1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
//! Binary tree representing the relationships between [`Node`]s.
//!
//! # Implementation details
//!
//! The binary tree is stored in a [`Vec`] indexed by [`NodeIndex`].
//! The root is always at index *0*.
//! For a given node *n*:
//! - left child of *n* will be at index *n * 2 + 1*.
//! - right child of *n* will be at index *n * 2 + 2*.
/// Iterates over all tabs in a [`Tree`].
pub mod tab_iter;
/// Identifies a tab within a [`Node`].
pub mod tab_index;
/// Represents an abstract node of a [`Tree`].
pub mod node;
/// Wrapper around indices to the collection of nodes inside a [`Tree`].
pub mod node_index;
pub use node::Node;
pub use node_index::NodeIndex;
pub use tab_index::TabIndex;
pub use tab_iter::TabIter;
use egui::ahash::HashSet;
use egui::Rect;
use std::{
fmt,
ops::{Index, IndexMut},
slice::{Iter, IterMut},
};
use crate::SurfaceIndex;
// ----------------------------------------------------------------------------
/// Direction in which a new node is created relatively to the parent node at which the split occurs.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
#[allow(missing_docs)]
pub enum Split {
Left,
Right,
Above,
Below,
}
impl Split {
/// Returns whether the split is vertical.
pub const fn is_top_bottom(self) -> bool {
matches!(self, Split::Above | Split::Below)
}
/// Returns whether the split is horizontal.
pub const fn is_left_right(self) -> bool {
matches!(self, Split::Left | Split::Right)
}
}
/// Specify how a tab should be added to a Node.
pub enum TabInsert {
/// Split the node in the given direction.
Split(Split),
/// Insert the tab at the given index.
Insert(TabIndex),
/// Append the tab to the node.
Append,
}
/// The destination for a tab which is being moved.
pub enum TabDestination {
/// Move to a new window with this rect.
Window(Rect),
/// Move to a an existing node with this insertion.
Node(SurfaceIndex, NodeIndex, TabInsert),
/// Move to an empty surface.
EmptySurface(SurfaceIndex),
}
impl From<(SurfaceIndex, NodeIndex, TabInsert)> for TabDestination {
fn from(value: (SurfaceIndex, NodeIndex, TabInsert)) -> TabDestination {
TabDestination::Node(value.0, value.1, value.2)
}
}
impl From<SurfaceIndex> for TabDestination {
fn from(value: SurfaceIndex) -> TabDestination {
TabDestination::EmptySurface(value)
}
}
impl TabDestination {
/// Returns if this tab destination is a [`Window`](TabDestination::Window).
pub fn is_window(&self) -> bool {
matches!(self, Self::Window(_))
}
}
/// Binary tree representing the relationships between [`Node`]s.
///
/// # Implementation details
///
/// The binary tree is stored in a [`Vec`] indexed by [`NodeIndex`].
/// The root is always at index *0*.
/// For a given node *n*:
/// - left child of *n* will be at index *n * 2 + 1*.
/// - right child of *n* will be at index *n * 2 + 2*.
///
/// For "Horizontal" nodes:
/// - left child contains Left node.
/// - right child contains Right node.
///
/// For "Vertical" nodes:
/// - left child contains Top node.
/// - right child contains Bottom node.
#[derive(Clone)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct Tree<Tab> {
// Binary tree vector
pub(super) nodes: Vec<Node<Tab>>,
focused_node: Option<NodeIndex>,
}
impl<Tab> fmt::Debug for Tree<Tab> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Tree").finish_non_exhaustive()
}
}
impl<Tab> Default for Tree<Tab> {
fn default() -> Self {
Self {
nodes: Vec::new(),
focused_node: None,
}
}
}
impl<Tab> Index<NodeIndex> for Tree<Tab> {
type Output = Node<Tab>;
#[inline(always)]
fn index(&self, index: NodeIndex) -> &Self::Output {
&self.nodes[index.0]
}
}
impl<Tab> IndexMut<NodeIndex> for Tree<Tab> {
#[inline(always)]
fn index_mut(&mut self, index: NodeIndex) -> &mut Self::Output {
&mut self.nodes[index.0]
}
}
impl<Tab> Tree<Tab> {
/// Creates a new [`Tree`] with given `Vec` of `Tab`s in its root node.
#[inline(always)]
pub fn new(tabs: Vec<Tab>) -> Self {
let root = Node::leaf_with(tabs);
Self {
nodes: vec![root],
focused_node: None,
}
}
/// Returns the viewport [`Rect`] and the `Tab` inside the first leaf node,
/// or `None` if no leaf exists in the [`Tree`].
#[inline]
pub fn find_active(&mut self) -> Option<(Rect, &mut Tab)> {
self.nodes.iter_mut().find_map(|node| match node {
Node::Leaf {
tabs,
active,
viewport,
..
} => tabs.get_mut(active.0).map(|tab| (viewport.to_owned(), tab)),
_ => None,
})
}
/// Returns the number of nodes in the [`Tree`].
///
/// This includes [`Empty`](Node::Empty) nodes.
#[inline(always)]
pub fn len(&self) -> usize {
self.nodes.len()
}
/// Returns `true` if the number of nodes in the tree is 0, otherwise `false`.
#[inline(always)]
pub fn is_empty(&self) -> bool {
self.nodes.is_empty()
}
/// Returns an [`Iterator`] of the underlying collection of nodes.
///
/// This includes [`Empty`](Node::Empty) nodes.
#[inline(always)]
pub fn iter(&self) -> Iter<'_, Node<Tab>> {
self.nodes.iter()
}
/// Returns [`IterMut`] of the underlying collection of nodes.
///
/// This includes [`Empty`](Node::Empty) nodes.
#[inline(always)]
pub fn iter_mut(&mut self) -> IterMut<'_, Node<Tab>> {
self.nodes.iter_mut()
}
/// Returns an [`Iterator`] of [`NodeIndex`] ordered in a breadth first manner.
#[inline(always)]
pub(crate) fn breadth_first_index_iter(&self) -> impl Iterator<Item = NodeIndex> {
(0..self.nodes.len()).map(NodeIndex)
}
/// Returns an iterator over all tabs in arbitrary order.
#[inline(always)]
pub fn tabs(&self) -> TabIter<'_, Tab> {
TabIter::new(self)
}
/// Counts and returns the number of tabs in the whole tree.
///
/// # Examples
///
/// ```rust
/// # use egui_dock::{DockState, NodeIndex, TabIndex};
/// let mut dock_state = DockState::new(vec!["node 1", "node 2", "node 3"]);
/// assert_eq!(dock_state.main_surface().num_tabs(), 3);
///
/// let [a, b] = dock_state.main_surface_mut().split_left(NodeIndex::root(), 0.5, vec!["tab 4", "tab 5"]);
/// assert_eq!(dock_state.main_surface().num_tabs(), 5);
///
/// dock_state.main_surface_mut().remove_leaf(a);
/// assert_eq!(dock_state.main_surface().num_tabs(), 2);
/// ```
#[inline]
pub fn num_tabs(&self) -> usize {
let mut count = 0;
for node in self.nodes.iter() {
if let Node::Leaf { tabs, .. } = node {
count += tabs.len();
}
}
count
}
/// Acquire a immutable borrow to the [`Node`] at the root of the tree.
/// Returns [`None`] if the tree is empty.
///
/// # Examples
///
/// ```rust
/// # use egui_dock::DockState;
/// let mut dock_state = DockState::new(vec!["single tab"]);
/// let root_node = dock_state.main_surface().root_node().unwrap();
///
/// assert_eq!(root_node.tabs(), Some(["single tab"].as_slice()));
/// ```
pub fn root_node(&self) -> Option<&Node<Tab>> {
self.nodes.first()
}
/// Acquire a mutable borrow to the [`Node`] at the root of the tree.
/// Returns [`None`] if the tree is empty.
///
/// # Examples
///
/// ```rust
/// # use egui_dock::{DockState, Node};
/// let mut dock_state = DockState::new(vec!["single tab"]);
/// let root_node = dock_state.main_surface_mut().root_node_mut().unwrap();
/// if let Node::Leaf { tabs, ..} = root_node {
/// tabs.push("partner tab");
/// }
/// assert_eq!(root_node.tabs(), Some(["single tab", "partner tab"].as_slice()));
/// ```
pub fn root_node_mut(&mut self) -> Option<&mut Node<Tab>> {
self.nodes.first_mut()
}
/// Creates two new nodes by splitting a given `parent` node and assigns them as its children. The first (old) node
/// inherits content of the `parent` from before the split, and the second (new) gets the `tabs`.
///
/// `fraction` (in range 0..=1) specifies how much of the `parent` node's area the old node will occupy after the
/// split.
///
/// The new node is placed relatively to the old node, in the direction specified by `split`.
///
/// Returns the indices of the old node and the new node.
///
/// # Panics
///
/// If `fraction` isn't in range 0..=1.
///
/// # Example
///
/// ```rust
/// # use egui_dock::{DockState, SurfaceIndex, NodeIndex, Split};
/// let mut dock_state = DockState::new(vec!["tab 1", "tab 2"]);
///
/// // At this point, the main surface only contains the leaf with tab 1 and 2.
/// assert!(dock_state.main_surface().root_node().unwrap().is_leaf());
///
/// // Split the node, giving 50% of the space to the new nodes and 50% to the old ones.
/// let [old, new] = dock_state.main_surface_mut()
/// .split_tabs(NodeIndex::root(), Split::Below, 0.5, vec!["tab 3"]);
///
/// assert!(dock_state.main_surface().root_node().unwrap().is_parent());
/// assert!(dock_state[SurfaceIndex::main()][old].is_leaf());
/// assert!(dock_state[SurfaceIndex::main()][new].is_leaf());
/// ```
#[inline(always)]
pub fn split_tabs(
&mut self,
parent: NodeIndex,
split: Split,
fraction: f32,
tabs: Vec<Tab>,
) -> [NodeIndex; 2] {
self.split(parent, split, fraction, Node::leaf_with(tabs))
}
/// Creates two new nodes by splitting a given `parent` node and assigns them as its children. The first (old) node
/// inherits content of the `parent` from before the split, and the second (new) gets the `tabs`.
///
/// This is a shorthand for using `split_tabs` with [`Split::Above`].
///
/// `fraction` (in range 0..=1) specifies how much of the `parent` node's area the old node will occupy after the
/// split.
///
/// The new node is placed *above* the old node.
///
/// Returns the indices of the old node and the new node.
///
/// # Panics
///
/// If `fraction` isn't in range 0..=1.
#[inline(always)]
pub fn split_above(
&mut self,
parent: NodeIndex,
fraction: f32,
tabs: Vec<Tab>,
) -> [NodeIndex; 2] {
self.split(parent, Split::Above, fraction, Node::leaf_with(tabs))
}
/// Creates two new nodes by splitting a given `parent` node and assigns them as its children. The first (old) node
/// inherits content of the `parent` from before the split, and the second (new) gets the `tabs`.
///
/// This is a shorthand for using `split_tabs` with [`Split::Below`].
///
/// `fraction` (in range 0..=1) specifies how much of the `parent` node's area the old node will occupy after the
/// split.
///
/// The new node is placed *below* the old node.
///
/// Returns the indices of the old node and the new node.
///
/// # Panics
///
/// If `fraction` isn't in range 0..=1.
#[inline(always)]
pub fn split_below(
&mut self,
parent: NodeIndex,
fraction: f32,
tabs: Vec<Tab>,
) -> [NodeIndex; 2] {
self.split(parent, Split::Below, fraction, Node::leaf_with(tabs))
}
/// Creates two new nodes by splitting a given `parent` node and assigns them as its children. The first (old) node
/// inherits content of the `parent` from before the split, and the second (new) gets the `tabs`.
///
/// This is a shorthand for using `split_tabs` with [`Split::Left`].
///
/// `fraction` (in range 0..=1) specifies how much of the `parent` node's area the old node will occupy after the
/// split.
///
/// The new node is placed to the *left* of the old node.
///
/// Returns the indices of the old node and the new node.
///
/// # Panics
///
/// If `fraction` isn't in range 0..=1.
#[inline(always)]
pub fn split_left(
&mut self,
parent: NodeIndex,
fraction: f32,
tabs: Vec<Tab>,
) -> [NodeIndex; 2] {
self.split(parent, Split::Left, fraction, Node::leaf_with(tabs))
}
/// Creates two new nodes by splitting a given `parent` node and assigns them as its children. The first (old) node
/// inherits content of the `parent` from before the split, and the second (new) gets the `tabs`.
///
/// This is a shorthand for using `split_tabs` with [`Split::Right`].
///
/// `fraction` (in range 0..=1) specifies how much of the `parent` node's area the old node will occupy after the
/// split.
///
/// The new node is placed to the *right* of the old node.
///
/// Returns the indices of the old node and the new node.
///
/// # Panics
///
/// If `fraction` isn't in range 0..=1.
#[inline(always)]
pub fn split_right(
&mut self,
parent: NodeIndex,
fraction: f32,
tabs: Vec<Tab>,
) -> [NodeIndex; 2] {
self.split(parent, Split::Right, fraction, Node::leaf_with(tabs))
}
/// Creates two new nodes by splitting a given `parent` node and assigns them as its children. The first (old) node
/// inherits content of the `parent` from before the split, and the second (new) uses `new`.
///
/// `fraction` (in range 0..=1) specifies how much of the `parent` node's area the old node will occupy after the
/// split.
///
/// The new node is placed relatively to the old node, in the direction specified by `split`.
///
/// Returns the indices of the old node and the new node.
///
/// # Panics
///
/// If `fraction` isn't in range 0..=1.
///
/// If `new` is an [`Empty`](Node::Empty), [`Horizontal`](Node::Horizontal) or [`Vertical`](Node::Vertical) node.
///
/// If `new` is a [`Leaf`](Node::Leaf) node without any tabs.
///
/// If `parent` points to an [`Empty`](Node::Empty) node.
///
/// # Example
///
/// ```rust
/// # use egui_dock::{DockState, SurfaceIndex, NodeIndex, Split, Node};
/// let mut dock_state = DockState::new(vec!["tab 1", "tab 2"]);
///
/// // At this point, the main surface only contains the leaf with tab 1 and 2.
/// assert!(dock_state.main_surface().root_node().unwrap().is_leaf());
///
/// // Splits the node, giving 50% of the space to the new nodes and 50% to the old ones.
/// let [old, new] = dock_state.main_surface_mut()
/// .split(NodeIndex::root(), Split::Below, 0.5, Node::leaf_with(vec!["tab 3"]));
///
/// assert!(dock_state.main_surface().root_node().unwrap().is_parent());
/// assert!(dock_state[SurfaceIndex::main()][old].is_leaf());
/// assert!(dock_state[SurfaceIndex::main()][new].is_leaf());
/// ```
pub fn split(
&mut self,
parent: NodeIndex,
split: Split,
fraction: f32,
new: Node<Tab>,
) -> [NodeIndex; 2] {
let old = self[parent].split(split, fraction);
assert!(old.is_leaf() || old.is_parent());
assert_ne!(new.tabs_count(), 0);
// Resize vector to fit the new size of the binary tree.
{
let index = self.nodes.iter().rposition(|n| !n.is_empty()).unwrap_or(0);
let level = NodeIndex(index).level();
self.nodes
.resize_with((1 << (level + 1)) - 1, || Node::Empty);
}
let index = match split {
Split::Left | Split::Above => [parent.right(), parent.left()],
Split::Right | Split::Below => [parent.left(), parent.right()],
};
// If the node were splitting is a parent, all it's children need to be moved.
if old.is_parent() {
let levels_to_move = NodeIndex(self.nodes.len()).level() - index[0].level();
// Level 0 is ourself, which is done when we assign self[index[0]] = old, so start at 1.
for level in (1..levels_to_move).rev() {
// Old child indices for this level
let old_start = parent.children_at(level).start;
// New child indices for this level
let new_start = index[0].children_at(level).start;
// Children to be moved this level change
let len = 1 << level;
// Swap self[old_start..(old_start+len)] with self[new_start..(new_start+len)]
// (the new part will only contain empty entries).
let (old_range, new_range) = {
let (first_part, second_part) = self.nodes.split_at_mut(new_start);
// Cut to length.
(
&mut first_part[old_start..old_start + len],
&mut second_part[..len],
)
};
old_range.swap_with_slice(new_range);
}
}
self[index[0]] = old;
self[index[1]] = new;
self.focused_node = Some(index[1]);
index
}
fn first_leaf(&self, top: NodeIndex) -> Option<NodeIndex> {
let left = top.left();
let right = top.right();
match (self.nodes.get(left.0), self.nodes.get(right.0)) {
(Some(&Node::Leaf { .. }), _) => Some(left),
(_, Some(&Node::Leaf { .. })) => Some(right),
(
Some(Node::Horizontal { .. } | Node::Vertical { .. }),
Some(Node::Horizontal { .. } | Node::Vertical { .. }),
) => self.first_leaf(left).or(self.first_leaf(right)),
(Some(Node::Horizontal { .. } | Node::Vertical { .. }), _) => self.first_leaf(left),
(_, Some(Node::Horizontal { .. } | Node::Vertical { .. })) => self.first_leaf(right),
(None, None)
| (Some(&Node::Empty), None)
| (None, Some(&Node::Empty))
| (Some(&Node::Empty), Some(&Node::Empty)) => None,
}
}
/// Returns the viewport [`Rect`] and the `Tab` inside the focused leaf node or [`None`] if it does not exist.
#[inline]
pub fn find_active_focused(&mut self) -> Option<(Rect, &mut Tab)> {
match self.focused_node.and_then(|idx| self.nodes.get_mut(idx.0)) {
Some(Node::Leaf {
tabs,
active,
viewport,
..
}) => tabs.get_mut(active.0).map(|tab| (*viewport, tab)),
_ => None,
}
}
/// Gets the node index of currently focused leaf node; returns [`None`] when no leaf is focused.
#[inline]
pub fn focused_leaf(&self) -> Option<NodeIndex> {
self.focused_node
}
/// Sets the currently focused leaf to `node_index` if the node at `node_index` is a leaf.
///
/// This method will not never panic and instead removes focus from all nodes when given an invalid index.
#[inline]
pub fn set_focused_node(&mut self, node_index: NodeIndex) {
self.focused_node = self
.nodes
.get(node_index.0)
.filter(|node| node.is_leaf())
.map(|_| node_index);
}
/// Removes the given node from the [`Tree`].
///
/// # Panics
///
/// - If the tree is empty.
/// - If the node at index `node` is not a [`Leaf`](Node::Leaf).
pub fn remove_leaf(&mut self, node: NodeIndex) {
assert!(!self.is_empty());
assert!(self[node].is_leaf());
let Some(parent) = node.parent() else {
self.nodes.clear();
return;
};
if Some(node) == self.focused_node {
self.focused_node = None;
let mut node = node;
while let Some(parent) = node.parent() {
let next = if node.is_left() {
parent.right()
} else {
parent.left()
};
if self.nodes.get(next.0).is_some_and(|node| node.is_leaf()) {
self.focused_node = Some(next);
break;
}
if let Some(node) = self.first_leaf(next) {
self.focused_node = Some(node);
break;
}
node = parent;
}
}
self[parent] = Node::Empty;
self[node] = Node::Empty;
let mut level = 0;
if node.is_left() {
'left_end: loop {
let dst = parent.children_at(level);
let src = parent.children_right(level + 1);
for (dst, src) in dst.zip(src) {
if src >= self.nodes.len() {
break 'left_end;
}
if Some(NodeIndex(src)) == self.focused_node {
self.focused_node = Some(NodeIndex(dst));
}
self.nodes[dst] = std::mem::replace(&mut self.nodes[src], Node::Empty);
}
level += 1;
}
} else {
'right_end: loop {
let dst = parent.children_at(level);
let src = parent.children_left(level + 1);
for (dst, src) in dst.zip(src) {
if src >= self.nodes.len() {
break 'right_end;
}
if Some(NodeIndex(src)) == self.focused_node {
self.focused_node = Some(NodeIndex(dst));
}
self.nodes[dst] = std::mem::replace(&mut self.nodes[src], Node::Empty);
}
level += 1;
}
}
}
/// Pushes a tab to the first `Leaf` it finds or create a new leaf if an `Empty` node is encountered.
pub fn push_to_first_leaf(&mut self, tab: Tab) {
for (index, node) in &mut self.nodes.iter_mut().enumerate() {
match node {
Node::Leaf { tabs, active, .. } => {
*active = TabIndex(tabs.len());
tabs.push(tab);
self.focused_node = Some(NodeIndex(index));
return;
}
Node::Empty => {
*node = Node::leaf(tab);
self.focused_node = Some(NodeIndex(index));
return;
}
_ => {}
}
}
assert!(self.nodes.is_empty());
self.nodes.push(Node::leaf_with(vec![tab]));
self.focused_node = Some(NodeIndex(0));
}
/// Sets which is the active tab within a specific node.
#[inline]
pub fn set_active_tab(&mut self, node_index: NodeIndex, tab_index: TabIndex) {
if let Some(Node::Leaf { active, .. }) = self.nodes.get_mut(node_index.0) {
*active = tab_index;
}
}
/// Pushes `tab` to the currently focused leaf.
///
/// If no leaf is focused it will be pushed to the first available leaf.
///
/// If no leaf is available then a new leaf will be created.
pub fn push_to_focused_leaf(&mut self, tab: Tab) {
match self.focused_node {
Some(node) => {
if self.nodes.is_empty() {
self.nodes.push(Node::leaf(tab));
self.focused_node = Some(NodeIndex::root());
} else {
match &mut self[node] {
Node::Empty => {
self[node] = Node::leaf(tab);
self.focused_node = Some(node);
}
Node::Leaf { tabs, active, .. } => {
*active = TabIndex(tabs.len());
tabs.push(tab);
self.focused_node = Some(node);
}
_ => {
self.push_to_first_leaf(tab);
}
}
}
}
None => {
if self.nodes.is_empty() {
self.nodes.push(Node::leaf(tab));
self.focused_node = Some(NodeIndex::root());
} else {
self.push_to_first_leaf(tab);
}
}
}
}
/// Removes the tab at the given ([`NodeIndex`], [`TabIndex`]) pair.
///
/// If the node is emptied after the tab is removed, the node will also be removed.
///
/// Returns the removed tab if it exists, or `None` otherwise.
pub fn remove_tab(&mut self, (node_index, tab_index): (NodeIndex, TabIndex)) -> Option<Tab> {
let node = &mut self[node_index];
let tab = node.remove_tab(tab_index);
if node.tabs_count() == 0 {
self.remove_leaf(node_index);
}
tab
}
/// Returns a new [`Tree`] while mapping and filtering the tab type.
/// Any remaining empty [`Node`]s are removed.
pub fn filter_map_tabs<F, NewTab>(&self, function: F) -> Tree<NewTab>
where
F: Clone + FnMut(&Tab) -> Option<NewTab>,
{
let Tree {
focused_node,
nodes,
} = self;
let mut emptied_nodes = HashSet::default();
let nodes = nodes
.iter()
.enumerate()
.map(|(index, node)| {
let node = node.filter_map_tabs(function.clone());
if node.is_empty() {
emptied_nodes.insert(NodeIndex(index));
}
node
})
.collect();
let mut new_tree = Tree {
nodes,
focused_node: *focused_node,
};
new_tree.balance(emptied_nodes);
new_tree
}
/// Returns a new [`Tree`] while mapping the tab type.
pub fn map_tabs<F, NewTab>(&self, mut function: F) -> Tree<NewTab>
where
F: Clone + FnMut(&Tab) -> NewTab,
{
self.filter_map_tabs(move |tab| Some(function(tab)))
}
/// Returns a new [`Tree`] while filtering the tab type.
/// Any remaining empty [`Node`]s are removed.
pub fn filter_tabs<F>(&self, mut predicate: F) -> Tree<Tab>
where
F: Clone + FnMut(&Tab) -> bool,
Tab: Clone,
{
self.filter_map_tabs(move |tab| predicate(tab).then(|| tab.clone()))
}
/// Removes all tabs for which `predicate` returns `false`.
/// Any remaining empty [`Node`]s are also removed.
pub fn retain_tabs<F>(&mut self, predicate: F)
where
F: Clone + FnMut(&mut Tab) -> bool,
{
let mut emptied_nodes = HashSet::default();
for (index, node) in self.nodes.iter_mut().enumerate() {
node.retain_tabs(predicate.clone());
if node.is_empty() {
emptied_nodes.insert(NodeIndex(index));
}
}
self.balance(emptied_nodes);
}
fn balance(&mut self, emptied_nodes: HashSet<NodeIndex>) {
let mut emptied_parents = HashSet::default();
for parent_index in emptied_nodes.into_iter().filter_map(|ni| ni.parent()) {
if self[parent_index.left()].is_empty() && self[parent_index.right()].is_empty() {
self[parent_index] = Node::Empty;
emptied_parents.insert(parent_index);
} else if self[parent_index.left()].is_empty() {
self.nodes.swap(parent_index.0, parent_index.right().0);
self[parent_index.right()] = Node::Empty;
} else if self[parent_index.right()].is_empty() {
self.nodes.swap(parent_index.0, parent_index.left().0);
self[parent_index.left()] = Node::Empty;
}
}
if !emptied_parents.is_empty() {
self.balance(emptied_parents);
}
}
}
impl<Tab> Tree<Tab>
where
Tab: PartialEq,
{
/// Find the given tab.
///
/// Returns in which node and where in that node the tab is.
///
/// The returned [`NodeIndex`] will always point to a [`Node::Leaf`].
///
/// In case there are several hits, only the first is returned.
pub fn find_tab(&self, needle_tab: &Tab) -> Option<(NodeIndex, TabIndex)> {
for (node_index, node) in self.nodes.iter().enumerate() {
if let Some(tabs) = node.tabs() {
for (tab_index, tab) in tabs.iter().enumerate() {
if tab == needle_tab {
return Some((node_index.into(), tab_index.into()));
}
}
}
}
None
}
}