1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
use std::f32::INFINITY;
use crate::*;
/// A rectangular region of space.
///
/// Usually a [`Rect`] has a positive (or zero) size,
/// and then [`Self::min`] `<=` [`Self::max`].
/// In these cases [`Self::min`] is the left-top corner
/// and [`Self::max`] is the right-bottom corner.
///
/// A rectangle is allowed to have a negative size, which happens when the order
/// of `min` and `max` are swapped. These are usually a sign of an error.
///
/// Normally the unit is points (logical pixels) in screen space coordinates.
///
/// `Rect` does NOT implement `Default`, because there is no obvious default value.
/// [`Rect::ZERO`] may seem reasonable, but when used as a bounding box, [`Rect::NOTHING`]
/// is a better default - so be explicit instead!
#[repr(C)]
#[derive(Clone, Copy, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
pub struct Rect {
/// One of the corners of the rectangle, usually the left top one.
pub min: Pos2,
/// The other corner, opposing [`Self::min`]. Usually the right bottom one.
pub max: Pos2,
}
impl Rect {
/// Infinite rectangle that contains every point.
pub const EVERYTHING: Self = Self {
min: pos2(-INFINITY, -INFINITY),
max: pos2(INFINITY, INFINITY),
};
/// The inverse of [`Self::EVERYTHING`]: stretches from positive infinity to negative infinity.
/// Contains no points.
///
/// This is useful as the seed for bounding boxes.
///
/// # Example:
/// ```
/// # use emath::*;
/// let mut rect = Rect::NOTHING;
/// assert!(rect.size() == Vec2::splat(-f32::INFINITY));
/// assert!(rect.contains(pos2(0.0, 0.0)) == false);
/// rect.extend_with(pos2(2.0, 1.0));
/// rect.extend_with(pos2(0.0, 3.0));
/// assert_eq!(rect, Rect::from_min_max(pos2(0.0, 1.0), pos2(2.0, 3.0)))
/// ```
pub const NOTHING: Self = Self {
min: pos2(INFINITY, INFINITY),
max: pos2(-INFINITY, -INFINITY),
};
/// An invalid [`Rect`] filled with [`f32::NAN`].
pub const NAN: Self = Self {
min: pos2(f32::NAN, f32::NAN),
max: pos2(f32::NAN, f32::NAN),
};
/// A [`Rect`] filled with zeroes.
pub const ZERO: Self = Self {
min: Pos2::ZERO,
max: Pos2::ZERO,
};
#[inline(always)]
pub const fn from_min_max(min: Pos2, max: Pos2) -> Self {
Self { min, max }
}
/// left-top corner plus a size (stretching right-down).
#[inline(always)]
pub fn from_min_size(min: Pos2, size: Vec2) -> Self {
Self {
min,
max: min + size,
}
}
#[inline(always)]
pub fn from_center_size(center: Pos2, size: Vec2) -> Self {
Self {
min: center - size * 0.5,
max: center + size * 0.5,
}
}
#[inline(always)]
pub fn from_x_y_ranges(x_range: impl Into<Rangef>, y_range: impl Into<Rangef>) -> Self {
let x_range = x_range.into();
let y_range = y_range.into();
Self {
min: pos2(x_range.min, y_range.min),
max: pos2(x_range.max, y_range.max),
}
}
/// Returns the bounding rectangle of the two points.
#[inline]
pub fn from_two_pos(a: Pos2, b: Pos2) -> Self {
Self {
min: pos2(a.x.min(b.x), a.y.min(b.y)),
max: pos2(a.x.max(b.x), a.y.max(b.y)),
}
}
/// Bounding-box around the points.
pub fn from_points(points: &[Pos2]) -> Self {
let mut rect = Self::NOTHING;
for &p in points {
rect.extend_with(p);
}
rect
}
/// A [`Rect`] that contains every point to the right of the given X coordinate.
#[inline]
pub fn everything_right_of(left_x: f32) -> Self {
let mut rect = Self::EVERYTHING;
rect.set_left(left_x);
rect
}
/// A [`Rect`] that contains every point to the left of the given X coordinate.
#[inline]
pub fn everything_left_of(right_x: f32) -> Self {
let mut rect = Self::EVERYTHING;
rect.set_right(right_x);
rect
}
/// A [`Rect`] that contains every point below a certain y coordinate
#[inline]
pub fn everything_below(top_y: f32) -> Self {
let mut rect = Self::EVERYTHING;
rect.set_top(top_y);
rect
}
/// A [`Rect`] that contains every point above a certain y coordinate
#[inline]
pub fn everything_above(bottom_y: f32) -> Self {
let mut rect = Self::EVERYTHING;
rect.set_bottom(bottom_y);
rect
}
#[must_use]
#[inline]
pub fn with_min_x(mut self, min_x: f32) -> Self {
self.min.x = min_x;
self
}
#[must_use]
#[inline]
pub fn with_min_y(mut self, min_y: f32) -> Self {
self.min.y = min_y;
self
}
#[must_use]
#[inline]
pub fn with_max_x(mut self, max_x: f32) -> Self {
self.max.x = max_x;
self
}
#[must_use]
#[inline]
pub fn with_max_y(mut self, max_y: f32) -> Self {
self.max.y = max_y;
self
}
/// Expand by this much in each direction, keeping the center
#[must_use]
pub fn expand(self, amnt: f32) -> Self {
self.expand2(Vec2::splat(amnt))
}
/// Expand by this much in each direction, keeping the center
#[must_use]
pub fn expand2(self, amnt: Vec2) -> Self {
Self::from_min_max(self.min - amnt, self.max + amnt)
}
/// Shrink by this much in each direction, keeping the center
#[must_use]
pub fn shrink(self, amnt: f32) -> Self {
self.shrink2(Vec2::splat(amnt))
}
/// Shrink by this much in each direction, keeping the center
#[must_use]
pub fn shrink2(self, amnt: Vec2) -> Self {
Self::from_min_max(self.min + amnt, self.max - amnt)
}
#[must_use]
#[inline]
pub fn translate(self, amnt: Vec2) -> Self {
Self::from_min_size(self.min + amnt, self.size())
}
/// Rotate the bounds (will expand the [`Rect`])
#[must_use]
#[inline]
pub fn rotate_bb(self, rot: Rot2) -> Self {
let a = rot * self.left_top().to_vec2();
let b = rot * self.right_top().to_vec2();
let c = rot * self.left_bottom().to_vec2();
let d = rot * self.right_bottom().to_vec2();
Self::from_min_max(
a.min(b).min(c).min(d).to_pos2(),
a.max(b).max(c).max(d).to_pos2(),
)
}
#[must_use]
#[inline]
pub fn intersects(self, other: Self) -> bool {
self.min.x <= other.max.x
&& other.min.x <= self.max.x
&& self.min.y <= other.max.y
&& other.min.y <= self.max.y
}
/// keep min
pub fn set_width(&mut self, w: f32) {
self.max.x = self.min.x + w;
}
/// keep min
pub fn set_height(&mut self, h: f32) {
self.max.y = self.min.y + h;
}
/// Keep size
pub fn set_center(&mut self, center: Pos2) {
*self = self.translate(center - self.center());
}
#[must_use]
#[inline(always)]
pub fn contains(&self, p: Pos2) -> bool {
self.min.x <= p.x && p.x <= self.max.x && self.min.y <= p.y && p.y <= self.max.y
}
#[must_use]
pub fn contains_rect(&self, other: Self) -> bool {
self.contains(other.min) && self.contains(other.max)
}
/// Return the given points clamped to be inside the rectangle
/// Panics if [`Self::is_negative`].
#[must_use]
pub fn clamp(&self, p: Pos2) -> Pos2 {
p.clamp(self.min, self.max)
}
#[inline(always)]
pub fn extend_with(&mut self, p: Pos2) {
self.min = self.min.min(p);
self.max = self.max.max(p);
}
#[inline(always)]
/// Expand to include the given x coordinate
pub fn extend_with_x(&mut self, x: f32) {
self.min.x = self.min.x.min(x);
self.max.x = self.max.x.max(x);
}
#[inline(always)]
/// Expand to include the given y coordinate
pub fn extend_with_y(&mut self, y: f32) {
self.min.y = self.min.y.min(y);
self.max.y = self.max.y.max(y);
}
/// The union of two bounding rectangle, i.e. the minimum [`Rect`]
/// that contains both input rectangles.
#[inline(always)]
#[must_use]
pub fn union(self, other: Self) -> Self {
Self {
min: self.min.min(other.min),
max: self.max.max(other.max),
}
}
/// The intersection of two [`Rect`], i.e. the area covered by both.
#[inline]
#[must_use]
pub fn intersect(self, other: Self) -> Self {
Self {
min: self.min.max(other.min),
max: self.max.min(other.max),
}
}
#[inline(always)]
pub fn center(&self) -> Pos2 {
Pos2 {
x: (self.min.x + self.max.x) / 2.0,
y: (self.min.y + self.max.y) / 2.0,
}
}
/// `rect.size() == Vec2 { x: rect.width(), y: rect.height() }`
#[inline(always)]
pub fn size(&self) -> Vec2 {
self.max - self.min
}
#[inline(always)]
pub fn width(&self) -> f32 {
self.max.x - self.min.x
}
#[inline(always)]
pub fn height(&self) -> f32 {
self.max.y - self.min.y
}
/// Width / height
///
/// * `aspect_ratio < 1`: portrait / high
/// * `aspect_ratio = 1`: square
/// * `aspect_ratio > 1`: landscape / wide
pub fn aspect_ratio(&self) -> f32 {
self.width() / self.height()
}
/// `[2, 1]` for wide screen, and `[1, 2]` for portrait, etc.
/// At least one dimension = 1, the other >= 1
/// Returns the proportions required to letter-box a square view area.
pub fn square_proportions(&self) -> Vec2 {
let w = self.width();
let h = self.height();
if w > h {
vec2(w / h, 1.0)
} else {
vec2(1.0, h / w)
}
}
#[inline(always)]
pub fn area(&self) -> f32 {
self.width() * self.height()
}
/// The distance from the rect to the position.
///
/// The distance is zero when the position is in the interior of the rectangle.
#[inline]
pub fn distance_to_pos(&self, pos: Pos2) -> f32 {
self.distance_sq_to_pos(pos).sqrt()
}
/// The distance from the rect to the position, squared.
///
/// The distance is zero when the position is in the interior of the rectangle.
#[inline]
pub fn distance_sq_to_pos(&self, pos: Pos2) -> f32 {
let dx = if self.min.x > pos.x {
self.min.x - pos.x
} else if pos.x > self.max.x {
pos.x - self.max.x
} else {
0.0
};
let dy = if self.min.y > pos.y {
self.min.y - pos.y
} else if pos.y > self.max.y {
pos.y - self.max.y
} else {
0.0
};
dx * dx + dy * dy
}
/// Signed distance to the edge of the box.
///
/// Negative inside the box.
///
/// ```
/// # use emath::{pos2, Rect};
/// let rect = Rect::from_min_max(pos2(0.0, 0.0), pos2(1.0, 1.0));
/// assert_eq!(rect.signed_distance_to_pos(pos2(0.50, 0.50)), -0.50);
/// assert_eq!(rect.signed_distance_to_pos(pos2(0.75, 0.50)), -0.25);
/// assert_eq!(rect.signed_distance_to_pos(pos2(1.50, 0.50)), 0.50);
/// ```
pub fn signed_distance_to_pos(&self, pos: Pos2) -> f32 {
let edge_distances = (pos - self.center()).abs() - self.size() * 0.5;
let inside_dist = edge_distances.max_elem().min(0.0);
let outside_dist = edge_distances.max(Vec2::ZERO).length();
inside_dist + outside_dist
}
/// Linearly interpolate so that `[0, 0]` is [`Self::min`] and
/// `[1, 1]` is [`Self::max`].
#[inline]
pub fn lerp_inside(&self, t: Vec2) -> Pos2 {
Pos2 {
x: lerp(self.min.x..=self.max.x, t.x),
y: lerp(self.min.y..=self.max.y, t.y),
}
}
/// Linearly self towards other rect.
#[inline]
pub fn lerp_towards(&self, other: &Self, t: f32) -> Self {
Self {
min: self.min.lerp(other.min, t),
max: self.max.lerp(other.max, t),
}
}
#[inline(always)]
pub fn x_range(&self) -> Rangef {
Rangef::new(self.min.x, self.max.x)
}
#[inline(always)]
pub fn y_range(&self) -> Rangef {
Rangef::new(self.min.y, self.max.y)
}
#[inline(always)]
pub fn bottom_up_range(&self) -> Rangef {
Rangef::new(self.max.y, self.min.y)
}
/// `width < 0 || height < 0`
#[inline(always)]
pub fn is_negative(&self) -> bool {
self.max.x < self.min.x || self.max.y < self.min.y
}
/// `width > 0 && height > 0`
#[inline(always)]
pub fn is_positive(&self) -> bool {
self.min.x < self.max.x && self.min.y < self.max.y
}
/// True if all members are also finite.
#[inline(always)]
pub fn is_finite(&self) -> bool {
self.min.is_finite() && self.max.is_finite()
}
/// True if any member is NaN.
#[inline(always)]
pub fn any_nan(self) -> bool {
self.min.any_nan() || self.max.any_nan()
}
}
/// ## Convenience functions (assumes origin is towards left top):
impl Rect {
/// `min.x`
#[inline(always)]
pub fn left(&self) -> f32 {
self.min.x
}
/// `min.x`
#[inline(always)]
pub fn left_mut(&mut self) -> &mut f32 {
&mut self.min.x
}
/// `min.x`
#[inline(always)]
pub fn set_left(&mut self, x: f32) {
self.min.x = x;
}
/// `max.x`
#[inline(always)]
pub fn right(&self) -> f32 {
self.max.x
}
/// `max.x`
#[inline(always)]
pub fn right_mut(&mut self) -> &mut f32 {
&mut self.max.x
}
/// `max.x`
#[inline(always)]
pub fn set_right(&mut self, x: f32) {
self.max.x = x;
}
/// `min.y`
#[inline(always)]
pub fn top(&self) -> f32 {
self.min.y
}
/// `min.y`
#[inline(always)]
pub fn top_mut(&mut self) -> &mut f32 {
&mut self.min.y
}
/// `min.y`
#[inline(always)]
pub fn set_top(&mut self, y: f32) {
self.min.y = y;
}
/// `max.y`
#[inline(always)]
pub fn bottom(&self) -> f32 {
self.max.y
}
/// `max.y`
#[inline(always)]
pub fn bottom_mut(&mut self) -> &mut f32 {
&mut self.max.y
}
/// `max.y`
#[inline(always)]
pub fn set_bottom(&mut self, y: f32) {
self.max.y = y;
}
#[inline(always)]
pub fn left_top(&self) -> Pos2 {
pos2(self.left(), self.top())
}
#[inline(always)]
pub fn center_top(&self) -> Pos2 {
pos2(self.center().x, self.top())
}
#[inline(always)]
pub fn right_top(&self) -> Pos2 {
pos2(self.right(), self.top())
}
#[inline(always)]
pub fn left_center(&self) -> Pos2 {
pos2(self.left(), self.center().y)
}
#[inline(always)]
pub fn right_center(&self) -> Pos2 {
pos2(self.right(), self.center().y)
}
#[inline(always)]
pub fn left_bottom(&self) -> Pos2 {
pos2(self.left(), self.bottom())
}
#[inline(always)]
pub fn center_bottom(&self) -> Pos2 {
pos2(self.center().x, self.bottom())
}
#[inline(always)]
pub fn right_bottom(&self) -> Pos2 {
pos2(self.right(), self.bottom())
}
/// Split rectangle in left and right halves. `t` is expected to be in the (0,1) range.
pub fn split_left_right_at_fraction(&self, t: f32) -> (Self, Self) {
self.split_left_right_at_x(lerp(self.min.x..=self.max.x, t))
}
/// Split rectangle in left and right halves at the given `x` coordinate.
pub fn split_left_right_at_x(&self, split_x: f32) -> (Self, Self) {
let left = Self::from_min_max(self.min, Pos2::new(split_x, self.max.y));
let right = Self::from_min_max(Pos2::new(split_x, self.min.y), self.max);
(left, right)
}
/// Split rectangle in top and bottom halves. `t` is expected to be in the (0,1) range.
pub fn split_top_bottom_at_fraction(&self, t: f32) -> (Self, Self) {
self.split_top_bottom_at_y(lerp(self.min.y..=self.max.y, t))
}
/// Split rectangle in top and bottom halves at the given `y` coordinate.
pub fn split_top_bottom_at_y(&self, split_y: f32) -> (Self, Self) {
let top = Self::from_min_max(self.min, Pos2::new(self.max.x, split_y));
let bottom = Self::from_min_max(Pos2::new(self.min.x, split_y), self.max);
(top, bottom)
}
}
impl std::fmt::Debug for Rect {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "[{:?} - {:?}]", self.min, self.max)
}
}
/// from (min, max) or (left top, right bottom)
impl From<[Pos2; 2]> for Rect {
#[inline]
fn from([min, max]: [Pos2; 2]) -> Self {
Self { min, max }
}
}
impl Mul<f32> for Rect {
type Output = Self;
#[inline]
fn mul(self, factor: f32) -> Self {
Self {
min: self.min * factor,
max: self.max * factor,
}
}
}
impl Mul<Rect> for f32 {
type Output = Rect;
#[inline]
fn mul(self, vec: Rect) -> Rect {
Rect {
min: self * vec.min,
max: self * vec.max,
}
}
}
impl Div<f32> for Rect {
type Output = Self;
#[inline]
fn div(self, factor: f32) -> Self {
Self {
min: self.min / factor,
max: self.max / factor,
}
}
}