1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
//! One- and two-dimensional alignment ([`Align::Center`], [`Align2::LEFT_TOP`] etc).
use crate::*;
/// left/center/right or top/center/bottom alignment for e.g. anchors and layouts.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub enum Align {
/// Left or top.
#[default]
Min,
/// Horizontal or vertical center.
Center,
/// Right or bottom.
Max,
}
impl Align {
/// Convenience for [`Self::Min`]
pub const LEFT: Self = Self::Min;
/// Convenience for [`Self::Max`]
pub const RIGHT: Self = Self::Max;
/// Convenience for [`Self::Min`]
pub const TOP: Self = Self::Min;
/// Convenience for [`Self::Max`]
pub const BOTTOM: Self = Self::Max;
/// Convert `Min => 0.0`, `Center => 0.5` or `Max => 1.0`.
#[inline(always)]
pub fn to_factor(self) -> f32 {
match self {
Self::Min => 0.0,
Self::Center => 0.5,
Self::Max => 1.0,
}
}
/// Convert `Min => -1.0`, `Center => 0.0` or `Max => 1.0`.
#[inline(always)]
pub fn to_sign(self) -> f32 {
match self {
Self::Min => -1.0,
Self::Center => 0.0,
Self::Max => 1.0,
}
}
/// Returns a range of given size within a specified range.
///
/// If the requested `size` is bigger than the size of `range`, then the returned
/// range will not fit into the available `range`. The extra space will be allocated
/// from:
///
/// |Align |Side |
/// |------|------------|
/// |Min |right (end) |
/// |Center|both |
/// |Max |left (start)|
///
/// # Examples
/// ```
/// use std::f32::{INFINITY, NEG_INFINITY};
/// use emath::Align::*;
///
/// // The size is smaller than a range
/// assert_eq!(Min .align_size_within_range(2.0, 10.0..=20.0), 10.0..=12.0);
/// assert_eq!(Center.align_size_within_range(2.0, 10.0..=20.0), 14.0..=16.0);
/// assert_eq!(Max .align_size_within_range(2.0, 10.0..=20.0), 18.0..=20.0);
///
/// // The size is bigger than a range
/// assert_eq!(Min .align_size_within_range(20.0, 10.0..=20.0), 10.0..=30.0);
/// assert_eq!(Center.align_size_within_range(20.0, 10.0..=20.0), 5.0..=25.0);
/// assert_eq!(Max .align_size_within_range(20.0, 10.0..=20.0), 0.0..=20.0);
///
/// // The size is infinity, but range is finite - a special case of a previous example
/// assert_eq!(Min .align_size_within_range(INFINITY, 10.0..=20.0), 10.0..=INFINITY);
/// assert_eq!(Center.align_size_within_range(INFINITY, 10.0..=20.0), NEG_INFINITY..=INFINITY);
/// assert_eq!(Max .align_size_within_range(INFINITY, 10.0..=20.0), NEG_INFINITY..=20.0);
/// ```
///
/// The infinity-sized ranges can produce a surprising results, if the size is also infinity,
/// use such ranges with carefully!
///
/// ```
/// use std::f32::{INFINITY, NEG_INFINITY};
/// use emath::Align::*;
///
/// // Allocating a size aligned for infinity bound will lead to empty ranges!
/// assert_eq!(Min .align_size_within_range(2.0, 10.0..=INFINITY), 10.0..=12.0);
/// assert_eq!(Center.align_size_within_range(2.0, 10.0..=INFINITY), INFINITY..=INFINITY);// (!)
/// assert_eq!(Max .align_size_within_range(2.0, 10.0..=INFINITY), INFINITY..=INFINITY);// (!)
///
/// assert_eq!(Min .align_size_within_range(2.0, NEG_INFINITY..=20.0), NEG_INFINITY..=NEG_INFINITY);// (!)
/// assert_eq!(Center.align_size_within_range(2.0, NEG_INFINITY..=20.0), NEG_INFINITY..=NEG_INFINITY);// (!)
/// assert_eq!(Max .align_size_within_range(2.0, NEG_INFINITY..=20.0), 18.0..=20.0);
///
///
/// // The infinity size will always return the given range if it has at least one infinity bound
/// assert_eq!(Min .align_size_within_range(INFINITY, 10.0..=INFINITY), 10.0..=INFINITY);
/// assert_eq!(Center.align_size_within_range(INFINITY, 10.0..=INFINITY), 10.0..=INFINITY);
/// assert_eq!(Max .align_size_within_range(INFINITY, 10.0..=INFINITY), 10.0..=INFINITY);
///
/// assert_eq!(Min .align_size_within_range(INFINITY, NEG_INFINITY..=20.0), NEG_INFINITY..=20.0);
/// assert_eq!(Center.align_size_within_range(INFINITY, NEG_INFINITY..=20.0), NEG_INFINITY..=20.0);
/// assert_eq!(Max .align_size_within_range(INFINITY, NEG_INFINITY..=20.0), NEG_INFINITY..=20.0);
/// ```
#[inline]
pub fn align_size_within_range(self, size: f32, range: impl Into<Rangef>) -> Rangef {
let range = range.into();
let Rangef { min, max } = range;
if max - min == f32::INFINITY && size == f32::INFINITY {
return range;
}
match self {
Self::Min => Rangef::new(min, min + size),
Self::Center => {
if size == f32::INFINITY {
Rangef::new(f32::NEG_INFINITY, f32::INFINITY)
} else {
let left = (min + max) / 2.0 - size / 2.0;
Rangef::new(left, left + size)
}
}
Self::Max => Rangef::new(max - size, max),
}
}
}
// ----------------------------------------------------------------------------
/// Two-dimension alignment, e.g. [`Align2::LEFT_TOP`].
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct Align2(pub [Align; 2]);
impl Align2 {
pub const LEFT_BOTTOM: Self = Self([Align::Min, Align::Max]);
pub const LEFT_CENTER: Self = Self([Align::Min, Align::Center]);
pub const LEFT_TOP: Self = Self([Align::Min, Align::Min]);
pub const CENTER_BOTTOM: Self = Self([Align::Center, Align::Max]);
pub const CENTER_CENTER: Self = Self([Align::Center, Align::Center]);
pub const CENTER_TOP: Self = Self([Align::Center, Align::Min]);
pub const RIGHT_BOTTOM: Self = Self([Align::Max, Align::Max]);
pub const RIGHT_CENTER: Self = Self([Align::Max, Align::Center]);
pub const RIGHT_TOP: Self = Self([Align::Max, Align::Min]);
}
impl Align2 {
/// Returns an alignment by the X (horizontal) axis
#[inline(always)]
pub fn x(self) -> Align {
self.0[0]
}
/// Returns an alignment by the Y (vertical) axis
#[inline(always)]
pub fn y(self) -> Align {
self.0[1]
}
/// -1, 0, or +1 for each axis
pub fn to_sign(self) -> Vec2 {
vec2(self.x().to_sign(), self.y().to_sign())
}
/// Used e.g. to anchor a piece of text to a part of the rectangle.
/// Give a position within the rect, specified by the aligns
pub fn anchor_rect(self, rect: Rect) -> Rect {
let x = match self.x() {
Align::Min => rect.left(),
Align::Center => rect.left() - 0.5 * rect.width(),
Align::Max => rect.left() - rect.width(),
};
let y = match self.y() {
Align::Min => rect.top(),
Align::Center => rect.top() - 0.5 * rect.height(),
Align::Max => rect.top() - rect.height(),
};
Rect::from_min_size(pos2(x, y), rect.size())
}
/// Use this anchor to position something around `pos`,
/// e.g. [`Self::RIGHT_TOP`] means the right-top of the rect
/// will end up at `pos`.
pub fn anchor_size(self, pos: Pos2, size: Vec2) -> Rect {
let x = match self.x() {
Align::Min => pos.x,
Align::Center => pos.x - 0.5 * size.x,
Align::Max => pos.x - size.x,
};
let y = match self.y() {
Align::Min => pos.y,
Align::Center => pos.y - 0.5 * size.y,
Align::Max => pos.y - size.y,
};
Rect::from_min_size(pos2(x, y), size)
}
/// e.g. center a size within a given frame
pub fn align_size_within_rect(self, size: Vec2, frame: Rect) -> Rect {
let x_range = self.x().align_size_within_range(size.x, frame.x_range());
let y_range = self.y().align_size_within_range(size.y, frame.y_range());
Rect::from_x_y_ranges(x_range, y_range)
}
/// Returns the point on the rect's frame or in the center of a rect according
/// to the alignments of this object.
///
/// ```text
/// (*)-----------+------(*)------+-----------(*)--> X
/// | | | |
/// | Min, Min | Center, Min | Max, Min |
/// | | | |
/// +------------+---------------+------------+
/// | | | |
/// (*)Min, Center|Center(*)Center|Max, Center(*)
/// | | | |
/// +------------+---------------+------------+
/// | | | |
/// | Min, Max | Center, Max | Max, Max |
/// | | | |
/// (*)-----------+------(*)------+-----------(*)
/// |
/// Y
/// ```
pub fn pos_in_rect(self, frame: &Rect) -> Pos2 {
let x = match self.x() {
Align::Min => frame.left(),
Align::Center => frame.center().x,
Align::Max => frame.right(),
};
let y = match self.y() {
Align::Min => frame.top(),
Align::Center => frame.center().y,
Align::Max => frame.bottom(),
};
pos2(x, y)
}
}
impl std::ops::Index<usize> for Align2 {
type Output = Align;
#[inline(always)]
fn index(&self, index: usize) -> &Align {
&self.0[index]
}
}
impl std::ops::IndexMut<usize> for Align2 {
#[inline(always)]
fn index_mut(&mut self, index: usize) -> &mut Align {
&mut self.0[index]
}
}
/// Allocates a rectangle of the specified `size` inside the `frame` rectangle
/// around of its center.
///
/// If `size` is bigger than the `frame`s size the returned rect will bounce out
/// of the `frame`.
pub fn center_size_in_rect(size: Vec2, frame: Rect) -> Rect {
Align2::CENTER_CENTER.align_size_within_rect(size, frame)
}