1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
use crate::soft_f32::SoftF32;
type F = SoftF32;
type FInt = u32;
pub(crate) const fn add(a: F, b: F) -> F {
let one: FInt = 1;
let zero: FInt = 0;
let bits = F::BITS as FInt;
let significand_bits = F::SIGNIFICAND_BITS;
let max_exponent = F::EXPONENT_MAX;
let implicit_bit = F::IMPLICIT_BIT;
let significand_mask = F::SIGNIFICAND_MASK;
let sign_bit = F::SIGN_MASK as FInt;
let abs_mask = sign_bit - one;
let exponent_mask = F::EXPONENT_MASK;
let inf_rep = exponent_mask;
let quiet_bit = implicit_bit >> 1;
let qnan_rep = exponent_mask | quiet_bit;
let mut a_rep = a.repr();
let mut b_rep = b.repr();
let a_abs = a_rep & abs_mask;
let b_abs = b_rep & abs_mask;
// Detect if a or b is zero, infinity, or NaN.
if a_abs.wrapping_sub(one) >= inf_rep - one || b_abs.wrapping_sub(one) >= inf_rep - one {
// NaN + anything = qNaN
if a_abs > inf_rep {
return F::from_repr(a_abs | quiet_bit);
}
// anything + NaN = qNaN
if b_abs > inf_rep {
return F::from_repr(b_abs | quiet_bit);
}
if a_abs == inf_rep {
// +/-infinity + -/+infinity = qNaN
if (a.repr() ^ b.repr()) == sign_bit {
return F::from_repr(qnan_rep);
} else {
// +/-infinity + anything remaining = +/- infinity
return a;
}
}
// anything remaining + +/-infinity = +/-infinity
if b_abs == inf_rep {
return b;
}
// zero + anything = anything
if a_abs == 0 {
// but we need to get the sign right for zero + zero
if b_abs == 0 {
return F::from_repr(a.repr() & b.repr());
} else {
return b;
}
}
// anything + zero = anything
if b_abs == 0 {
return a;
}
}
// Swap a and b if necessary so that a has the larger absolute value.
if b_abs > a_abs {
// Don't use mem::swap because it may generate references to memcpy in unoptimized code.
let tmp = a_rep;
a_rep = b_rep;
b_rep = tmp;
}
// Extract the exponent and significand from the (possibly swapped) a and b.
let mut a_exponent: i32 = ((a_rep & exponent_mask) >> significand_bits) as _;
let mut b_exponent: i32 = ((b_rep & exponent_mask) >> significand_bits) as _;
let mut a_significand = a_rep & significand_mask;
let mut b_significand = b_rep & significand_mask;
// normalize any denormals, and adjust the exponent accordingly.
if a_exponent == 0 {
let (exponent, significand) = F::normalize(a_significand);
a_exponent = exponent;
a_significand = significand;
}
if b_exponent == 0 {
let (exponent, significand) = F::normalize(b_significand);
b_exponent = exponent;
b_significand = significand;
}
// The sign of the result is the sign of the larger operand, a. If they
// have opposite signs, we are performing a subtraction; otherwise addition.
let result_sign = a_rep & sign_bit;
let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero;
// Shift the significands to give us round, guard and sticky, and or in the
// implicit significand bit. (If we fell through from the denormal path it
// was already set by normalize(), but setting it twice won't hurt
// anything.)
a_significand = (a_significand | implicit_bit) << 3;
b_significand = (b_significand | implicit_bit) << 3;
// Shift the significand of b by the difference in exponents, with a sticky
// bottom bit to get rounding correct.
let align = a_exponent.wrapping_sub(b_exponent) as _;
if align != 0 {
if align < bits {
let sticky = (b_significand << bits.wrapping_sub(align) != 0) as FInt;
b_significand = (b_significand >> align) | sticky;
} else {
b_significand = one; // sticky; b is known to be non-zero.
}
}
if subtraction {
a_significand = a_significand.wrapping_sub(b_significand);
// If a == -b, return +zero.
if a_significand == 0 {
return F::from_repr(0);
}
// If partial cancellation occured, we need to left-shift the result
// and adjust the exponent:
if a_significand < implicit_bit << 3 {
let shift =
a_significand.leading_zeros() as i32 - (implicit_bit << 3).leading_zeros() as i32;
a_significand <<= shift;
a_exponent -= shift;
}
} else {
// addition
a_significand += b_significand;
// If the addition carried up, we need to right-shift the result and
// adjust the exponent:
if a_significand & implicit_bit << 4 != 0 {
let sticky = (a_significand & one != 0) as FInt;
a_significand = a_significand >> 1 | sticky;
a_exponent += 1;
}
}
// If we have overflowed the type, return +/- infinity:
if a_exponent >= max_exponent as i32 {
return F::from_repr(inf_rep | result_sign);
}
if a_exponent <= 0 {
// Result is denormal before rounding; the exponent is zero and we
// need to shift the significand.
let shift = (1 - a_exponent) as _;
let sticky = ((a_significand << bits.wrapping_sub(shift)) != 0) as FInt;
a_significand = a_significand >> shift | sticky;
a_exponent = 0;
}
// Low three bits are round, guard, and sticky.
let a_significand_i32: i32 = a_significand as _;
let round_guard_sticky: i32 = a_significand_i32 & 0x7;
// Shift the significand into place, and mask off the implicit bit.
let mut result = a_significand >> 3 & significand_mask;
// Insert the exponent and sign.
result |= (a_exponent as FInt) << significand_bits;
result |= result_sign;
// Final rounding. The result may overflow to infinity, but that is the
// correct result in that case.
if round_guard_sticky > 0x4 {
result += one;
}
if round_guard_sticky == 0x4 {
result += result & one;
}
F::from_repr(result)
}
#[cfg(test)]
mod test {
use crate::soft_f32::SoftF32;
#[test]
fn sanity_check() {
assert_eq!(SoftF32(1.0).add(SoftF32(1.0)).0, 2.0)
}
}