use crate::{
gamma_u8_from_linear_f32, linear_f32_from_gamma_u8, linear_f32_from_linear_u8,
linear_u8_from_linear_f32,
};
#[repr(C)]
#[derive(Clone, Copy, Debug, Default, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
pub struct Rgba(pub(crate) [f32; 4]);
impl std::ops::Index<usize> for Rgba {
type Output = f32;
#[inline]
fn index(&self, index: usize) -> &f32 {
&self.0[index]
}
}
impl std::ops::IndexMut<usize> for Rgba {
#[inline]
fn index_mut(&mut self, index: usize) -> &mut f32 {
&mut self.0[index]
}
}
#[inline]
pub(crate) fn f32_hash<H: std::hash::Hasher>(state: &mut H, f: f32) {
if f == 0.0 {
state.write_u8(0);
} else if f.is_nan() {
state.write_u8(1);
} else {
use std::hash::Hash;
f.to_bits().hash(state);
}
}
#[allow(clippy::derived_hash_with_manual_eq)]
impl std::hash::Hash for Rgba {
#[inline]
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
crate::f32_hash(state, self.0[0]);
crate::f32_hash(state, self.0[1]);
crate::f32_hash(state, self.0[2]);
crate::f32_hash(state, self.0[3]);
}
}
impl Rgba {
pub const TRANSPARENT: Self = Self::from_rgba_premultiplied(0.0, 0.0, 0.0, 0.0);
pub const BLACK: Self = Self::from_rgb(0.0, 0.0, 0.0);
pub const WHITE: Self = Self::from_rgb(1.0, 1.0, 1.0);
pub const RED: Self = Self::from_rgb(1.0, 0.0, 0.0);
pub const GREEN: Self = Self::from_rgb(0.0, 1.0, 0.0);
pub const BLUE: Self = Self::from_rgb(0.0, 0.0, 1.0);
#[inline]
pub const fn from_rgba_premultiplied(r: f32, g: f32, b: f32, a: f32) -> Self {
Self([r, g, b, a])
}
#[inline]
pub fn from_rgba_unmultiplied(r: f32, g: f32, b: f32, a: f32) -> Self {
Self([r * a, g * a, b * a, a])
}
#[inline]
pub fn from_srgba_premultiplied(r: u8, g: u8, b: u8, a: u8) -> Self {
let r = linear_f32_from_gamma_u8(r);
let g = linear_f32_from_gamma_u8(g);
let b = linear_f32_from_gamma_u8(b);
let a = linear_f32_from_linear_u8(a);
Self::from_rgba_premultiplied(r, g, b, a)
}
#[inline]
pub fn from_srgba_unmultiplied(r: u8, g: u8, b: u8, a: u8) -> Self {
let r = linear_f32_from_gamma_u8(r);
let g = linear_f32_from_gamma_u8(g);
let b = linear_f32_from_gamma_u8(b);
let a = linear_f32_from_linear_u8(a);
Self::from_rgba_premultiplied(r * a, g * a, b * a, a)
}
#[inline]
pub const fn from_rgb(r: f32, g: f32, b: f32) -> Self {
Self([r, g, b, 1.0])
}
#[inline]
pub const fn from_gray(l: f32) -> Self {
Self([l, l, l, 1.0])
}
#[inline]
pub fn from_luminance_alpha(l: f32, a: f32) -> Self {
crate::ecolor_assert!(0.0 <= l && l <= 1.0);
crate::ecolor_assert!(0.0 <= a && a <= 1.0);
Self([l * a, l * a, l * a, a])
}
#[inline]
pub fn from_black_alpha(a: f32) -> Self {
crate::ecolor_assert!(0.0 <= a && a <= 1.0);
Self([0.0, 0.0, 0.0, a])
}
#[inline]
pub fn from_white_alpha(a: f32) -> Self {
crate::ecolor_assert!(0.0 <= a && a <= 1.0, "a: {}", a);
Self([a, a, a, a])
}
#[inline]
pub fn additive(self) -> Self {
let [r, g, b, _] = self.0;
Self([r, g, b, 0.0])
}
#[inline]
pub fn is_additive(self) -> bool {
self.a() == 0.0
}
#[inline]
pub fn multiply(self, alpha: f32) -> Self {
Self([
alpha * self[0],
alpha * self[1],
alpha * self[2],
alpha * self[3],
])
}
#[inline]
pub fn r(&self) -> f32 {
self.0[0]
}
#[inline]
pub fn g(&self) -> f32 {
self.0[1]
}
#[inline]
pub fn b(&self) -> f32 {
self.0[2]
}
#[inline]
pub fn a(&self) -> f32 {
self.0[3]
}
#[inline]
pub fn intensity(&self) -> f32 {
0.3 * self.r() + 0.59 * self.g() + 0.11 * self.b()
}
#[inline]
pub fn to_opaque(&self) -> Self {
if self.a() == 0.0 {
Self::from_rgb(self.r(), self.g(), self.b())
} else {
Self::from_rgb(
self.r() / self.a(),
self.g() / self.a(),
self.b() / self.a(),
)
}
}
#[inline]
pub fn to_array(&self) -> [f32; 4] {
[self.r(), self.g(), self.b(), self.a()]
}
#[inline]
pub fn to_tuple(&self) -> (f32, f32, f32, f32) {
(self.r(), self.g(), self.b(), self.a())
}
#[inline]
pub fn to_rgba_unmultiplied(&self) -> [f32; 4] {
let a = self.a();
if a == 0.0 {
self.0
} else {
[self.r() / a, self.g() / a, self.b() / a, a]
}
}
#[inline]
pub fn to_srgba_unmultiplied(&self) -> [u8; 4] {
let [r, g, b, a] = self.to_rgba_unmultiplied();
[
gamma_u8_from_linear_f32(r),
gamma_u8_from_linear_f32(g),
gamma_u8_from_linear_f32(b),
linear_u8_from_linear_f32(a.abs()),
]
}
}
impl std::ops::Add for Rgba {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
Self([
self[0] + rhs[0],
self[1] + rhs[1],
self[2] + rhs[2],
self[3] + rhs[3],
])
}
}
impl std::ops::Mul for Rgba {
type Output = Self;
#[inline]
fn mul(self, other: Self) -> Self {
Self([
self[0] * other[0],
self[1] * other[1],
self[2] * other[2],
self[3] * other[3],
])
}
}
impl std::ops::Mul<f32> for Rgba {
type Output = Self;
#[inline]
fn mul(self, factor: f32) -> Self {
Self([
self[0] * factor,
self[1] * factor,
self[2] * factor,
self[3] * factor,
])
}
}
impl std::ops::Mul<Rgba> for f32 {
type Output = Rgba;
#[inline]
fn mul(self, rgba: Rgba) -> Rgba {
Rgba([
self * rgba[0],
self * rgba[1],
self * rgba[2],
self * rgba[3],
])
}
}