1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
use crate::{textures::TextureOptions, Color32};
use std::sync::Arc;

/// An image stored in RAM.
///
/// To load an image file, see [`ColorImage::from_rgba_unmultiplied`].
///
/// In order to paint the image on screen, you first need to convert it to
///
/// See also: [`ColorImage`], [`FontImage`].
#[derive(Clone, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub enum ImageData {
    /// RGBA image.
    Color(Arc<ColorImage>),

    /// Used for the font texture.
    Font(FontImage),
}

impl ImageData {
    pub fn size(&self) -> [usize; 2] {
        match self {
            Self::Color(image) => image.size,
            Self::Font(image) => image.size,
        }
    }

    pub fn width(&self) -> usize {
        self.size()[0]
    }

    pub fn height(&self) -> usize {
        self.size()[1]
    }

    pub fn bytes_per_pixel(&self) -> usize {
        match self {
            Self::Color(_) | Self::Font(_) => 4,
        }
    }
}

// ----------------------------------------------------------------------------

/// A 2D RGBA color image in RAM.
#[derive(Clone, Default, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct ColorImage {
    /// width, height.
    pub size: [usize; 2],

    /// The pixels, row by row, from top to bottom.
    pub pixels: Vec<Color32>,
}

impl ColorImage {
    /// Create an image filled with the given color.
    pub fn new(size: [usize; 2], color: Color32) -> Self {
        Self {
            size,
            pixels: vec![color; size[0] * size[1]],
        }
    }

    /// Create a [`ColorImage`] from flat un-multiplied RGBA data.
    ///
    /// This is usually what you want to use after having loaded an image file.
    ///
    /// Panics if `size[0] * size[1] * 4 != rgba.len()`.
    ///
    /// ## Example using the [`image`](crates.io/crates/image) crate:
    /// ``` ignore
    /// fn load_image_from_path(path: &std::path::Path) -> Result<egui::ColorImage, image::ImageError> {
    ///     let image = image::io::Reader::open(path)?.decode()?;
    ///     let size = [image.width() as _, image.height() as _];
    ///     let image_buffer = image.to_rgba8();
    ///     let pixels = image_buffer.as_flat_samples();
    ///     Ok(egui::ColorImage::from_rgba_unmultiplied(
    ///         size,
    ///         pixels.as_slice(),
    ///     ))
    /// }
    ///
    /// fn load_image_from_memory(image_data: &[u8]) -> Result<ColorImage, image::ImageError> {
    ///     let image = image::load_from_memory(image_data)?;
    ///     let size = [image.width() as _, image.height() as _];
    ///     let image_buffer = image.to_rgba8();
    ///     let pixels = image_buffer.as_flat_samples();
    ///     Ok(ColorImage::from_rgba_unmultiplied(
    ///         size,
    ///         pixels.as_slice(),
    ///     ))
    /// }
    /// ```
    pub fn from_rgba_unmultiplied(size: [usize; 2], rgba: &[u8]) -> Self {
        assert_eq!(size[0] * size[1] * 4, rgba.len());
        let pixels = rgba
            .chunks_exact(4)
            .map(|p| Color32::from_rgba_unmultiplied(p[0], p[1], p[2], p[3]))
            .collect();
        Self { size, pixels }
    }

    pub fn from_rgba_premultiplied(size: [usize; 2], rgba: &[u8]) -> Self {
        assert_eq!(size[0] * size[1] * 4, rgba.len());
        let pixels = rgba
            .chunks_exact(4)
            .map(|p| Color32::from_rgba_premultiplied(p[0], p[1], p[2], p[3]))
            .collect();
        Self { size, pixels }
    }

    /// Create a [`ColorImage`] from flat opaque gray data.
    ///
    /// Panics if `size[0] * size[1] != gray.len()`.
    pub fn from_gray(size: [usize; 2], gray: &[u8]) -> Self {
        assert_eq!(size[0] * size[1], gray.len());
        let pixels = gray.iter().map(|p| Color32::from_gray(*p)).collect();
        Self { size, pixels }
    }

    /// A view of the underlying data as `&[u8]`
    #[cfg(feature = "bytemuck")]
    pub fn as_raw(&self) -> &[u8] {
        bytemuck::cast_slice(&self.pixels)
    }

    /// A view of the underlying data as `&mut [u8]`
    #[cfg(feature = "bytemuck")]
    pub fn as_raw_mut(&mut self) -> &mut [u8] {
        bytemuck::cast_slice_mut(&mut self.pixels)
    }

    /// Create a new Image from a patch of the current image. This method is especially convenient for screenshotting a part of the app
    /// since `region` can be interpreted as screen coordinates of the entire screenshot if `pixels_per_point` is provided for the native application.
    /// The floats of [`emath::Rect`] are cast to usize, rounding them down in order to interpret them as indices to the image data.
    ///
    /// Panics if `region.min.x > region.max.x || region.min.y > region.max.y`, or if a region larger than the image is passed.
    pub fn region(&self, region: &emath::Rect, pixels_per_point: Option<f32>) -> Self {
        let pixels_per_point = pixels_per_point.unwrap_or(1.0);
        let min_x = (region.min.x * pixels_per_point) as usize;
        let max_x = (region.max.x * pixels_per_point) as usize;
        let min_y = (region.min.y * pixels_per_point) as usize;
        let max_y = (region.max.y * pixels_per_point) as usize;
        assert!(min_x <= max_x);
        assert!(min_y <= max_y);
        let width = max_x - min_x;
        let height = max_y - min_y;
        let mut output = Vec::with_capacity(width * height);
        let row_stride = self.size[0];

        for row in min_y..max_y {
            output.extend_from_slice(
                &self.pixels[row * row_stride + min_x..row * row_stride + max_x],
            );
        }
        Self {
            size: [width, height],
            pixels: output,
        }
    }

    /// Create a [`ColorImage`] from flat RGB data.
    ///
    /// This is what you want to use after having loaded an image file (and if
    /// you are ignoring the alpha channel - considering it to always be 0xff)
    ///
    /// Panics if `size[0] * size[1] * 3 != rgb.len()`.
    pub fn from_rgb(size: [usize; 2], rgb: &[u8]) -> Self {
        assert_eq!(size[0] * size[1] * 3, rgb.len());
        let pixels = rgb
            .chunks_exact(3)
            .map(|p| Color32::from_rgb(p[0], p[1], p[2]))
            .collect();
        Self { size, pixels }
    }

    /// An example color image, useful for tests.
    pub fn example() -> Self {
        let width = 128;
        let height = 64;
        let mut img = Self::new([width, height], Color32::TRANSPARENT);
        for y in 0..height {
            for x in 0..width {
                let h = x as f32 / width as f32;
                let s = 1.0;
                let v = 1.0;
                let a = y as f32 / height as f32;
                img[(x, y)] = crate::Hsva { h, s, v, a }.into();
            }
        }
        img
    }

    #[inline]
    pub fn width(&self) -> usize {
        self.size[0]
    }

    #[inline]
    pub fn height(&self) -> usize {
        self.size[1]
    }
}

impl std::ops::Index<(usize, usize)> for ColorImage {
    type Output = Color32;

    #[inline]
    fn index(&self, (x, y): (usize, usize)) -> &Color32 {
        let [w, h] = self.size;
        assert!(x < w && y < h);
        &self.pixels[y * w + x]
    }
}

impl std::ops::IndexMut<(usize, usize)> for ColorImage {
    #[inline]
    fn index_mut(&mut self, (x, y): (usize, usize)) -> &mut Color32 {
        let [w, h] = self.size;
        assert!(x < w && y < h);
        &mut self.pixels[y * w + x]
    }
}

impl From<ColorImage> for ImageData {
    #[inline(always)]
    fn from(image: ColorImage) -> Self {
        Self::Color(Arc::new(image))
    }
}

impl From<Arc<ColorImage>> for ImageData {
    #[inline]
    fn from(image: Arc<ColorImage>) -> Self {
        Self::Color(image)
    }
}

impl std::fmt::Debug for ColorImage {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("ColorImage")
            .field("size", &self.size)
            .field("pixel-count", &self.pixels.len())
            .finish_non_exhaustive()
    }
}

// ----------------------------------------------------------------------------

/// A single-channel image designed for the font texture.
///
/// Each value represents "coverage", i.e. how much a texel is covered by a character.
///
/// This is roughly interpreted as the opacity of a white image.
#[derive(Clone, Default, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct FontImage {
    /// width, height
    pub size: [usize; 2],

    /// The coverage value.
    ///
    /// Often you want to use [`Self::srgba_pixels`] instead.
    pub pixels: Vec<f32>,
}

impl FontImage {
    pub fn new(size: [usize; 2]) -> Self {
        Self {
            size,
            pixels: vec![0.0; size[0] * size[1]],
        }
    }

    #[inline]
    pub fn width(&self) -> usize {
        self.size[0]
    }

    #[inline]
    pub fn height(&self) -> usize {
        self.size[1]
    }

    /// Returns the textures as `sRGBA` premultiplied pixels, row by row, top to bottom.
    ///
    /// `gamma` should normally be set to `None`.
    ///
    /// If you are having problems with text looking skinny and pixelated, try using a low gamma, e.g. `0.4`.
    #[inline]
    pub fn srgba_pixels(&self, gamma: Option<f32>) -> impl ExactSizeIterator<Item = Color32> + '_ {
        let gamma = gamma.unwrap_or(0.55); // TODO(emilk): this default coverage gamma is a magic constant, chosen by eye. I don't even know why we need it.
        self.pixels.iter().map(move |coverage| {
            let alpha = coverage.powf(gamma);
            // We want to multiply with `vec4(alpha)` in the fragment shader:
            let a = fast_round(alpha * 255.0);
            Color32::from_rgba_premultiplied(a, a, a, a)
        })
    }

    /// Clone a sub-region as a new image.
    pub fn region(&self, [x, y]: [usize; 2], [w, h]: [usize; 2]) -> Self {
        assert!(x + w <= self.width());
        assert!(y + h <= self.height());

        let mut pixels = Vec::with_capacity(w * h);
        for y in y..y + h {
            let offset = y * self.width() + x;
            pixels.extend(&self.pixels[offset..(offset + w)]);
        }
        assert_eq!(pixels.len(), w * h);
        Self {
            size: [w, h],
            pixels,
        }
    }
}

impl std::ops::Index<(usize, usize)> for FontImage {
    type Output = f32;

    #[inline]
    fn index(&self, (x, y): (usize, usize)) -> &f32 {
        let [w, h] = self.size;
        assert!(x < w && y < h);
        &self.pixels[y * w + x]
    }
}

impl std::ops::IndexMut<(usize, usize)> for FontImage {
    #[inline]
    fn index_mut(&mut self, (x, y): (usize, usize)) -> &mut f32 {
        let [w, h] = self.size;
        assert!(x < w && y < h);
        &mut self.pixels[y * w + x]
    }
}

impl From<FontImage> for ImageData {
    #[inline(always)]
    fn from(image: FontImage) -> Self {
        Self::Font(image)
    }
}

#[inline]
fn fast_round(r: f32) -> u8 {
    (r + 0.5) as _ // rust does a saturating cast since 1.45
}

// ----------------------------------------------------------------------------

/// A change to an image.
///
/// Either a whole new image, or an update to a rectangular region of it.
#[derive(Clone, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[must_use = "The painter must take care of this"]
pub struct ImageDelta {
    /// What to set the texture to.
    ///
    /// If [`Self::pos`] is `None`, this describes the whole texture.
    ///
    /// If [`Self::pos`] is `Some`, this describes a patch of the whole image starting at [`Self::pos`].
    pub image: ImageData,

    pub options: TextureOptions,

    /// If `None`, set the whole texture to [`Self::image`].
    ///
    /// If `Some(pos)`, update a sub-region of an already allocated texture with the patch in [`Self::image`].
    pub pos: Option<[usize; 2]>,
}

impl ImageDelta {
    /// Update the whole texture.
    pub fn full(image: impl Into<ImageData>, options: TextureOptions) -> Self {
        Self {
            image: image.into(),
            options,
            pos: None,
        }
    }

    /// Update a sub-region of an existing texture.
    pub fn partial(pos: [usize; 2], image: impl Into<ImageData>, options: TextureOptions) -> Self {
        Self {
            image: image.into(),
            options,
            pos: Some(pos),
        }
    }

    /// Is this affecting the whole texture?
    /// If `false`, this is a partial (sub-region) update.
    pub fn is_whole(&self) -> bool {
        self.pos.is_none()
    }
}