1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
use std::{collections::BTreeMap, fmt::Debug};
use crate::{
data::input::TouchDeviceId,
emath::{normalized_angle, Pos2, Vec2},
Event, RawInput, TouchId, TouchPhase,
};
/// All you probably need to know about a multi-touch gesture.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct MultiTouchInfo {
/// Point in time when the gesture started.
pub start_time: f64,
/// Position of the pointer at the time the gesture started.
pub start_pos: Pos2,
/// Number of touches (fingers) on the surface. Value is ≥ 2 since for a single touch no
/// [`MultiTouchInfo`] is created.
pub num_touches: usize,
/// Proportional zoom factor (pinch gesture).
/// * `zoom = 1`: no change
/// * `zoom < 1`: pinch together
/// * `zoom > 1`: pinch spread
pub zoom_delta: f32,
/// 2D non-proportional zoom factor (pinch gesture).
///
/// For horizontal pinches, this will return `[z, 1]`,
/// for vertical pinches this will return `[1, z]`,
/// and otherwise this will return `[z, z]`,
/// where `z` is the zoom factor:
/// * `zoom = 1`: no change
/// * `zoom < 1`: pinch together
/// * `zoom > 1`: pinch spread
pub zoom_delta_2d: Vec2,
/// Rotation in radians. Moving fingers around each other will change this value. This is a
/// relative value, comparing the orientation of fingers in the current frame with the previous
/// frame. If all fingers are resting, this value is `0.0`.
pub rotation_delta: f32,
/// Relative movement (comparing previous frame and current frame) of the average position of
/// all touch points. Without movement this value is `Vec2::ZERO`.
///
/// Note that this may not necessarily be measured in screen points (although it _will_ be for
/// most mobile devices). In general (depending on the touch device), touch coordinates cannot
/// be directly mapped to the screen. A touch always is considered to start at the position of
/// the pointer, but touch movement is always measured in the units delivered by the device,
/// and may depend on hardware and system settings.
pub translation_delta: Vec2,
/// Current force of the touch (average of the forces of the individual fingers). This is a
/// value in the interval `[0.0 .. =1.0]`.
///
/// Note 1: A value of `0.0` either indicates a very light touch, or it means that the device
/// is not capable of measuring the touch force at all.
///
/// Note 2: Just increasing the physical pressure without actually moving the finger may not
/// necessarily lead to a change of this value.
pub force: f32,
}
/// The current state (for a specific touch device) of touch events and gestures.
#[derive(Clone)]
pub(crate) struct TouchState {
/// Technical identifier of the touch device. This is used to identify relevant touch events
/// for this [`TouchState`] instance.
device_id: TouchDeviceId,
/// Active touches, if any.
///
/// TouchId is the unique identifier of the touch. It is valid as long as the finger/pen touches the surface. The
/// next touch will receive a new unique ID.
///
/// Refer to [`ActiveTouch`].
active_touches: BTreeMap<TouchId, ActiveTouch>,
/// If a gesture has been recognized (i.e. when exactly two fingers touch the surface), this
/// holds state information
gesture_state: Option<GestureState>,
}
#[derive(Clone, Debug)]
struct GestureState {
start_time: f64,
start_pointer_pos: Pos2,
pinch_type: PinchType,
previous: Option<DynGestureState>,
current: DynGestureState,
}
/// Gesture data that can change over time
#[derive(Clone, Copy, Debug)]
struct DynGestureState {
/// used for proportional zooming
avg_distance: f32,
/// used for non-proportional zooming
avg_abs_distance2: Vec2,
avg_pos: Pos2,
avg_force: f32,
heading: f32,
}
/// Describes an individual touch (finger or digitizer) on the touch surface. Instances exist as
/// long as the finger/pen touches the surface.
#[derive(Clone, Copy, Debug)]
struct ActiveTouch {
/// Current position of this touch, in device coordinates (not necessarily screen position)
pos: Pos2,
/// Current force of the touch. A value in the interval [0.0 .. 1.0]
///
/// Note that a value of 0.0 either indicates a very light touch, or it means that the device
/// is not capable of measuring the touch force.
force: Option<f32>,
}
impl TouchState {
pub fn new(device_id: TouchDeviceId) -> Self {
Self {
device_id,
active_touches: Default::default(),
gesture_state: None,
}
}
pub fn begin_frame(&mut self, time: f64, new: &RawInput, pointer_pos: Option<Pos2>) {
let mut added_or_removed_touches = false;
for event in &new.events {
match *event {
Event::Touch {
device_id,
id,
phase,
pos,
force,
} if device_id == self.device_id => match phase {
TouchPhase::Start => {
self.active_touches.insert(id, ActiveTouch { pos, force });
added_or_removed_touches = true;
}
TouchPhase::Move => {
if let Some(touch) = self.active_touches.get_mut(&id) {
touch.pos = pos;
touch.force = force;
}
}
TouchPhase::End | TouchPhase::Cancel => {
self.active_touches.remove(&id);
added_or_removed_touches = true;
}
},
_ => (),
}
}
// This needs to be called each frame, even if there are no new touch events.
// Otherwise, we would send the same old delta information multiple times:
self.update_gesture(time, pointer_pos);
if added_or_removed_touches {
// Adding or removing fingers makes the average values "jump". We better forget
// about the previous values, and don't create delta information for this frame:
if let Some(ref mut state) = &mut self.gesture_state {
state.previous = None;
}
}
}
pub fn is_active(&self) -> bool {
self.gesture_state.is_some()
}
pub fn info(&self) -> Option<MultiTouchInfo> {
self.gesture_state.as_ref().map(|state| {
// state.previous can be `None` when the number of simultaneous touches has just
// changed. In this case, we take `current` as `previous`, pretending that there
// was no change for the current frame.
let state_previous = state.previous.unwrap_or(state.current);
let zoom_delta = state.current.avg_distance / state_previous.avg_distance;
let zoom_delta2 = match state.pinch_type {
PinchType::Horizontal => Vec2::new(
state.current.avg_abs_distance2.x / state_previous.avg_abs_distance2.x,
1.0,
),
PinchType::Vertical => Vec2::new(
1.0,
state.current.avg_abs_distance2.y / state_previous.avg_abs_distance2.y,
),
PinchType::Proportional => Vec2::splat(zoom_delta),
};
MultiTouchInfo {
start_time: state.start_time,
start_pos: state.start_pointer_pos,
num_touches: self.active_touches.len(),
zoom_delta,
zoom_delta_2d: zoom_delta2,
rotation_delta: normalized_angle(state.current.heading - state_previous.heading),
translation_delta: state.current.avg_pos - state_previous.avg_pos,
force: state.current.avg_force,
}
})
}
fn update_gesture(&mut self, time: f64, pointer_pos: Option<Pos2>) {
if let Some(dyn_state) = self.calc_dynamic_state() {
if let Some(ref mut state) = &mut self.gesture_state {
// updating an ongoing gesture
state.previous = Some(state.current);
state.current = dyn_state;
} else if let Some(pointer_pos) = pointer_pos {
// starting a new gesture
self.gesture_state = Some(GestureState {
start_time: time,
start_pointer_pos: pointer_pos,
pinch_type: PinchType::classify(&self.active_touches),
previous: None,
current: dyn_state,
});
}
} else {
// the end of a gesture (if there is any)
self.gesture_state = None;
}
}
/// `None` if less than two fingers
fn calc_dynamic_state(&self) -> Option<DynGestureState> {
let num_touches = self.active_touches.len();
if num_touches < 2 {
None
} else {
let mut state = DynGestureState {
avg_distance: 0.0,
avg_abs_distance2: Vec2::ZERO,
avg_pos: Pos2::ZERO,
avg_force: 0.0,
heading: 0.0,
};
let num_touches_recip = 1. / num_touches as f32;
// first pass: calculate force and center of touch positions:
for touch in self.active_touches.values() {
state.avg_force += touch.force.unwrap_or(0.0);
state.avg_pos.x += touch.pos.x;
state.avg_pos.y += touch.pos.y;
}
state.avg_force *= num_touches_recip;
state.avg_pos.x *= num_touches_recip;
state.avg_pos.y *= num_touches_recip;
// second pass: calculate distances from center:
for touch in self.active_touches.values() {
state.avg_distance += state.avg_pos.distance(touch.pos);
state.avg_abs_distance2.x += (state.avg_pos.x - touch.pos.x).abs();
state.avg_abs_distance2.y += (state.avg_pos.y - touch.pos.y).abs();
}
state.avg_distance *= num_touches_recip;
state.avg_abs_distance2 *= num_touches_recip;
// Calculate the direction from the first touch to the center position.
// This is not the perfect way of calculating the direction if more than two fingers
// are involved, but as long as all fingers rotate more or less at the same angular
// velocity, the shortcomings of this method will not be noticed. One can see the
// issues though, when touching with three or more fingers, and moving only one of them
// (it takes two hands to do this in a controlled manner). A better technique would be
// to store the current and previous directions (with reference to the center) for each
// touch individually, and then calculate the average of all individual changes in
// direction. But this approach cannot be implemented locally in this method, making
// everything a bit more complicated.
let first_touch = self.active_touches.values().next().unwrap();
state.heading = (state.avg_pos - first_touch.pos).angle();
Some(state)
}
}
}
impl TouchState {
pub fn ui(&self, ui: &mut crate::Ui) {
ui.label(format!("{self:?}"));
}
}
impl Debug for TouchState {
// This outputs less clutter than `#[derive(Debug)]`:
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
for (id, touch) in &self.active_touches {
f.write_fmt(format_args!("#{id:?}: {touch:#?}\n"))?;
}
f.write_fmt(format_args!("gesture: {:#?}\n", self.gesture_state))?;
Ok(())
}
}
#[derive(Clone, Debug)]
enum PinchType {
Horizontal,
Vertical,
Proportional,
}
impl PinchType {
fn classify(touches: &BTreeMap<TouchId, ActiveTouch>) -> Self {
// For non-proportional 2d zooming:
// If the user is pinching with two fingers that have roughly the same Y coord,
// then the Y zoom is unstable and should be 1.
// Similarly, if the fingers are directly above/below each other,
// we should only zoom on the Y axis.
// If the fingers are roughly on a diagonal, we revert to the proportional zooming.
if touches.len() == 2 {
let mut touches = touches.values();
let t0 = touches.next().unwrap().pos;
let t1 = touches.next().unwrap().pos;
let dx = (t0.x - t1.x).abs();
let dy = (t0.y - t1.y).abs();
if dx > 3.0 * dy {
Self::Horizontal
} else if dy > 3.0 * dx {
Self::Vertical
} else {
Self::Proportional
}
} else {
Self::Proportional
}
}
}