try_from_box_bytes`] but will panic on error and the input will be
/// dropped.
#[inline]
pub fn from_box_bytes<T: AnyBitPattern>(input: BoxBytes) -> Box<T> {
  try_from_box_bytes(input).map_err(|(error, _)| error).unwrap()
}

/// Re-interprets `BoxBytes` as `Box<T>`.
///
/// ## Panics
///
/// * If the input isn't aligned for the new type
/// * If the input's length isn’t exactly the size of the new type
#[inline]
pub fn try_from_box_bytes<T: AnyBitPattern>(
  input: BoxBytes,
) -> Result<Box<T>, (PodCastError, BoxBytes)> {
  let layout = Layout::new::<T>();
  if input.layout.align() != layout.align() {
    return Err((PodCastError::AlignmentMismatch, input));
  } else if input.layout.size() != layout.size() {
    return Err((PodCastError::SizeMismatch, input));
  } else {
    let (ptr, _) = input.into_raw_parts();
    // SAFETY: See type invariant.
    Ok(unsafe { Box::from_raw(ptr.as_ptr() as *mut T) })
  }
}

impl BoxBytes {
  /// Constructs a `BoxBytes` from its raw parts.
  ///
  /// # Safety
  ///
  /// The pointer is owned, has been allocated with the provided layout, and
  /// points to `layout.size()` initialized bytes.
  pub unsafe fn from_raw_parts(ptr: NonNull<u8>, layout: Layout) -> Self {
    BoxBytes { ptr, layout }
  }

  /// Deconstructs a `BoxBytes` into its raw parts.
  ///
  /// The pointer is owned, has been allocated with the provided layout, and
  /// points to `layout.size()` initialized bytes.
  pub fn into_raw_parts(self) -> (NonNull<u8>, Layout) {
    let me = ManuallyDrop::new(self);
    (me.ptr, me.layout)
  }

  /// Returns the original layout.
  pub fn layout(&self) -> Layout {
    self.layout
  }
}