1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
//!
//! Library for subdividing shapes made of triangles.
//!
//! This library defines `Subdivided<T, S>`. This struct
//! allows one to define a base shape using `S` and the
//! `BaseShape` trait, and to subdivide it using the
//! interpolation functions defined as part of `S`.
//!
//! This includes a few base shapes:
//!
//! - Icosahedron
//! - Tetrahedron
//! - Square
//! - Triangle
//! - Cube
//!
//! ## Example usage
//!
//! ```rust
//! use hexasphere::shapes::IcoSphere;
//!
//! fn main() {
//! // Create a new sphere with 20 subdivisions
//! // an no data associated with the vertices.
//! let sphere = IcoSphere::new(20, |_| ());
//!
//! let points = sphere.raw_points();
//! for p in points {
//! println!("{:?} is a point on the sphere!", p);
//! }
//! let indices = sphere.get_all_indices();
//! for triangle in indices.chunks(3) {
//! println!(
//! "[{}, {}, {}] is a triangle on the resulting shape",
//! triangle[0],
//! triangle[1],
//! triangle[2],
//! );
//! }
//! }
//! ```
//!
//! # Features
//! - `adjacency` allows the user to create neighbour maps from
//! the indices provided by the `Subdivided` struct.
//!
use glam::Vec3A;
use slice::Slice::*;
use slice::*;
#[cfg(feature = "adjacency")]
pub use adjacency::*;
pub mod interpolation;
pub mod shapes;
mod slice;
///
/// Defines the setup for a base shape, and the functions
/// used in interpolation.
///
/// If you want to use a different interpolation function,
/// implement this trait for a new type, and carry over only
/// the properties you'd like to keep:
///
/// ```rust
/// # use hexasphere::BaseShape;
/// use hexasphere::{Triangle, shapes::IcoSphereBase};
/// use glam::Vec3A;
/// // Uses linear interpolation instead of spherical.
/// struct FlatIcosahedron;
///
/// impl BaseShape for FlatIcosahedron {
/// // Keep the initial parameters.
/// fn initial_points(&self) -> Vec<Vec3A> {
/// IcoSphereBase.initial_points()
/// }
///
/// fn triangles(&self) -> Box<[Triangle]> {
/// IcoSphereBase.triangles()
/// }
/// const EDGES: usize = IcoSphereBase::EDGES;
///
/// // Swap out what you'd like to change.
/// fn interpolate(&self, a: Vec3A, b: Vec3A, p: f32) -> Vec3A {
/// hexasphere::interpolation::lerp(a, b, p)
/// }
///
/// fn interpolate_half(&self, a: Vec3A, b: Vec3A) -> Vec3A {
/// hexasphere::interpolation::lerp_half(a, b)
/// }
///
/// fn interpolate_multiple(&self, a: Vec3A, b: Vec3A, indices: &[u32], points: &mut [Vec3A]) {
/// hexasphere::interpolation::lerp_multiple(a, b, indices, points);
/// }
/// }
/// ```
///
/// Or, create your own shape, by changing the values for
/// [`initial_points`], [`triangles`], and [`EDGES`]. Check
/// the documentation for these members individually on how
/// they should be implemented.
///
/// [`initial_points`]: #tymethod.initial_points
/// [`triangles`]: #tymethod.triangles
/// [`EDGES`]: #associatedconstant.EDGES
///
pub trait BaseShape {
///
/// The initial vertices for the triangle. Note that
/// `Vec3A::new` is not a `const fn()`, hence I recommend
/// you use `lazy_static`. Check the source file for this
/// crate and look for the constants module at the bottom
/// for an example.
///
/// Constraints on the points depend on the interpolation
/// function used:
/// - `slerp` requires normalized (magnitude 1) data.
/// - `lerp` doesn't care.
/// - `normalized_lerp` requires normalized (magnitude 1)
/// data.
///
fn initial_points(&self) -> Vec<Vec3A>;
///
/// Base triangles for the shape.
///
/// - The fields `a`, `b`, and `c` define the indices for
/// the points of the triangles given the data present
/// in `initial_points`. Note that this crate assumes
/// points are in a counter clockwise ordering.
/// - The fields `ab_edge`, `bc_edge`, `ca_edge` mark the
/// index of the edge which `a`/`b`, `b`/`c`, and `c`/`a`
/// border respectively. While theoretically you could give
/// each triangle its own edge, minimizing edges saves on
/// memory footprint and performance.
/// - Triangles should be created through [`Triangle::new`].
///
fn triangles(&self) -> Box<[Triangle]>;
///
/// Number of unique edges defined in the contents of
/// `triangles()`. This number is 5 for a square for
/// example:
/// ```text
/// a - 0 - b
/// | / |
/// 3 4 1
/// | / |
/// d - 2 - c
/// ```
///
const EDGES: usize;
///
/// Basic function used for interpolation. When `p` is
/// `0.0`, `a` is expected. When `p` is `1.0`, `b` is
/// expected. There are three options already implemented
/// in this crate:
/// - [`lerp`] implements linear interpolation.
/// - [`geometric_slerp`] implements spherical
/// interpolation. (Interpolates along an arc on a sphere)
/// - [`normalized_lerp`] implements cheaper
/// yet less accurate spherical interpolation. The accuracy
/// decreases as the angle between the two points on the unit
/// sphere increases.
///
/// [`lerp`]: ../fn.lerp.html
/// [`geometric_slerp`]: ../fn.geometric_slerp.html
/// [`normalized_lerp`]: ../fn.normalized_lerp.html
///
fn interpolate(&self, a: Vec3A, b: Vec3A, p: f32) -> Vec3A;
///
/// If an optimization is available for the case where `p`
/// is `0.5`, this function should implement it. This defaults
/// to calling `interpolate(a, b, 0.5)` however.
///
fn interpolate_half(&self, a: Vec3A, b: Vec3A) -> Vec3A {
self.interpolate(a, b, 0.5)
}
///
/// If an optimization is available for the case where `p`
/// varies but `a` and `b` don't this function should implement
/// it.
///
/// ### Parameters
/// - `a`: start.
/// - `b`: end.
/// - `indices`: list of indices to index into `points`. `points`
/// at the index should contain the result. The index (n) of an
/// index should correspond with the nth point in a distribution
/// of `indices.len()` points between (exclusive) `a` and `b`.
/// - `points`: list of points where the results of the calculation
/// should end up. To be indexed by values in `indices`.
///
fn interpolate_multiple(&self, a: Vec3A, b: Vec3A, indices: &[u32], points: &mut [Vec3A]) {
for (percent, index) in indices.iter().enumerate() {
let percent = (percent + 1) as f32 / (indices.len() + 1) as f32;
points[*index as usize] = self.interpolate(a, b, percent);
}
}
}
///
/// Implemented in the case where the triangles on the shape
/// are both equilateral and identifiable from their normal.
///
/// This is only used in the cases of spherical shapes.
///
#[cfg(feature = "shape-extras")]
pub trait EquilateralBaseShape: BaseShape {
///
/// Normals for each of the triangles provided by
/// [`BaseShape::triangles`].
///
fn triangle_normals() -> &'static [Vec3A];
///
/// Minimum value for the dot product which one could use
/// to determine that triangle being the closest.
///
/// If the dot product between a vector and a triangle
/// normal is greater than this, then that vector is
/// guaranteed to be within that triangle.
///
/// This is also the cosine of the angle of the cone
/// whose circular edge lies on a triangle.
///
fn triangle_min_dot() -> f32;
}
///
/// The edge between two main triangles.
///
#[derive(Debug)]
struct Edge {
///
/// Indices of the points between the endpoints.
///
points: Vec<u32>,
///
/// Whether this edge has already been processed
/// or not.
///
done: bool,
}
impl Default for Edge {
fn default() -> Self {
Self {
points: Vec::new(),
done: true,
}
}
}
impl Edge {
pub fn subdivide_n_times(&mut self, n: usize, points: &mut usize) {
for _ in 0..n {
self.points.push(*points as _);
*points += 1;
}
}
}
///
/// Contents of one of the main triangular faces.
///
/// This is *not* the entire face, it is the points which do
/// not include the exterior edges and vertices since those are
/// shared.
///
#[derive(Clone, Debug)]
enum TriangleContents {
///
/// Nothing inside the triangle: subdivisions 0 and 1
///
None,
///
/// One point inside the triangle: subdivision 2
///
One(u32),
///
/// Three points inside the triangle: subdivision 3
///
Three { a: u32, b: u32, c: u32 },
///
/// Six points inside the triangle: subdivision 4
///
Six {
a: u32,
b: u32,
c: u32,
ab: u32,
bc: u32,
ca: u32,
},
///
/// More than six points inside the triangle: subdivision > 4
///
More {
a: u32,
b: u32,
c: u32,
// Separated into three `my_side_length` segments
// to save on extra allocations.
sides: Vec<u32>,
my_side_length: u32,
///
/// Contents of the inner triangle.
///
// Implementing this as a `Vec<TriangleContents>` would
// probably be a perf. improvement someday, however not
// something worth implementing right now.
contents: Box<TriangleContents>,
},
}
impl TriangleContents {
///
/// Creates a `None` variant.
///
pub fn none() -> Self {
Self::None
}
///
/// Creates a `One` by interpolating two values.
///
fn one(points: &mut usize) -> Self {
let index = *points as u32;
*points += 1;
TriangleContents::One(index)
}
fn calculate_one(
&self,
ab: Slice<u32>,
bc: Slice<u32>,
points: &mut [Vec3A],
shape: &impl BaseShape,
) {
assert_eq!(ab.len(), bc.len());
assert_eq!(ab.len(), 2);
match self {
TriangleContents::One(idx) => {
let p1 = points[ab[0] as usize];
let p2 = points[bc[1] as usize];
points[*idx as usize] = shape.interpolate_half(p1, p2);
}
_ => panic!("Did not find One variant."),
}
}
///
/// Creates a `Three` variant from a `One` variant.
///
fn three(&mut self, points: &mut usize) {
use TriangleContents::*;
match self {
&mut One(x) => {
*points += 2;
*self = Three {
a: x,
b: *points as u32 - 2,
c: *points as u32 - 1,
};
}
_ => panic!("Self is {:?} while it should be One", self),
}
}
fn calculate_three(
&self,
ab: Slice<u32>,
bc: Slice<u32>,
ca: Slice<u32>,
points: &mut [Vec3A],
shape: &impl BaseShape,
) {
assert_eq!(ab.len(), bc.len());
assert_eq!(ab.len(), ca.len());
assert_eq!(ab.len(), 3);
match self {
&TriangleContents::Three { a, b, c } => {
let ab = points[ab[1] as usize];
let bc = points[bc[1] as usize];
let ca = points[ca[1] as usize];
let a_val = shape.interpolate_half(ab, ca);
let b_val = shape.interpolate_half(bc, ab);
let c_val = shape.interpolate_half(ca, bc);
points[a as usize] = a_val;
points[b as usize] = b_val;
points[c as usize] = c_val;
}
_ => panic!("Did not find Three variant."),
}
}
///
/// Creates a `Six` variant from a `Three` variant.
///
fn six(&mut self, points: &mut usize) {
use TriangleContents::*;
match self {
&mut Three {
a: a_index,
b: b_index,
c: c_index,
} => {
*points += 3;
*self = Six {
a: a_index,
b: b_index,
c: c_index,
ab: *points as u32 - 3,
bc: *points as u32 - 2,
ca: *points as u32 - 1,
};
}
_ => panic!("Found {:?} whereas a Three was expected", self),
}
}
fn calculate_six(
&self,
ab: Slice<u32>,
bc: Slice<u32>,
ca: Slice<u32>,
points: &mut [Vec3A],
shape: &impl BaseShape,
) {
assert_eq!(ab.len(), bc.len());
assert_eq!(ab.len(), ca.len());
assert_eq!(ab.len(), 4);
use TriangleContents::*;
match self {
&Six {
a: a_index,
b: b_index,
c: c_index,
ab: ab_index,
bc: bc_index,
ca: ca_index,
} => {
let aba = points[ab[1] as usize];
let abb = points[ab[2] as usize];
let bcb = points[bc[1] as usize];
let bcc = points[bc[2] as usize];
let cac = points[ca[1] as usize];
let caa = points[ca[2] as usize];
let a = shape.interpolate_half(aba, caa);
let b = shape.interpolate_half(abb, bcb);
let c = shape.interpolate_half(bcc, cac);
let ab = shape.interpolate_half(a, b);
let bc = shape.interpolate_half(b, c);
let ca = shape.interpolate_half(c, a);
points[a_index as usize] = a;
points[b_index as usize] = b;
points[c_index as usize] = c;
points[ab_index as usize] = ab;
points[bc_index as usize] = bc;
points[ca_index as usize] = ca;
}
_ => panic!("Found {:?} whereas a Three was expected", self),
}
}
///
/// Subdivides this given the surrounding points.
///
pub fn subdivide(&mut self, points: &mut usize) {
use TriangleContents::*;
match self {
None => *self = Self::one(points),
One(_) => self.three(points),
Three { .. } => self.six(points),
&mut Six {
a,
b,
c,
ab: ab_idx,
bc: bc_idx,
ca: ca_idx,
} => {
*self = More {
a,
b,
c,
sides: vec![ab_idx, bc_idx, ca_idx],
my_side_length: 1,
contents: Box::new(Self::none()),
};
self.subdivide(points);
}
More {
sides,
contents,
my_side_length,
..
} => {
*points += 3;
let len = *points as u32;
sides.extend_from_slice(&[len - 3, len - 2, len - 1]);
*my_side_length += 1;
contents.subdivide(points);
}
}
}
pub fn calculate(
&mut self,
ab: Slice<u32>,
bc: Slice<u32>,
ca: Slice<u32>,
points: &mut [Vec3A],
shape: &impl BaseShape,
) {
assert_eq!(ab.len(), bc.len());
assert_eq!(ab.len(), ca.len());
assert!(ab.len() >= 2);
use TriangleContents::*;
match self {
None => panic!(),
One(_) => self.calculate_one(ab, bc, points, shape),
Three { .. } => self.calculate_three(ab, bc, ca, points, shape),
Six { .. } => self.calculate_six(ab, bc, ca, points, shape),
&mut More {
a: a_idx,
b: b_idx,
c: c_idx,
ref mut sides,
ref mut contents,
ref mut my_side_length,
} => {
let side_length = *my_side_length as usize;
let outer_len = ab.len();
let aba = points[ab[1] as usize];
let abb = points[ab[outer_len - 2] as usize];
let bcb = points[bc[1] as usize];
let bcc = points[bc[outer_len - 2] as usize];
let cac = points[ca[1] as usize];
let caa = points[ca[outer_len - 2] as usize];
points[a_idx as usize] = shape.interpolate_half(aba, caa);
points[b_idx as usize] = shape.interpolate_half(abb, bcb);
points[c_idx as usize] = shape.interpolate_half(bcc, cac);
let ab = &sides[0..side_length];
let bc = &sides[side_length..side_length * 2];
let ca = &sides[side_length * 2..];
shape.interpolate_multiple(
points[a_idx as usize],
points[b_idx as usize],
ab,
points,
);
shape.interpolate_multiple(
points[b_idx as usize],
points[c_idx as usize],
bc,
points,
);
shape.interpolate_multiple(
points[c_idx as usize],
points[a_idx as usize],
ca,
points,
);
contents.calculate(Forward(ab), Forward(bc), Forward(ca), points, shape);
}
}
}
///
/// Indexes the AB edge.
///
/// This is inclusive of A and B.
///
pub fn idx_ab(&self, idx: usize) -> u32 {
use TriangleContents::*;
match self {
None => panic!("Invalid Index, len is 0, but got {}", idx),
One(x) => {
if idx != 0 {
panic!("Invalid Index, len is 1, but got {}", idx);
} else {
*x
}
}
Three { a, b, .. } => *[a, b][idx],
Six { a, b, ab, .. } => *[a, ab, b][idx],
&More {
a,
b,
ref sides,
my_side_length,
..
} => match idx {
0 => a,
x if (1..(my_side_length as usize + 1)).contains(&x) => sides[x - 1],
x if x == my_side_length as usize + 1 => b,
_ => panic!(
"Invalid Index, len is {}, but got {}",
my_side_length + 2,
idx
),
},
}
}
///
/// Indexes the BC edge.
///
/// This is inclusive of B and C.
///
pub fn idx_bc(&self, idx: usize) -> u32 {
use TriangleContents::*;
match self {
None => panic!("Invalid Index, len is 0, but got {}", idx),
One(x) => {
if idx != 0 {
panic!("Invalid Index, len is 1, but got {}", idx);
} else {
*x
}
}
Three { c, b, .. } => *[b, c][idx],
Six { b, c, bc, .. } => *[b, bc, c][idx],
&More {
b,
c,
ref sides,
my_side_length,
..
} => match idx {
0 => b,
x if (1..(my_side_length as usize + 1)).contains(&x) => {
sides[my_side_length as usize + (x - 1)]
}
x if x == my_side_length as usize + 1 => c,
_ => panic!(
"Invalid Index, len is {}, but got {}",
my_side_length + 2,
idx
),
},
}
}
///
/// Indexes the CA edge.
///
/// This is inclusive of C and A.
///
pub fn idx_ca(&self, idx: usize) -> u32 {
use TriangleContents::*;
match self {
None => panic!("Invalid Index, len is 0, but got {}", idx),
One(x) => {
if idx != 0 {
panic!("Invalid Index, len is 1, but got {}", idx);
} else {
*x
}
}
Three { c, a, .. } => *[c, a][idx],
Six { c, a, ca, .. } => *[c, ca, a][idx],
&More {
c,
a,
ref sides,
my_side_length,
..
} => match idx {
0 => c,
x if (1..(my_side_length as usize + 1)).contains(&x) => {
sides[my_side_length as usize * 2 + x - 1]
}
x if x == my_side_length as usize + 1 => a,
_ => panic!(
"Invalid Index, len is {}, but got {}",
my_side_length + 2,
idx
),
},
}
}
///
/// Adds the indices in this portion of the triangle
/// to the specified buffer in order.
///
pub fn add_indices(&self, buffer: &mut Vec<u32>) {
use TriangleContents::*;
match self {
None | One(_) => {}
&Three { a, b, c } => buffer.extend_from_slice(&[a, b, c]),
&Six {
a,
b,
c,
ab,
bc,
ca,
} => {
buffer.extend_from_slice(&[a, ab, ca]);
buffer.extend_from_slice(&[ab, b, bc]);
buffer.extend_from_slice(&[bc, c, ca]);
buffer.extend_from_slice(&[ab, bc, ca]);
}
&More {
a,
b,
c,
ref sides,
my_side_length,
ref contents,
} => {
let my_side_length = my_side_length as usize;
let ab = &sides[0..my_side_length];
let bc = &sides[my_side_length..my_side_length * 2];
let ca = &sides[my_side_length * 2..];
// Contents are always stored forward.
add_indices_triangular(
a,
b,
c,
Forward(ab),
Forward(bc),
Forward(ca),
&**contents,
buffer,
);
contents.add_indices(buffer);
}
}
}
///
/// Adds the indices for a wireframe of the triangles
/// in this portion of the triangle to the specified
/// buffer in order.
///
pub fn add_line_indices(
&self,
buffer: &mut Vec<u32>,
delta: u32,
mut breaks: impl FnMut(&mut Vec<u32>),
) {
use TriangleContents::*;
match self {
None | One(_) | Three { .. } => {}
&Six { ab, bc, ca, .. } => {
buffer.extend_from_slice(&[ab + delta, bc + delta, ca + delta]);
breaks(buffer);
}
&More {
ref sides,
my_side_length,
ref contents,
..
} => {
let my_side_length = my_side_length as usize;
let ab = &sides[0..my_side_length];
let bc = &sides[my_side_length..my_side_length * 2];
let ca = &sides[my_side_length * 2..];
// Contents are always stored forward.
add_line_indices_triangular(
delta,
Forward(ab),
Forward(bc),
Forward(ca),
&**contents,
buffer,
);
breaks(buffer);
contents.add_line_indices(buffer, delta, breaks);
}
}
}
}
#[derive(Clone, Debug)]
///
/// A main triangle on the base shape of a subdivided shape.
///
/// The specification of the library expects `a`, `b`, and `c`
/// to be in a counter-clockwise winding.
///
pub struct Triangle {
pub a: u32,
pub b: u32,
pub c: u32,
pub ab_edge: usize,
pub bc_edge: usize,
pub ca_edge: usize,
pub(crate) ab_forward: bool,
pub(crate) bc_forward: bool,
pub(crate) ca_forward: bool,
pub(crate) contents: TriangleContents,
}
impl Default for Triangle {
fn default() -> Self {
Self {
a: 0,
b: 0,
c: 0,
ab_edge: 0,
bc_edge: 0,
ca_edge: 0,
ab_forward: false,
bc_forward: false,
ca_forward: false,
contents: TriangleContents::None,
}
}
}
impl Triangle {
///
/// Creates a new `Triangle` given the data. This is done
/// to avoid boilerplate.
///
pub const fn new(
a: u32,
b: u32,
c: u32,
ab_edge: usize,
bc_edge: usize,
ca_edge: usize,
) -> Self {
Self {
a,
b,
c,
ab_edge,
bc_edge,
ca_edge,
ab_forward: false,
bc_forward: false,
ca_forward: false,
contents: TriangleContents::None,
}
}
fn calculate_edges(
&mut self,
edges: &mut [Edge],
points: &mut [Vec3A],
shape: &impl BaseShape,
) -> usize {
let mut divide = |p1: u32, p2: u32, edge_idx: usize, forward: &mut bool| {
if !edges[edge_idx].done {
shape.interpolate_multiple(
points[p1 as usize],
points[p2 as usize],
&edges[edge_idx].points,
points,
);
edges[edge_idx].done = true;
*forward = true;
} else {
*forward = false;
}
};
divide(self.a, self.b, self.ab_edge, &mut self.ab_forward);
divide(self.b, self.c, self.bc_edge, &mut self.bc_forward);
divide(self.c, self.a, self.ca_edge, &mut self.ca_forward);
edges[self.ab_edge].points.len()
}
///
/// Subdivides the edges and contents of this triangle.
///
/// If `calculate` is set to `false`, then the points are
/// simply added to the buffer and the indices recorded,
/// but no calculations are performed.
///
fn subdivide(&mut self, points: &mut usize, subdivision_level: usize) {
if subdivision_level >= 1 {
self.contents.subdivide(points);
}
}
fn calculate(&mut self, edges: &mut [Edge], points: &mut [Vec3A], shape: &impl BaseShape) {
let side_length = self.calculate_edges(edges, points, shape) + 1;
if side_length > 2 {
let ab = if self.ab_forward {
Forward(&edges[self.ab_edge].points)
} else {
Backward(&edges[self.ab_edge].points)
};
let bc = if self.bc_forward {
Forward(&edges[self.bc_edge].points)
} else {
Backward(&edges[self.bc_edge].points)
};
let ca = if self.ca_forward {
Forward(&edges[self.ca_edge].points)
} else {
Backward(&edges[self.ca_edge].points)
};
self.contents.calculate(ab, bc, ca, points, shape);
}
}
///
/// Appends the indices of all the subtriangles onto the
/// specified buffer.
///
fn add_indices(&self, buffer: &mut Vec<u32>, edges: &[Edge]) {
let ab = if self.ab_forward {
Forward(&edges[self.ab_edge].points)
} else {
Backward(&edges[self.ab_edge].points)
};
let bc = if self.bc_forward {
Forward(&edges[self.bc_edge].points)
} else {
Backward(&edges[self.bc_edge].points)
};
let ca = if self.ca_forward {
Forward(&edges[self.ca_edge].points)
} else {
Backward(&edges[self.ca_edge].points)
};
add_indices_triangular(self.a, self.b, self.c, ab, bc, ca, &self.contents, buffer);
self.contents.add_indices(buffer);
}
///
/// Appends the indices of all the subtriangles' wireframes
/// onto the specified buffer.
///
fn add_line_indices(
&self,
buffer: &mut Vec<u32>,
edges: &[Edge],
delta: u32,
mut breaks: impl FnMut(&mut Vec<u32>),
) {
let ab = if self.ab_forward {
Forward(&edges[self.ab_edge].points)
} else {
Backward(&edges[self.ab_edge].points)
};
let bc = if self.bc_forward {
Forward(&edges[self.bc_edge].points)
} else {
Backward(&edges[self.bc_edge].points)
};
let ca = if self.ca_forward {
Forward(&edges[self.ca_edge].points)
} else {
Backward(&edges[self.ca_edge].points)
};
add_line_indices_triangular(delta, ab, bc, ca, &self.contents, buffer);
breaks(buffer);
self.contents.add_line_indices(buffer, delta, breaks);
}
}
///
/// A progressively subdivided shape which can record
/// the indices of the points and list out the individual
/// triangles of the resulting shape.
///
/// All base triangles specified by `S` in [`BaseShape`]
/// are expected to be in counter clockwise winding.
///
/// Points are preferably stored with coordinates less
/// than or equal to `1.0`. This is why all default shapes
/// lie on the unit sphere.
///
pub struct Subdivided<T, S: BaseShape> {
points: Vec<Vec3A>,
data: Vec<T>,
triangles: Box<[Triangle]>,
shared_edges: Box<[Edge]>,
subdivisions: usize,
shape: S,
}
impl<T, S: BaseShape + Default> Subdivided<T, S> {
pub fn new(subdivisions: usize, generator: impl FnMut(Vec3A) -> T) -> Self {
Self::new_custom_shape(subdivisions, generator, Default::default())
}
}
impl<T, S: BaseShape> Subdivided<T, S> {
///
/// Creates the base shape from `S` and subdivides it.
///
/// - `subdivisions` specifies the number of times a subdivision
/// will be created. In other terms, this is the number of auxiliary
/// points between the vertices on the original shape.
///
/// - `generator` is a function run once all the subdivisions are
/// applied and its values are stored in an internal `Vec`.
///
pub fn new_custom_shape(
subdivisions: usize,
generator: impl FnMut(Vec3A) -> T,
shape: S,
) -> Self {
let mut this = Self {
points: shape.initial_points(),
shared_edges: {
let mut edges = Vec::new();
edges.resize_with(S::EDGES, Edge::default);
edges.into_boxed_slice()
},
triangles: shape.triangles(),
subdivisions: 1,
data: vec![],
shape,
};
let mut new_points = this.points.len();
for edge in &mut *this.shared_edges {
edge.subdivide_n_times(subdivisions, &mut new_points);
edge.done = false;
}
for triangle in &mut *this.triangles {
for i in 0..subdivisions {
triangle.subdivide(&mut new_points, i);
}
}
let diff = new_points - this.points.len();
this.points
.extend(std::iter::repeat(Vec3A::ZERO).take(diff));
for triangle in &mut *this.triangles {
triangle.calculate(&mut *this.shared_edges, &mut this.points, &this.shape);
}
this.data = this.points.iter().copied().map(generator).collect();
this
}
///
/// Subdivides all triangles. `calculate` signals whether or not
/// to recalculate vertices (To not calculate vertices between many
/// subdivisions).
///
pub fn subdivide(&mut self) {
for Edge { done, .. } in &mut *self.shared_edges {
*done = false;
}
let mut new_points = self.points.len();
let subdivision_level = self.shared_edges[0].points.len();
for edge in &mut *self.shared_edges {
edge.subdivide_n_times(1, &mut new_points);
edge.done = false;
}
for triangle in &mut *self.triangles {
triangle.subdivide(&mut new_points, subdivision_level);
}
let diff = new_points - self.points.len();
self.points
.extend(std::iter::repeat(Vec3A::ZERO).take(diff));
for triangle in &mut *self.triangles {
triangle.calculate(&mut *self.shared_edges, &mut self.points, &self.shape);
}
}
///
/// The raw points created by the subdivision process.
///
pub fn raw_points(&self) -> &[Vec3A] {
&self.points
}
///
/// Appends the indices for the triangle into `buffer`.
///
/// The specified triangle is a main triangle on the base
/// shape. The range of this should be limited to the number
/// of triangles in the base shape.
///
/// Alternatively, use [`get_all_indices`] to get all the
/// indices.
///
/// [`get_all_indices`]: #method.get_all_indices
///
pub fn get_indices(&self, triangle: usize, buffer: &mut Vec<u32>) {
self.triangles[triangle].add_indices(buffer, &self.shared_edges);
}
///
/// Gets the indices for all main triangles in the shape.
///
pub fn get_all_indices(&self) -> Vec<u32> {
let mut buffer = Vec::new();
for i in 0..self.triangles.len() {
self.get_indices(i, &mut buffer);
}
buffer
}
///
/// Gets the wireframe indices for the contents of a specified triangle.
///
/// `delta` is added to all of the indices pushed into the buffer, and
/// is generally intended to be used to have a NaN vertex at zero. Set
/// to zero to produce the indices as if there was no NaN vertex.
///
/// `breaks` is run every time there is a necessary break in the line
/// strip. Use this to, for example, swap out the buffer using
/// [`std::mem::swap`], or push a NaN index into the buffer.
///
pub fn get_line_indices(
&self,
buffer: &mut Vec<u32>,
triangle: usize,
delta: usize,
breaks: impl FnMut(&mut Vec<u32>),
) {
self.triangles[triangle].add_line_indices(buffer, &self.shared_edges, delta as u32, breaks);
}
///
/// Gets the wireframe indices for the specified edge of the base shape.
///
/// See [`Self::get_line_indices`] for more on `delta`.
///
pub fn get_major_edge_line_indices(&self, edge: usize, buffer: &mut Vec<u32>, delta: usize) {
buffer.extend(
self.shared_edges[edge]
.points
.iter()
.map(|x| x + delta as u32),
);
}
///
/// Gets the wireframe indices for all main triangles in the shape,
/// as well as all edges.
///
/// See [`Self::get_line_indices`] for more on `delta`, and `breaks`.
///
pub fn get_all_line_indices(
&self,
delta: usize,
mut breaks: impl FnMut(&mut Vec<u32>),
) -> Vec<u32> {
let mut buffer = Vec::new();
for i in 0..self.triangles.len() {
self.get_line_indices(&mut buffer, i, delta, &mut breaks);
}
for i in 0..self.shared_edges.len() {
self.get_major_edge_line_indices(i, &mut buffer, delta);
breaks(&mut buffer);
}
buffer
}
///
/// Returns the number of subdivisions applied when this shape
/// was created.
///
pub fn subdivisions(&self) -> usize {
self.subdivisions
}
///
/// Returns the custom data created by the generator function.
///
pub fn raw_data(&self) -> &[T] {
&self.data
}
///
/// Calculate the number of indices which each main
/// triangle will add to the vertex buffer.
///
/// # Equation
///
/// ```text
/// (subdivisions + 1)²
/// ```
///
pub fn indices_per_main_triangle(&self) -> usize {
(self.subdivisions + 1) * (self.subdivisions + 1)
}
///
/// Calculate the number of vertices contained within
/// each main triangle including the vertices which are
/// shared with another main triangle.
///
/// # Equation
///
/// ```text
/// (subdivisions + 1) * (subdivisions + 2) / 2
/// ```
///
pub fn vertices_per_main_triangle_shared(&self) -> usize {
(self.subdivisions + 1) * (self.subdivisions + 2) / 2
}
///
/// Calculate the number of vertices contained within each
/// main triangle excluding the ones that are shared with
/// other main triangles.
///
/// # Equation
///
/// ```text
/// {
/// { subdivisions < 2 : 0
/// {
/// { subdivisions >= 2 : (subdivisions - 1) * subdivisions / 2
/// {
/// ```
///
pub fn vertices_per_main_triangle_unique(&self) -> usize {
if self.subdivisions < 2 {
return 0;
}
(self.subdivisions - 1) * self.subdivisions / 2
}
///
/// Calculate the number of vertices along the edges
/// of the main triangles and the vertices of the main
/// triangles.
///
/// # Equation
///
/// ```text
/// subdivisions * EDGES + INITIAL_POINTS
/// ```
///
pub fn shared_vertices(&self) -> usize {
self.subdivisions * S::EDGES + self.shape.initial_points().len()
}
///
/// Linear distance between two points on this shape.
///
pub fn linear_distance(&self, p1: u32, p2: u32, radius: f32) -> f32 {
(self.points[p1 as usize] - self.points[p2 as usize]).length() * radius
}
}
#[cfg(feature = "shape-extras")]
impl<T, S: BaseShape + EquilateralBaseShape> Subdivided<T, S> {
///
/// Closest "main" triangle.
///
/// Undefined results if the point is one of the vertices
/// on the original base shape.
///
pub fn main_triangle_intersect(point: Vec3A) -> usize {
let point = point.normalize();
let mut nearest = 0;
let mut near_factor = point.dot(S::triangle_normals()[0]);
if near_factor > S::triangle_min_dot() {
return 0;
}
for (index, normal) in S::triangle_normals().iter().enumerate().skip(1) {
let factor = normal.dot(point);
if factor > near_factor {
if factor > S::triangle_min_dot() {
return index;
}
nearest = index;
near_factor = factor;
}
}
nearest
}
///
/// Distance between two points on this sphere (assuming this
/// is a sphere).
///
pub fn spherical_distance(&self, p1: u32, p2: u32, radius: f32) -> f32 {
self.points[p1 as usize]
.dot(self.points[p2 as usize])
.acos()
* radius
}
}
///
/// Adds the indices of the triangles in this "layer" of the triangle to
/// the buffer.
///
// The logic in this function has been worked out mostly on pen and paper
// and therefore it is difficult to read.
fn add_indices_triangular(
a: u32,
b: u32,
c: u32,
ab: Slice<u32>,
bc: Slice<u32>,
ca: Slice<u32>,
contents: &TriangleContents,
buffer: &mut Vec<u32>,
) {
let subdivisions = ab.len();
if subdivisions == 0 {
buffer.extend_from_slice(&[a, b, c]);
return;
} else if subdivisions == 1 {
buffer.extend_from_slice(&[a, ab[0], ca[0]]);
buffer.extend_from_slice(&[b, bc[0], ab[0]]);
buffer.extend_from_slice(&[c, ca[0], bc[0]]);
buffer.extend_from_slice(&[ab[0], bc[0], ca[0]]);
return;
} else if subdivisions == 2 {
buffer.extend_from_slice(&[a, ab[0], ca[1]]);
buffer.extend_from_slice(&[b, bc[0], ab[1]]);
buffer.extend_from_slice(&[c, ca[0], bc[1]]);
buffer.extend_from_slice(&[ab[1], contents.idx_ab(0), ab[0]]);
buffer.extend_from_slice(&[bc[1], contents.idx_ab(0), bc[0]]);
buffer.extend_from_slice(&[ca[1], contents.idx_ab(0), ca[0]]);
buffer.extend_from_slice(&[ab[0], contents.idx_ab(0), ca[1]]);
buffer.extend_from_slice(&[bc[0], contents.idx_ab(0), ab[1]]);
buffer.extend_from_slice(&[ca[0], contents.idx_ab(0), bc[1]]);
return;
}
let last_idx = ab.len() - 1;
buffer.extend_from_slice(&[a, ab[0], ca[last_idx]]);
buffer.extend_from_slice(&[b, bc[0], ab[last_idx]]);
buffer.extend_from_slice(&[c, ca[0], bc[last_idx]]);
buffer.extend_from_slice(&[ab[0], contents.idx_ab(0), ca[last_idx]]);
buffer.extend_from_slice(&[bc[0], contents.idx_bc(0), ab[last_idx]]);
buffer.extend_from_slice(&[ca[0], contents.idx_ca(0), bc[last_idx]]);
for i in 0..last_idx - 1 {
// Exclude special case: last_idx - 1.
// AB
buffer.extend_from_slice(&[ab[i], ab[i + 1], contents.idx_ab(i)]);
buffer.extend_from_slice(&[ab[i + 1], contents.idx_ab(i + 1), contents.idx_ab(i)]);
// BC
buffer.extend_from_slice(&[bc[i], bc[i + 1], contents.idx_bc(i)]);
buffer.extend_from_slice(&[bc[i + 1], contents.idx_bc(i + 1), contents.idx_bc(i)]);
// CA
buffer.extend_from_slice(&[ca[i], ca[i + 1], contents.idx_ca(i)]);
buffer.extend_from_slice(&[ca[i + 1], contents.idx_ca(i + 1), contents.idx_ca(i)]);
}
// Deal with special case: last_idx - 1
buffer.extend_from_slice(&[
ab[last_idx],
contents.idx_ab(last_idx - 1),
ab[last_idx - 1],
]);
buffer.extend_from_slice(&[
bc[last_idx],
contents.idx_bc(last_idx - 1),
bc[last_idx - 1],
]);
buffer.extend_from_slice(&[
ca[last_idx],
contents.idx_ca(last_idx - 1),
ca[last_idx - 1],
]);
}
///
/// Adds the indices of the triangles in this "layer" of the triangle to
/// the buffer in line strip format.
///
/// This is used to create a wireframe look.
///
// Like the previous function, this logic has been worked out mostly on
// pen and paper and it is therefore difficult to read.
fn add_line_indices_triangular(
delta: u32,
ab: Slice<u32>,
bc: Slice<u32>,
ca: Slice<u32>,
contents: &TriangleContents,
buffer: &mut Vec<u32>,
) {
if ab.len() == 1 {
buffer.extend_from_slice(&[ab[0] + delta, bc[0] + delta, ca[0] + delta]);
return;
}
buffer.reserve((ab.len() - 1) * 9);
if ab.len() != 2 {
for i in 0..ab.len() - 2 {
buffer.push(contents.idx_ab(i) + delta);
}
for i in 0..bc.len() - 2 {
buffer.push(contents.idx_bc(i) + delta);
}
for i in 0..ca.len() - 2 {
buffer.push(contents.idx_ca(i) + delta);
}
} else {
buffer.push(contents.idx_ca(0) + delta);
}
buffer.push(ab[0] + delta);
for i in (1..ca.len()).rev() {
buffer.push(ca[i] + delta);
buffer.push(contents.idx_ca(i - 1) + delta);
}
buffer.push(ca[0] + delta);
for i in (1..bc.len()).rev() {
buffer.push(bc[i] + delta);
buffer.push(contents.idx_bc(i - 1) + delta);
}
buffer.push(bc[0] + delta);
for i in (1..ab.len()).rev() {
buffer.push(ab[i] + delta);
buffer.push(contents.idx_ab(i - 1) + delta);
}
}
#[cfg(feature = "adjacency")]
///
/// Implements neighbour tracking.
///
mod adjacency {
use tinyvec::ArrayVec;
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub(crate) enum RehexState {
Empty,
Clear,
TwoTwo,
ThreeTwo,
TwoTwoTwo,
Complete,
}
/// Tracks the neighbours adjacent to each vertex by only using index data.
///
/// The result preserves winding: the resulting array is wound around the
/// center vertex in the same way that the source triangles were wound.
pub struct AdjacencyBuilder {
pub(crate) state: Vec<RehexState>,
pub result: Vec<ArrayVec<[usize; 6]>>,
}
impl AdjacencyBuilder {
pub fn new(points_len: usize) -> Self {
let state = std::iter::repeat(RehexState::Empty)
.take(points_len)
.collect::<Vec<_>>();
let result = std::iter::repeat(ArrayVec::new())
.take(points_len)
.collect::<Vec<_>>();
Self { state, result }
}
pub fn add_indices(&mut self, indices: &[u32]) {
for chunk in indices.chunks_exact(3) {
let &[a, b, c] = chunk else { unreachable!() };
self.add_triangle(a, b, c);
self.add_triangle(c, a, b);
self.add_triangle(b, c, a);
}
}
pub fn finish(self) -> Vec<ArrayVec<[usize; 6]>> {
self.result
}
fn add_triangle(&mut self, a: u32, b: u32, c: u32) {
let (a, b, c) = (a as usize, b as usize, c as usize);
let state = &mut self.state[a];
if let RehexState::Complete = state {
return;
}
let result = &mut self.result[a];
match state {
RehexState::Empty => {
result.extend([b, c]);
*state = RehexState::Clear;
}
RehexState::Clear => {
if result[result.len() - 1] == b {
if result[0] == c {
*state = RehexState::Complete;
} else {
result.push(c);
if result.len() == 6 {
*state = RehexState::Complete;
}
}
} else if result[0] == c {
result.insert(0, b);
if result.len() == 6 {
*state = RehexState::Complete;
}
} else {
*state = match result.len() {
2 => RehexState::TwoTwo,
3 => RehexState::ThreeTwo,
4 => RehexState::Complete,
_ => unreachable!(),
};
result.extend([b, c]);
}
}
RehexState::TwoTwo => {
if result[1] == b {
if result[2] == c {
*state = RehexState::Clear;
} else {
result.insert(2, c);
*state = RehexState::ThreeTwo;
}
} else if result[0] == c {
if result[3] == b {
let temp = result[2];
result.pop();
result.pop();
result.insert(0, temp);
result.insert(1, b);
*state = RehexState::Clear;
} else {
result.insert(0, b);
*state = RehexState::ThreeTwo;
}
} else if result[2] == c {
result.insert(0, b);
let t2 = result.swap_remove(2);
let t1 = result.swap_remove(1);
result.push(t1);
result.push(t2);
*state = RehexState::ThreeTwo;
} else {
result.extend([b, c]);
*state = RehexState::TwoTwoTwo;
}
}
RehexState::ThreeTwo => {
if result[2] == b {
if result[3] == c {
*state = RehexState::Clear;
} else {
result.insert(3, c);
*state = RehexState::Complete;
}
} else {
if result[4] == b {
result.pop();
let temp = result.pop().unwrap();
result.insert(0, b);
result.insert(0, temp);
*state = RehexState::Clear;
} else {
result.insert(0, b);
*state = RehexState::Complete;
}
}
}
RehexState::TwoTwoTwo => {
if (result[1] != b || result[2] != c)
&& (result[3] != b || result[4] != c)
&& (result[5] != b || result[0] != c)
{
let t2 = result.swap_remove(3);
let t1 = result.swap_remove(2);
result.extend([t1, t2]);
}
*state = RehexState::Complete;
}
RehexState::Complete => unreachable!(),
}
}
}
}
#[cfg(test)]
mod tests {
use crate::shapes::IcoSphere;
use crate::Slice::Forward;
use glam::Vec3A;
// Starting points aren't _quite_ precise enough to use `f32::EPSILON`.
const EPSILON: f32 = 0.0000002;
#[test]
fn slerp_one() {
use crate::interpolation::geometric_slerp_half;
let p1 = Vec3A::new(0.360492952832, 0.932761936915, 0.0);
let p2 = Vec3A::new(0.975897449331, 0.218229623081, 0.0);
let expected = Vec3A::new(0.757709663147, 0.652591806854, 0.0);
let result = geometric_slerp_half(p1, p2);
assert!((expected - result).length() <= EPSILON);
// Another test case
let p1 = Vec3A::new(-0.24953852315, 0.0, 0.968364872073);
let p2 = Vec3A::new(-0.948416666565, 0.0, 0.317026539239);
let expected = Vec3A::new(-0.681787771301, 0.0, 0.731550022148);
let result = geometric_slerp_half(p1, p2);
assert!((expected - result).length() <= EPSILON);
}
#[test]
fn slerp_many() {
use crate::interpolation::geometric_slerp_multiple;
let p1 = Vec3A::new(0.0, -0.885330189449, 0.464962854054);
let p2 = Vec3A::new(0.0, 0.946042343528, 0.324043028395);
let expected = Vec3A::new(0.0, 0.0767208624118, 0.997052611085);
let mut result = Vec3A::ZERO;
geometric_slerp_multiple(p1, p2, &[0], std::slice::from_mut(&mut result));
assert!((expected - result).length() <= EPSILON);
let p1 = Vec3A::new(0.876621956288, 0.0, 0.481179743707);
let p2 = Vec3A::new(-0.391617625614, 0.0, -0.920128053756);
let expected = [
Vec3A::new(0.999975758841, 0.0, 0.00696288230076),
Vec3A::new(0.883237589397, 0.0, -0.468925751774),
Vec3A::new(0.554436024709, 0.0, -0.83222634812),
Vec3A::new(0.0925155945469, 0.0, -0.995711235633),
];
let mut result = [Vec3A::ZERO, Vec3A::ZERO, Vec3A::ZERO, Vec3A::ZERO];
geometric_slerp_multiple(p1, p2, &[0, 1, 2, 3], &mut result);
for (&expected, &result) in expected.iter().zip(result.iter()) {
assert!((expected - result).length() <= EPSILON);
}
}
#[test]
fn new() {
let x = IcoSphere::new(0, |_| ());
x.get_indices(0, &mut Vec::new());
}
#[test]
fn one() {
let x = IcoSphere::new(1, |_| ());
x.get_indices(0, &mut Vec::new());
}
#[test]
fn second_layer_inner() {
let x = IcoSphere::new(2, |_| ());
x.get_indices(0, &mut Vec::new());
let x = IcoSphere::new(3, |_| ());
x.get_indices(0, &mut Vec::new());
let x = IcoSphere::new(5, |_| ());
x.get_indices(0, &mut Vec::new());
let x = IcoSphere::new(6, |_| ());
x.get_indices(0, &mut Vec::new());
}
#[test]
fn indices_zero() {
use super::add_indices_triangular;
use super::TriangleContents;
let mut buffer = Vec::new();
add_indices_triangular(
0,
1,
2,
Forward(&[]),
Forward(&[]),
Forward(&[]),
&TriangleContents::none(),
&mut buffer,
);
assert_eq!(buffer, &[0, 1, 2]);
}
#[test]
fn indices_one() {
use super::add_indices_triangular;
use super::TriangleContents;
let mut buffer = Vec::new();
add_indices_triangular(
0,
1,
2,
Forward(&[3]),
Forward(&[4]),
Forward(&[5]),
&TriangleContents::none(),
&mut buffer,
);
assert_eq!(buffer, &[0, 3, 5, 1, 4, 3, 2, 5, 4, 3, 4, 5,]);
}
#[test]
fn indices_two() {
use super::add_indices_triangular;
use super::TriangleContents;
let mut buffer = Vec::new();
add_indices_triangular(
0,
3,
6,
Forward(&[1, 2]),
Forward(&[4, 5]),
Forward(&[7, 8]),
&TriangleContents::One(9),
&mut buffer,
);
assert_eq!(
buffer,
&[0, 1, 8, 3, 4, 2, 6, 7, 5, 2, 9, 1, 5, 9, 4, 8, 9, 7, 1, 9, 8, 4, 9, 2, 7, 9, 5,]
);
}
// Really, we're testing for the rest.
#[test]
fn indices_three() {
use super::add_indices_triangular;
use super::TriangleContents;
let mut buffer = Vec::new();
add_indices_triangular(
0,
4,
8,
Forward(&[1, 2, 3]),
Forward(&[5, 6, 7]),
Forward(&[9, 10, 11]),
&TriangleContents::Three {
a: 12,
b: 13,
c: 14,
},
&mut buffer,
);
assert_eq!(
buffer,
&[
0, 1, 11, 4, 5, 3, 8, 9, 7, 1, 12, 11, 5, 13, 3, 9, 14, 7, 1, 2, 12, 2, 13, 12, 5,
6, 13, 6, 14, 13, 9, 10, 14, 10, 12, 14, 3, 13, 2, 7, 14, 6, 11, 12, 10,
][..]
);
}
#[test]
fn precision() {
let sphere = IcoSphere::new(10, |_| ());
for i in sphere.raw_points() {
assert!(i.length() - 1.0 <= EPSILON);
}
}
#[test]
fn line_one() {
use super::add_line_indices_triangular;
use super::TriangleContents;
let mut buffer = Vec::new();
add_line_indices_triangular(
0,
Forward(&[0]),
Forward(&[1]),
Forward(&[2]),
&TriangleContents::none(),
&mut buffer,
);
assert_eq!(buffer, &[0, 1, 2]);
}
#[test]
fn line_two() {
use super::add_line_indices_triangular;
use super::TriangleContents;
let mut buffer = Vec::new();
add_line_indices_triangular(
0,
Forward(&[0, 1]),
Forward(&[2, 3]),
Forward(&[4, 5]),
&TriangleContents::One(6),
&mut buffer,
);
assert_eq!(buffer, &[6, 0, 5, 6, 4, 3, 6, 2, 1, 6]);
}
#[test]
fn line_three() {
use super::add_line_indices_triangular;
use super::TriangleContents;
let mut buffer = Vec::new();
add_line_indices_triangular(
0,
Forward(&[0, 1, 2]),
Forward(&[3, 4, 5]),
Forward(&[6, 7, 8]),
&TriangleContents::Three { a: 9, b: 10, c: 11 },
&mut buffer,
);
assert_eq!(
buffer,
&[9, 10, 11, 0, 8, 9, 7, 11, 6, 5, 11, 4, 10, 3, 2, 10, 1, 9]
);
}
#[cfg(feature = "adjacency")]
mod adjacency {
use crate::adjacency::RehexState;
use crate::{adjacency::AdjacencyBuilder, shapes::IcoSphere};
#[test]
fn creation() {
let sphere = IcoSphere::new(5, |_| ());
let mut indices = Vec::new();
for i in 0..20 {
sphere.get_indices(i, &mut indices);
}
let mut builder = AdjacencyBuilder::new(sphere.raw_points().len());
builder.add_indices(&indices);
builder
.state
.iter()
.for_each(|&state| assert_eq!(state, RehexState::Complete));
}
}
}