1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/* origin: Rust libm https://github.com/rust-lang/libm/blob/4c8a973741c014b11ce7f1477693a3e5d4ef9609/src/math/sqrtf.rs */
/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrtf.c */
/*
 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
 */

use crate::soft_f32::SoftF32;
use core::cmp::Ordering;

pub(crate) const fn sqrtf(x: SoftF32) -> SoftF32 {
    const TINY: SoftF32 = SoftF32(1.0e-30);

    let mut z: SoftF32;
    let sign: i32 = 0x80000000_u32 as i32;
    let mut ix: i32;
    let mut s: i32;
    let mut q: i32;
    let mut m: i32;
    let mut t: i32;
    let mut i: i32;
    let mut r: u32;

    ix = x.to_bits() as i32;

    /* take care of Inf and NaN */
    if (ix as u32 & 0x7f800000) == 0x7f800000 {
        return x.mul(x).add(x); /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
    }

    /* take care of zero */
    if ix <= 0 {
        if (ix & !sign) == 0 {
            return x; /* sqrt(+-0) = +-0 */
        }
        if ix < 0 {
            return (x.sub(x)).div(x.sub(x)); /* sqrt(-ve) = sNaN */
        }
    }

    /* normalize x */
    m = ix >> 23;
    if m == 0 {
        /* subnormal x */
        i = 0;
        while ix & 0x00800000 == 0 {
            ix <<= 1;
            i = i + 1;
        }
        m -= i - 1;
    }
    m -= 127; /* unbias exponent */
    ix = (ix & 0x007fffff) | 0x00800000;
    if m & 1 == 1 {
        /* odd m, double x to make it even */
        ix += ix;
    }
    m >>= 1; /* m = [m/2] */

    /* generate sqrt(x) bit by bit */
    ix += ix;
    q = 0;
    s = 0;
    r = 0x01000000; /* r = moving bit from right to left */

    while r != 0 {
        t = s + r as i32;
        if t <= ix {
            s = t + r as i32;
            ix -= t;
            q += r as i32;
        }
        ix += ix;
        r >>= 1;
    }

    /* use floating add to find out rounding direction */
    if ix != 0 {
        z = SoftF32(1.0).sub(TINY); /* raise inexact flag */
        if ge(z, 1.0) {
            z = SoftF32(1.0).add(TINY);
            if gt(z, 1.0) {
                q += 2;
            } else {
                q += q & 1;
            }
        }
    }

    ix = (q >> 1) + 0x3f000000;
    ix += m << 23;
    SoftF32::from_bits(ix as u32)
}

const fn gt(l: SoftF32, r: f32) -> bool {
    if let Some(ord) = l.cmp(SoftF32(r)) {
        match ord {
            Ordering::Greater => true,
            _ => false,
        }
    } else {
        panic!("Failed to compare values");
    }
}

const fn ge(l: SoftF32, r: f32) -> bool {
    if let Some(ord) = l.cmp(SoftF32(r)) {
        match ord {
            Ordering::Less => false,
            _ => true,
        }
    } else {
        panic!("Failed to compare values");
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use core::f32::*;

    #[test]
    fn sanity_check() {
        assert_eq!(sqrtf(SoftF32(100.0)).0, 10.0);
        assert_eq!(sqrtf(SoftF32(4.0)).0, 2.0);
    }

    /// The spec: https://en.cppreference.com/w/cpp/numeric/math/sqrt
    #[test]
    fn spec_tests() {
        // Not Asserted: FE_INVALID exception is raised if argument is negative.
        assert!(sqrtf(SoftF32(-1.0)).0.is_nan());
        assert!(sqrtf(SoftF32(NAN)).0.is_nan());
        for f in [0.0, -0.0, INFINITY].iter().copied() {
            assert_eq!(sqrtf(SoftF32(f)).0, f);
        }
    }
}