1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
use crate::soft_f32::{u32_widen_mul, SoftF32};
type F = SoftF32;
type FInt = u32;
pub(crate) const fn div(a: F, b: F) -> F {
const NUMBER_OF_HALF_ITERATIONS: usize = 0;
const NUMBER_OF_FULL_ITERATIONS: usize = 3;
const USE_NATIVE_FULL_ITERATIONS: bool = true;
let one = 1;
let zero = 0;
let hw = F::BITS / 2;
let lo_mask = u32::MAX >> hw;
let significand_bits = F::SIGNIFICAND_BITS;
let max_exponent = F::EXPONENT_MAX;
let exponent_bias = F::EXPONENT_BIAS;
let implicit_bit = F::IMPLICIT_BIT;
let significand_mask = F::SIGNIFICAND_MASK;
let sign_bit = F::SIGN_MASK as FInt;
let abs_mask = sign_bit - one;
let exponent_mask = F::EXPONENT_MASK;
let inf_rep = exponent_mask;
let quiet_bit = implicit_bit >> 1;
let qnan_rep = exponent_mask | quiet_bit;
#[inline(always)]
const fn negate_u32(a: u32) -> u32 {
(<i32>::wrapping_neg(a as i32)) as u32
}
let a_rep = a.repr();
let b_rep = b.repr();
let a_exponent = (a_rep >> significand_bits) & max_exponent;
let b_exponent = (b_rep >> significand_bits) & max_exponent;
let quotient_sign = (a_rep ^ b_rep) & sign_bit;
let mut a_significand = a_rep & significand_mask;
let mut b_significand = b_rep & significand_mask;
let mut scale = 0;
// Detect if a or b is zero, denormal, infinity, or NaN.
if a_exponent.wrapping_sub(one) >= (max_exponent - 1)
|| b_exponent.wrapping_sub(one) >= (max_exponent - 1)
{
let a_abs = a_rep & abs_mask;
let b_abs = b_rep & abs_mask;
// NaN / anything = qNaN
if a_abs > inf_rep {
return F::from_repr(a_rep | quiet_bit);
}
// anything / NaN = qNaN
if b_abs > inf_rep {
return F::from_repr(b_rep | quiet_bit);
}
if a_abs == inf_rep {
if b_abs == inf_rep {
// infinity / infinity = NaN
return F::from_repr(qnan_rep);
} else {
// infinity / anything else = +/- infinity
return F::from_repr(a_abs | quotient_sign);
}
}
// anything else / infinity = +/- 0
if b_abs == inf_rep {
return F::from_repr(quotient_sign);
}
if a_abs == zero {
if b_abs == zero {
// zero / zero = NaN
return F::from_repr(qnan_rep);
} else {
// zero / anything else = +/- zero
return F::from_repr(quotient_sign);
}
}
// anything else / zero = +/- infinity
if b_abs == zero {
return F::from_repr(inf_rep | quotient_sign);
}
// one or both of a or b is denormal, the other (if applicable) is a
// normal number. Renormalize one or both of a and b, and set scale to
// include the necessary exponent adjustment.
if a_abs < implicit_bit {
let (exponent, significand) = F::normalize(a_significand);
scale += exponent;
a_significand = significand;
}
if b_abs < implicit_bit {
let (exponent, significand) = F::normalize(b_significand);
scale -= exponent;
b_significand = significand;
}
}
// Set the implicit significand bit. If we fell through from the
// denormal path it was already set by normalize( ), but setting it twice
// won't hurt anything.
a_significand |= implicit_bit;
b_significand |= implicit_bit;
let written_exponent: i32 = (a_exponent
.wrapping_sub(b_exponent)
.wrapping_add(scale as u32))
.wrapping_add(exponent_bias) as i32;
let b_uq1 = b_significand << (F::BITS - significand_bits - 1);
// Align the significand of b as a UQ1.(n-1) fixed-point number in the range
// [1.0, 2.0) and get a UQ0.n approximate reciprocal using a small minimax
// polynomial approximation: x0 = 3/4 + 1/sqrt(2) - b/2.
// The max error for this approximation is achieved at endpoints, so
// abs(x0(b) - 1/b) <= abs(x0(1) - 1/1) = 3/4 - 1/sqrt(2) = 0.04289...,
// which is about 4.5 bits.
// The initial approximation is between x0(1.0) = 0.9571... and x0(2.0) = 0.4571...
// Then, refine the reciprocal estimate using a quadratically converging
// Newton-Raphson iteration:
// x_{n+1} = x_n * (2 - x_n * b)
//
// Let b be the original divisor considered "in infinite precision" and
// obtained from IEEE754 representation of function argument (with the
// implicit bit set). Corresponds to rep_t-sized b_UQ1 represented in
// UQ1.(W-1).
//
// Let b_hw be an infinitely precise number obtained from the highest (HW-1)
// bits of divisor significand (with the implicit bit set). Corresponds to
// half_rep_t-sized b_UQ1_hw represented in UQ1.(HW-1) that is a **truncated**
// version of b_UQ1.
//
// Let e_n := x_n - 1/b_hw
// E_n := x_n - 1/b
// abs(E_n) <= abs(e_n) + (1/b_hw - 1/b)
// = abs(e_n) + (b - b_hw) / (b*b_hw)
// <= abs(e_n) + 2 * 2^-HW
// rep_t-sized iterations may be slower than the corresponding half-width
// variant depending on the handware and whether single/double/quad precision
// is selected.
// NB: Using half-width iterations increases computation errors due to
// rounding, so error estimations have to be computed taking the selected
// mode into account!
#[allow(clippy::absurd_extreme_comparisons)]
let mut x_uq0 = if NUMBER_OF_HALF_ITERATIONS > 0 {
// Starting with (n-1) half-width iterations
let b_uq1_hw: u16 = (b_significand >> (significand_bits + 1 - hw)) as u16;
// C is (3/4 + 1/sqrt(2)) - 1 truncated to W0 fractional bits as UQ0.HW
// with W0 being either 16 or 32 and W0 <= HW.
// That is, C is the aforementioned 3/4 + 1/sqrt(2) constant (from which
// b/2 is subtracted to obtain x0) wrapped to [0, 1) range.
// HW is at least 32. Shifting into the highest bits if needed.
let c_hw = (0x7504_u32 as u16).wrapping_shl(hw.wrapping_sub(32));
// b >= 1, thus an upper bound for 3/4 + 1/sqrt(2) - b/2 is about 0.9572,
// so x0 fits to UQ0.HW without wrapping.
let x_uq0_hw: u16 = {
let mut x_uq0_hw: u16 = c_hw.wrapping_sub(b_uq1_hw /* exact b_hw/2 as UQ0.HW */);
// An e_0 error is comprised of errors due to
// * x0 being an inherently imprecise first approximation of 1/b_hw
// * C_hw being some (irrational) number **truncated** to W0 bits
// Please note that e_0 is calculated against the infinitely precise
// reciprocal of b_hw (that is, **truncated** version of b).
//
// e_0 <= 3/4 - 1/sqrt(2) + 2^-W0
// By construction, 1 <= b < 2
// f(x) = x * (2 - b*x) = 2*x - b*x^2
// f'(x) = 2 * (1 - b*x)
//
// On the [0, 1] interval, f(0) = 0,
// then it increses until f(1/b) = 1 / b, maximum on (0, 1),
// then it decreses to f(1) = 2 - b
//
// Let g(x) = x - f(x) = b*x^2 - x.
// On (0, 1/b), g(x) < 0 <=> f(x) > x
// On (1/b, 1], g(x) > 0 <=> f(x) < x
//
// For half-width iterations, b_hw is used instead of b.
#[allow(clippy::reversed_empty_ranges)]
let mut idx = 0;
while idx < NUMBER_OF_HALF_ITERATIONS {
// corr_UQ1_hw can be **larger** than 2 - b_hw*x by at most 1*Ulp
// of corr_UQ1_hw.
// "0.0 - (...)" is equivalent to "2.0 - (...)" in UQ1.(HW-1).
// On the other hand, corr_UQ1_hw should not overflow from 2.0 to 0.0 provided
// no overflow occurred earlier: ((rep_t)x_UQ0_hw * b_UQ1_hw >> HW) is
// expected to be strictly positive because b_UQ1_hw has its highest bit set
// and x_UQ0_hw should be rather large (it converges to 1/2 < 1/b_hw <= 1).
let corr_uq1_hw: u16 = 0_u32
.wrapping_sub((x_uq0_hw as u32).wrapping_mul(b_uq1_hw as u32) >> hw)
as u16;
// Now, we should multiply UQ0.HW and UQ1.(HW-1) numbers, naturally
// obtaining an UQ1.(HW-1) number and proving its highest bit could be
// considered to be 0 to be able to represent it in UQ0.HW.
// From the above analysis of f(x), if corr_UQ1_hw would be represented
// without any intermediate loss of precision (that is, in twice_rep_t)
// x_UQ0_hw could be at most [1.]000... if b_hw is exactly 1.0 and strictly
// less otherwise. On the other hand, to obtain [1.]000..., one have to pass
// 1/b_hw == 1.0 to f(x), so this cannot occur at all without overflow (due
// to 1.0 being not representable as UQ0.HW).
// The fact corr_UQ1_hw was virtually round up (due to result of
// multiplication being **first** truncated, then negated - to improve
// error estimations) can increase x_UQ0_hw by up to 2*Ulp of x_UQ0_hw.
x_uq0_hw = ((x_uq0_hw as u32).wrapping_mul(corr_uq1_hw as u32) >> (hw - 1)) as u16;
// Now, either no overflow occurred or x_UQ0_hw is 0 or 1 in its half_rep_t
// representation. In the latter case, x_UQ0_hw will be either 0 or 1 after
// any number of iterations, so just subtract 2 from the reciprocal
// approximation after last iteration.
// In infinite precision, with 0 <= eps1, eps2 <= U = 2^-HW:
// corr_UQ1_hw = 2 - (1/b_hw + e_n) * b_hw + 2*eps1
// = 1 - e_n * b_hw + 2*eps1
// x_UQ0_hw = (1/b_hw + e_n) * (1 - e_n*b_hw + 2*eps1) - eps2
// = 1/b_hw - e_n + 2*eps1/b_hw + e_n - e_n^2*b_hw + 2*e_n*eps1 - eps2
// = 1/b_hw + 2*eps1/b_hw - e_n^2*b_hw + 2*e_n*eps1 - eps2
// e_{n+1} = -e_n^2*b_hw + 2*eps1/b_hw + 2*e_n*eps1 - eps2
// = 2*e_n*eps1 - (e_n^2*b_hw + eps2) + 2*eps1/b_hw
// \------ >0 -------/ \-- >0 ---/
// abs(e_{n+1}) <= 2*abs(e_n)*U + max(2*e_n^2 + U, 2 * U)
idx += 1;
}
// For initial half-width iterations, U = 2^-HW
// Let abs(e_n) <= u_n * U,
// then abs(e_{n+1}) <= 2 * u_n * U^2 + max(2 * u_n^2 * U^2 + U, 2 * U)
// u_{n+1} <= 2 * u_n * U + max(2 * u_n^2 * U + 1, 2)
// Account for possible overflow (see above). For an overflow to occur for the
// first time, for "ideal" corr_UQ1_hw (that is, without intermediate
// truncation), the result of x_UQ0_hw * corr_UQ1_hw should be either maximum
// value representable in UQ0.HW or less by 1. This means that 1/b_hw have to
// be not below that value (see g(x) above), so it is safe to decrement just
// once after the final iteration. On the other hand, an effective value of
// divisor changes after this point (from b_hw to b), so adjust here.
x_uq0_hw.wrapping_sub(1_u16)
};
// Error estimations for full-precision iterations are calculated just
// as above, but with U := 2^-W and taking extra decrementing into account.
// We need at least one such iteration.
// Simulating operations on a twice_rep_t to perform a single final full-width
// iteration. Using ad-hoc multiplication implementations to take advantage
// of particular structure of operands.
let blo: u32 = b_uq1 & lo_mask;
// x_UQ0 = x_UQ0_hw * 2^HW - 1
// x_UQ0 * b_UQ1 = (x_UQ0_hw * 2^HW) * (b_UQ1_hw * 2^HW + blo) - b_UQ1
//
// <--- higher half ---><--- lower half --->
// [x_UQ0_hw * b_UQ1_hw]
// + [ x_UQ0_hw * blo ]
// - [ b_UQ1 ]
// = [ result ][.... discarded ...]
let corr_uq1 = negate_u32(
(x_uq0_hw as u32) * (b_uq1_hw as u32) + (((x_uq0_hw as u32) * (blo)) >> hw) - 1,
); // account for *possible* carry
let lo_corr = corr_uq1 & lo_mask;
let hi_corr = corr_uq1 >> hw;
// x_UQ0 * corr_UQ1 = (x_UQ0_hw * 2^HW) * (hi_corr * 2^HW + lo_corr) - corr_UQ1
let mut x_uq0 = (((x_uq0_hw as u32) * hi_corr) << 1)
.wrapping_add(((x_uq0_hw as u32) * lo_corr) >> (hw - 1))
.wrapping_sub(2);
// 1 to account for the highest bit of corr_UQ1 can be 1
// 1 to account for possible carry
// Just like the case of half-width iterations but with possibility
// of overflowing by one extra Ulp of x_UQ0.
x_uq0 -= one;
// ... and then traditional fixup by 2 should work
// On error estimation:
// abs(E_{N-1}) <= (u_{N-1} + 2 /* due to conversion e_n -> E_n */) * 2^-HW
// + (2^-HW + 2^-W))
// abs(E_{N-1}) <= (u_{N-1} + 3.01) * 2^-HW
// Then like for the half-width iterations:
// With 0 <= eps1, eps2 < 2^-W
// E_N = 4 * E_{N-1} * eps1 - (E_{N-1}^2 * b + 4 * eps2) + 4 * eps1 / b
// abs(E_N) <= 2^-W * [ 4 * abs(E_{N-1}) + max(2 * abs(E_{N-1})^2 * 2^W + 4, 8)) ]
// abs(E_N) <= 2^-W * [ 4 * (u_{N-1} + 3.01) * 2^-HW + max(4 + 2 * (u_{N-1} + 3.01)^2, 8) ]
x_uq0
} else {
// C is (3/4 + 1/sqrt(2)) - 1 truncated to 32 fractional bits as UQ0.n
let c = 0x7504F333_u32 << (F::BITS - 32);
let x_uq0 = c.wrapping_sub(b_uq1);
// E_0 <= 3/4 - 1/sqrt(2) + 2 * 2^-32
x_uq0
};
let mut x_uq0 = if USE_NATIVE_FULL_ITERATIONS {
let mut idx = 0;
while idx < NUMBER_OF_FULL_ITERATIONS {
let corr_uq1: u32 = 0_u64
.wrapping_sub(((x_uq0 as u64).wrapping_mul(b_uq1 as u64)).wrapping_shr(F::BITS))
as u32;
x_uq0 = (((x_uq0 as u64) * (corr_uq1 as u64)) >> (F::BITS - 1)) as u32;
idx += 1;
}
x_uq0
} else {
// not using native full iterations
x_uq0
};
// Finally, account for possible overflow, as explained above.
x_uq0 = x_uq0.wrapping_sub(2);
// u_n for different precisions (with N-1 half-width iterations):
// W0 is the precision of C
// u_0 = (3/4 - 1/sqrt(2) + 2^-W0) * 2^HW
// Estimated with bc:
// define half1(un) { return 2.0 * (un + un^2) / 2.0^hw + 1.0; }
// define half2(un) { return 2.0 * un / 2.0^hw + 2.0; }
// define full1(un) { return 4.0 * (un + 3.01) / 2.0^hw + 2.0 * (un + 3.01)^2 + 4.0; }
// define full2(un) { return 4.0 * (un + 3.01) / 2.0^hw + 8.0; }
// | f32 (0 + 3) | f32 (2 + 1) | f64 (3 + 1) | f128 (4 + 1)
// u_0 | < 184224974 | < 2812.1 | < 184224974 | < 791240234244348797
// u_1 | < 15804007 | < 242.7 | < 15804007 | < 67877681371350440
// u_2 | < 116308 | < 2.81 | < 116308 | < 499533100252317
// u_3 | < 7.31 | | < 7.31 | < 27054456580
// u_4 | | | | < 80.4
// Final (U_N) | same as u_3 | < 72 | < 218 | < 13920
// Add 2 to U_N due to final decrement.
let reciprocal_precision: FInt = 10;
// Suppose 1/b - P * 2^-W < x < 1/b + P * 2^-W
let x_uq0 = x_uq0 - reciprocal_precision;
// Now 1/b - (2*P) * 2^-W < x < 1/b
// FIXME Is x_UQ0 still >= 0.5?
let mut quotient: FInt = u32_widen_mul(x_uq0, a_significand << 1).1;
// Now, a/b - 4*P * 2^-W < q < a/b for q=<quotient_UQ1:dummy> in UQ1.(SB+1+W).
// quotient_UQ1 is in [0.5, 2.0) as UQ1.(SB+1),
// adjust it to be in [1.0, 2.0) as UQ1.SB.
let (mut residual, written_exponent) = if quotient < (implicit_bit << 1) {
// Highest bit is 0, so just reinterpret quotient_UQ1 as UQ1.SB,
// effectively doubling its value as well as its error estimation.
let residual_lo = (a_significand << (significand_bits + 1))
.wrapping_sub(quotient.wrapping_mul(b_significand));
a_significand <<= 1;
(residual_lo, written_exponent.wrapping_sub(1))
} else {
// Highest bit is 1 (the UQ1.(SB+1) value is in [1, 2)), convert it
// to UQ1.SB by right shifting by 1. Least significant bit is omitted.
quotient >>= 1;
let residual_lo =
(a_significand << significand_bits).wrapping_sub(quotient.wrapping_mul(b_significand));
(residual_lo, written_exponent)
};
//drop mutability
let quotient = quotient;
// NB: residualLo is calculated above for the normal result case.
// It is re-computed on denormal path that is expected to be not so
// performance-sensitive.
// Now, q cannot be greater than a/b and can differ by at most 8*P * 2^-W + 2^-SB
// Each NextAfter() increments the floating point value by at least 2^-SB
// (more, if exponent was incremented).
// Different cases (<---> is of 2^-SB length, * = a/b that is shown as a midpoint):
// q
// | | * | | | | |
// <---> 2^t
// | | | | | * | |
// q
// To require at most one NextAfter(), an error should be less than 1.5 * 2^-SB.
// (8*P) * 2^-W + 2^-SB < 1.5 * 2^-SB
// (8*P) * 2^-W < 0.5 * 2^-SB
// P < 2^(W-4-SB)
// Generally, for at most R NextAfter() to be enough,
// P < (2*R - 1) * 2^(W-4-SB)
// For f32 (0+3): 10 < 32 (OK)
// For f32 (2+1): 32 < 74 < 32 * 3, so two NextAfter() are required
// For f64: 220 < 256 (OK)
// For f128: 4096 * 3 < 13922 < 4096 * 5 (three NextAfter() are required)
// If we have overflowed the exponent, return infinity
if written_exponent >= max_exponent as i32 {
return F::from_repr(inf_rep | quotient_sign);
}
// Now, quotient <= the correctly-rounded result
// and may need taking NextAfter() up to 3 times (see error estimates above)
// r = a - b * q
let abs_result = if written_exponent > 0 {
let mut ret = quotient & significand_mask;
ret |= ((written_exponent as u32) << significand_bits) as u32;
residual <<= 1;
ret
} else {
if (significand_bits as i32 + written_exponent) < 0 {
return F::from_repr(quotient_sign);
}
let ret = quotient.wrapping_shr(negate_u32(written_exponent as u32) + 1);
residual = (a_significand
.wrapping_shl(significand_bits.wrapping_add(written_exponent as u32))
as u32)
.wrapping_sub((ret.wrapping_mul(b_significand)) << 1);
ret
};
// Round
let abs_result = {
residual += abs_result & one; // tie to even
// The above line conditionally turns the below LT comparison into LTE
if residual > b_significand {
abs_result + one
} else {
abs_result
}
};
F::from_repr(abs_result | quotient_sign)
}
#[cfg(test)]
mod test {
use crate::soft_f32::SoftF32;
#[test]
fn sanity_check() {
assert_eq!(SoftF32(10.0).div(SoftF32(5.0)).0, 2.0)
}
}