1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
use crate::{textures::TextureOptions, Color32};
use std::sync::Arc;
/// An image stored in RAM.
///
/// To load an image file, see [`ColorImage::from_rgba_unmultiplied`].
///
/// In order to paint the image on screen, you first need to convert it to
///
/// See also: [`ColorImage`], [`FontImage`].
#[derive(Clone, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub enum ImageData {
/// RGBA image.
Color(Arc<ColorImage>),
/// Used for the font texture.
Font(FontImage),
}
impl ImageData {
pub fn size(&self) -> [usize; 2] {
match self {
Self::Color(image) => image.size,
Self::Font(image) => image.size,
}
}
pub fn width(&self) -> usize {
self.size()[0]
}
pub fn height(&self) -> usize {
self.size()[1]
}
pub fn bytes_per_pixel(&self) -> usize {
match self {
Self::Color(_) | Self::Font(_) => 4,
}
}
}
// ----------------------------------------------------------------------------
/// A 2D RGBA color image in RAM.
#[derive(Clone, Default, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct ColorImage {
/// width, height.
pub size: [usize; 2],
/// The pixels, row by row, from top to bottom.
pub pixels: Vec<Color32>,
}
impl ColorImage {
/// Create an image filled with the given color.
pub fn new(size: [usize; 2], color: Color32) -> Self {
Self {
size,
pixels: vec![color; size[0] * size[1]],
}
}
/// Create a [`ColorImage`] from flat un-multiplied RGBA data.
///
/// This is usually what you want to use after having loaded an image file.
///
/// Panics if `size[0] * size[1] * 4 != rgba.len()`.
///
/// ## Example using the [`image`](crates.io/crates/image) crate:
/// ``` ignore
/// fn load_image_from_path(path: &std::path::Path) -> Result<egui::ColorImage, image::ImageError> {
/// let image = image::io::Reader::open(path)?.decode()?;
/// let size = [image.width() as _, image.height() as _];
/// let image_buffer = image.to_rgba8();
/// let pixels = image_buffer.as_flat_samples();
/// Ok(egui::ColorImage::from_rgba_unmultiplied(
/// size,
/// pixels.as_slice(),
/// ))
/// }
///
/// fn load_image_from_memory(image_data: &[u8]) -> Result<ColorImage, image::ImageError> {
/// let image = image::load_from_memory(image_data)?;
/// let size = [image.width() as _, image.height() as _];
/// let image_buffer = image.to_rgba8();
/// let pixels = image_buffer.as_flat_samples();
/// Ok(ColorImage::from_rgba_unmultiplied(
/// size,
/// pixels.as_slice(),
/// ))
/// }
/// ```
pub fn from_rgba_unmultiplied(size: [usize; 2], rgba: &[u8]) -> Self {
assert_eq!(size[0] * size[1] * 4, rgba.len());
let pixels = rgba
.chunks_exact(4)
.map(|p| Color32::from_rgba_unmultiplied(p[0], p[1], p[2], p[3]))
.collect();
Self { size, pixels }
}
pub fn from_rgba_premultiplied(size: [usize; 2], rgba: &[u8]) -> Self {
assert_eq!(size[0] * size[1] * 4, rgba.len());
let pixels = rgba
.chunks_exact(4)
.map(|p| Color32::from_rgba_premultiplied(p[0], p[1], p[2], p[3]))
.collect();
Self { size, pixels }
}
/// Create a [`ColorImage`] from flat opaque gray data.
///
/// Panics if `size[0] * size[1] != gray.len()`.
pub fn from_gray(size: [usize; 2], gray: &[u8]) -> Self {
assert_eq!(size[0] * size[1], gray.len());
let pixels = gray.iter().map(|p| Color32::from_gray(*p)).collect();
Self { size, pixels }
}
/// A view of the underlying data as `&[u8]`
#[cfg(feature = "bytemuck")]
pub fn as_raw(&self) -> &[u8] {
bytemuck::cast_slice(&self.pixels)
}
/// A view of the underlying data as `&mut [u8]`
#[cfg(feature = "bytemuck")]
pub fn as_raw_mut(&mut self) -> &mut [u8] {
bytemuck::cast_slice_mut(&mut self.pixels)
}
/// Create a new Image from a patch of the current image. This method is especially convenient for screenshotting a part of the app
/// since `region` can be interpreted as screen coordinates of the entire screenshot if `pixels_per_point` is provided for the native application.
/// The floats of [`emath::Rect`] are cast to usize, rounding them down in order to interpret them as indices to the image data.
///
/// Panics if `region.min.x > region.max.x || region.min.y > region.max.y`, or if a region larger than the image is passed.
pub fn region(&self, region: &emath::Rect, pixels_per_point: Option<f32>) -> Self {
let pixels_per_point = pixels_per_point.unwrap_or(1.0);
let min_x = (region.min.x * pixels_per_point) as usize;
let max_x = (region.max.x * pixels_per_point) as usize;
let min_y = (region.min.y * pixels_per_point) as usize;
let max_y = (region.max.y * pixels_per_point) as usize;
assert!(min_x <= max_x);
assert!(min_y <= max_y);
let width = max_x - min_x;
let height = max_y - min_y;
let mut output = Vec::with_capacity(width * height);
let row_stride = self.size[0];
for row in min_y..max_y {
output.extend_from_slice(
&self.pixels[row * row_stride + min_x..row * row_stride + max_x],
);
}
Self {
size: [width, height],
pixels: output,
}
}
/// Create a [`ColorImage`] from flat RGB data.
///
/// This is what you want to use after having loaded an image file (and if
/// you are ignoring the alpha channel - considering it to always be 0xff)
///
/// Panics if `size[0] * size[1] * 3 != rgb.len()`.
pub fn from_rgb(size: [usize; 2], rgb: &[u8]) -> Self {
assert_eq!(size[0] * size[1] * 3, rgb.len());
let pixels = rgb
.chunks_exact(3)
.map(|p| Color32::from_rgb(p[0], p[1], p[2]))
.collect();
Self { size, pixels }
}
/// An example color image, useful for tests.
pub fn example() -> Self {
let width = 128;
let height = 64;
let mut img = Self::new([width, height], Color32::TRANSPARENT);
for y in 0..height {
for x in 0..width {
let h = x as f32 / width as f32;
let s = 1.0;
let v = 1.0;
let a = y as f32 / height as f32;
img[(x, y)] = crate::Hsva { h, s, v, a }.into();
}
}
img
}
#[inline]
pub fn width(&self) -> usize {
self.size[0]
}
#[inline]
pub fn height(&self) -> usize {
self.size[1]
}
}
impl std::ops::Index<(usize, usize)> for ColorImage {
type Output = Color32;
#[inline]
fn index(&self, (x, y): (usize, usize)) -> &Color32 {
let [w, h] = self.size;
assert!(x < w && y < h);
&self.pixels[y * w + x]
}
}
impl std::ops::IndexMut<(usize, usize)> for ColorImage {
#[inline]
fn index_mut(&mut self, (x, y): (usize, usize)) -> &mut Color32 {
let [w, h] = self.size;
assert!(x < w && y < h);
&mut self.pixels[y * w + x]
}
}
impl From<ColorImage> for ImageData {
#[inline(always)]
fn from(image: ColorImage) -> Self {
Self::Color(Arc::new(image))
}
}
impl From<Arc<ColorImage>> for ImageData {
#[inline]
fn from(image: Arc<ColorImage>) -> Self {
Self::Color(image)
}
}
impl std::fmt::Debug for ColorImage {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("ColorImage")
.field("size", &self.size)
.field("pixel-count", &self.pixels.len())
.finish_non_exhaustive()
}
}
// ----------------------------------------------------------------------------
/// A single-channel image designed for the font texture.
///
/// Each value represents "coverage", i.e. how much a texel is covered by a character.
///
/// This is roughly interpreted as the opacity of a white image.
#[derive(Clone, Default, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct FontImage {
/// width, height
pub size: [usize; 2],
/// The coverage value.
///
/// Often you want to use [`Self::srgba_pixels`] instead.
pub pixels: Vec<f32>,
}
impl FontImage {
pub fn new(size: [usize; 2]) -> Self {
Self {
size,
pixels: vec![0.0; size[0] * size[1]],
}
}
#[inline]
pub fn width(&self) -> usize {
self.size[0]
}
#[inline]
pub fn height(&self) -> usize {
self.size[1]
}
/// Returns the textures as `sRGBA` premultiplied pixels, row by row, top to bottom.
///
/// `gamma` should normally be set to `None`.
///
/// If you are having problems with text looking skinny and pixelated, try using a low gamma, e.g. `0.4`.
#[inline]
pub fn srgba_pixels(&self, gamma: Option<f32>) -> impl ExactSizeIterator<Item = Color32> + '_ {
let gamma = gamma.unwrap_or(0.55); // TODO(emilk): this default coverage gamma is a magic constant, chosen by eye. I don't even know why we need it.
self.pixels.iter().map(move |coverage| {
let alpha = coverage.powf(gamma);
// We want to multiply with `vec4(alpha)` in the fragment shader:
let a = fast_round(alpha * 255.0);
Color32::from_rgba_premultiplied(a, a, a, a)
})
}
/// Clone a sub-region as a new image.
pub fn region(&self, [x, y]: [usize; 2], [w, h]: [usize; 2]) -> Self {
assert!(x + w <= self.width());
assert!(y + h <= self.height());
let mut pixels = Vec::with_capacity(w * h);
for y in y..y + h {
let offset = y * self.width() + x;
pixels.extend(&self.pixels[offset..(offset + w)]);
}
assert_eq!(pixels.len(), w * h);
Self {
size: [w, h],
pixels,
}
}
}
impl std::ops::Index<(usize, usize)> for FontImage {
type Output = f32;
#[inline]
fn index(&self, (x, y): (usize, usize)) -> &f32 {
let [w, h] = self.size;
assert!(x < w && y < h);
&self.pixels[y * w + x]
}
}
impl std::ops::IndexMut<(usize, usize)> for FontImage {
#[inline]
fn index_mut(&mut self, (x, y): (usize, usize)) -> &mut f32 {
let [w, h] = self.size;
assert!(x < w && y < h);
&mut self.pixels[y * w + x]
}
}
impl From<FontImage> for ImageData {
#[inline(always)]
fn from(image: FontImage) -> Self {
Self::Font(image)
}
}
#[inline]
fn fast_round(r: f32) -> u8 {
(r + 0.5) as _ // rust does a saturating cast since 1.45
}
// ----------------------------------------------------------------------------
/// A change to an image.
///
/// Either a whole new image, or an update to a rectangular region of it.
#[derive(Clone, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[must_use = "The painter must take care of this"]
pub struct ImageDelta {
/// What to set the texture to.
///
/// If [`Self::pos`] is `None`, this describes the whole texture.
///
/// If [`Self::pos`] is `Some`, this describes a patch of the whole image starting at [`Self::pos`].
pub image: ImageData,
pub options: TextureOptions,
/// If `None`, set the whole texture to [`Self::image`].
///
/// If `Some(pos)`, update a sub-region of an already allocated texture with the patch in [`Self::image`].
pub pos: Option<[usize; 2]>,
}
impl ImageDelta {
/// Update the whole texture.
pub fn full(image: impl Into<ImageData>, options: TextureOptions) -> Self {
Self {
image: image.into(),
options,
pos: None,
}
}
/// Update a sub-region of an existing texture.
pub fn partial(pos: [usize; 2], image: impl Into<ImageData>, options: TextureOptions) -> Self {
Self {
image: image.into(),
options,
pos: Some(pos),
}
}
/// Is this affecting the whole texture?
/// If `false`, this is a partial (sub-region) update.
pub fn is_whole(&self) -> bool {
self.pos.is_none()
}
}