1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
//! A hash set implemented using [`IndexMap`]

mod iter;
mod slice;

#[cfg(test)]
mod tests;

pub use self::iter::{
    Difference, Drain, Intersection, IntoIter, Iter, Splice, SymmetricDifference, Union,
};
pub use self::slice::Slice;

#[cfg(feature = "rayon")]
pub use crate::rayon::set as rayon;
use crate::TryReserveError;

#[cfg(feature = "std")]
use std::collections::hash_map::RandomState;

use crate::util::try_simplify_range;
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::fmt;
use core::hash::{BuildHasher, Hash};
use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub};

use super::{Entries, Equivalent, IndexMap};

type Bucket<T> = super::Bucket<T, ()>;

/// A hash set where the iteration order of the values is independent of their
/// hash values.
///
/// The interface is closely compatible with the standard
/// [`HashSet`][std::collections::HashSet],
/// but also has additional features.
///
/// # Order
///
/// The values have a consistent order that is determined by the sequence of
/// insertion and removal calls on the set. The order does not depend on the
/// values or the hash function at all. Note that insertion order and value
/// are not affected if a re-insertion is attempted once an element is
/// already present.
///
/// All iterators traverse the set *in order*.  Set operation iterators like
/// [`IndexSet::union`] produce a concatenated order, as do their matching "bitwise"
/// operators.  See their documentation for specifics.
///
/// The insertion order is preserved, with **notable exceptions** like the
/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
/// Methods such as [`.sort_by()`][Self::sort_by] of
/// course result in a new order, depending on the sorting order.
///
/// # Indices
///
/// The values are indexed in a compact range without holes in the range
/// `0..self.len()`. For example, the method `.get_full` looks up the index for
/// a value, and the method `.get_index` looks up the value by index.
///
/// # Complexity
///
/// Internally, `IndexSet<T, S>` just holds an [`IndexMap<T, (), S>`](IndexMap). Thus the complexity
/// of the two are the same for most methods.
///
/// # Examples
///
/// ```
/// use indexmap::IndexSet;
///
/// // Collects which letters appear in a sentence.
/// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect();
///
/// assert!(letters.contains(&'s'));
/// assert!(letters.contains(&'t'));
/// assert!(letters.contains(&'u'));
/// assert!(!letters.contains(&'y'));
/// ```
#[cfg(feature = "std")]
pub struct IndexSet<T, S = RandomState> {
    pub(crate) map: IndexMap<T, (), S>,
}
#[cfg(not(feature = "std"))]
pub struct IndexSet<T, S> {
    pub(crate) map: IndexMap<T, (), S>,
}

impl<T, S> Clone for IndexSet<T, S>
where
    T: Clone,
    S: Clone,
{
    fn clone(&self) -> Self {
        IndexSet {
            map: self.map.clone(),
        }
    }

    fn clone_from(&mut self, other: &Self) {
        self.map.clone_from(&other.map);
    }
}

impl<T, S> Entries for IndexSet<T, S> {
    type Entry = Bucket<T>;

    #[inline]
    fn into_entries(self) -> Vec<Self::Entry> {
        self.map.into_entries()
    }

    #[inline]
    fn as_entries(&self) -> &[Self::Entry] {
        self.map.as_entries()
    }

    #[inline]
    fn as_entries_mut(&mut self) -> &mut [Self::Entry] {
        self.map.as_entries_mut()
    }

    fn with_entries<F>(&mut self, f: F)
    where
        F: FnOnce(&mut [Self::Entry]),
    {
        self.map.with_entries(f);
    }
}

impl<T, S> fmt::Debug for IndexSet<T, S>
where
    T: fmt::Debug,
{
    #[cfg(not(feature = "test_debug"))]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_set().entries(self.iter()).finish()
    }

    #[cfg(feature = "test_debug")]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Let the inner `IndexMap` print all of its details
        f.debug_struct("IndexSet").field("map", &self.map).finish()
    }
}

#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl<T> IndexSet<T> {
    /// Create a new set. (Does not allocate.)
    pub fn new() -> Self {
        IndexSet {
            map: IndexMap::new(),
        }
    }

    /// Create a new set with capacity for `n` elements.
    /// (Does not allocate if `n` is zero.)
    ///
    /// Computes in **O(n)** time.
    pub fn with_capacity(n: usize) -> Self {
        IndexSet {
            map: IndexMap::with_capacity(n),
        }
    }
}

impl<T, S> IndexSet<T, S> {
    /// Create a new set with capacity for `n` elements.
    /// (Does not allocate if `n` is zero.)
    ///
    /// Computes in **O(n)** time.
    pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
        IndexSet {
            map: IndexMap::with_capacity_and_hasher(n, hash_builder),
        }
    }

    /// Create a new set with `hash_builder`.
    ///
    /// This function is `const`, so it
    /// can be called in `static` contexts.
    pub const fn with_hasher(hash_builder: S) -> Self {
        IndexSet {
            map: IndexMap::with_hasher(hash_builder),
        }
    }

    /// Return the number of elements the set can hold without reallocating.
    ///
    /// This number is a lower bound; the set might be able to hold more,
    /// but is guaranteed to be able to hold at least this many.
    ///
    /// Computes in **O(1)** time.
    pub fn capacity(&self) -> usize {
        self.map.capacity()
    }

    /// Return a reference to the set's `BuildHasher`.
    pub fn hasher(&self) -> &S {
        self.map.hasher()
    }

    /// Return the number of elements in the set.
    ///
    /// Computes in **O(1)** time.
    pub fn len(&self) -> usize {
        self.map.len()
    }

    /// Returns true if the set contains no elements.
    ///
    /// Computes in **O(1)** time.
    pub fn is_empty(&self) -> bool {
        self.map.is_empty()
    }

    /// Return an iterator over the values of the set, in their order
    pub fn iter(&self) -> Iter<'_, T> {
        Iter::new(self.as_entries())
    }

    /// Remove all elements in the set, while preserving its capacity.
    ///
    /// Computes in **O(n)** time.
    pub fn clear(&mut self) {
        self.map.clear();
    }

    /// Shortens the set, keeping the first `len` elements and dropping the rest.
    ///
    /// If `len` is greater than the set's current length, this has no effect.
    pub fn truncate(&mut self, len: usize) {
        self.map.truncate(len);
    }

    /// Clears the `IndexSet` in the given index range, returning those values
    /// as a drain iterator.
    ///
    /// The range may be any type that implements [`RangeBounds<usize>`],
    /// including all of the `std::ops::Range*` types, or even a tuple pair of
    /// `Bound` start and end values. To drain the set entirely, use `RangeFull`
    /// like `set.drain(..)`.
    ///
    /// This shifts down all entries following the drained range to fill the
    /// gap, and keeps the allocated memory for reuse.
    ///
    /// ***Panics*** if the starting point is greater than the end point or if
    /// the end point is greater than the length of the set.
    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
    where
        R: RangeBounds<usize>,
    {
        Drain::new(self.map.core.drain(range))
    }

    /// Splits the collection into two at the given index.
    ///
    /// Returns a newly allocated set containing the elements in the range
    /// `[at, len)`. After the call, the original set will be left containing
    /// the elements `[0, at)` with its previous capacity unchanged.
    ///
    /// ***Panics*** if `at > len`.
    pub fn split_off(&mut self, at: usize) -> Self
    where
        S: Clone,
    {
        Self {
            map: self.map.split_off(at),
        }
    }

    /// Reserve capacity for `additional` more values.
    ///
    /// Computes in **O(n)** time.
    pub fn reserve(&mut self, additional: usize) {
        self.map.reserve(additional);
    }

    /// Reserve capacity for `additional` more values, without over-allocating.
    ///
    /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
    /// frequent re-allocations. However, the underlying data structures may still have internal
    /// capacity requirements, and the allocator itself may give more space than requested, so this
    /// cannot be relied upon to be precisely minimal.
    ///
    /// Computes in **O(n)** time.
    pub fn reserve_exact(&mut self, additional: usize) {
        self.map.reserve_exact(additional);
    }

    /// Try to reserve capacity for `additional` more values.
    ///
    /// Computes in **O(n)** time.
    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
        self.map.try_reserve(additional)
    }

    /// Try to reserve capacity for `additional` more values, without over-allocating.
    ///
    /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
    /// frequent re-allocations. However, the underlying data structures may still have internal
    /// capacity requirements, and the allocator itself may give more space than requested, so this
    /// cannot be relied upon to be precisely minimal.
    ///
    /// Computes in **O(n)** time.
    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
        self.map.try_reserve_exact(additional)
    }

    /// Shrink the capacity of the set as much as possible.
    ///
    /// Computes in **O(n)** time.
    pub fn shrink_to_fit(&mut self) {
        self.map.shrink_to_fit();
    }

    /// Shrink the capacity of the set with a lower limit.
    ///
    /// Computes in **O(n)** time.
    pub fn shrink_to(&mut self, min_capacity: usize) {
        self.map.shrink_to(min_capacity);
    }
}

impl<T, S> IndexSet<T, S>
where
    T: Hash + Eq,
    S: BuildHasher,
{
    /// Insert the value into the set.
    ///
    /// If an equivalent item already exists in the set, it returns
    /// `false` leaving the original value in the set and without
    /// altering its insertion order. Otherwise, it inserts the new
    /// item and returns `true`.
    ///
    /// Computes in **O(1)** time (amortized average).
    pub fn insert(&mut self, value: T) -> bool {
        self.map.insert(value, ()).is_none()
    }

    /// Insert the value into the set, and get its index.
    ///
    /// If an equivalent item already exists in the set, it returns
    /// the index of the existing item and `false`, leaving the
    /// original value in the set and without altering its insertion
    /// order. Otherwise, it inserts the new item and returns the index
    /// of the inserted item and `true`.
    ///
    /// Computes in **O(1)** time (amortized average).
    pub fn insert_full(&mut self, value: T) -> (usize, bool) {
        let (index, existing) = self.map.insert_full(value, ());
        (index, existing.is_none())
    }

    /// Insert the value into the set at the given index.
    ///
    /// If an equivalent item already exists in the set, it returns
    /// `false` leaving the original value in the set, but moving it to
    /// the new position in the set. Otherwise, it inserts the new
    /// item at the given index and returns `true`.
    ///
    /// ***Panics*** if `index` is out of bounds.
    ///
    /// Computes in **O(n)** time (average).
    pub fn shift_insert(&mut self, index: usize, value: T) -> bool {
        self.map.shift_insert(index, value, ()).is_none()
    }

    /// Adds a value to the set, replacing the existing value, if any, that is
    /// equal to the given one, without altering its insertion order. Returns
    /// the replaced value.
    ///
    /// Computes in **O(1)** time (average).
    pub fn replace(&mut self, value: T) -> Option<T> {
        self.replace_full(value).1
    }

    /// Adds a value to the set, replacing the existing value, if any, that is
    /// equal to the given one, without altering its insertion order. Returns
    /// the index of the item and its replaced value.
    ///
    /// Computes in **O(1)** time (average).
    pub fn replace_full(&mut self, value: T) -> (usize, Option<T>) {
        let hash = self.map.hash(&value);
        match self.map.core.replace_full(hash, value, ()) {
            (i, Some((replaced, ()))) => (i, Some(replaced)),
            (i, None) => (i, None),
        }
    }

    /// Return an iterator over the values that are in `self` but not `other`.
    ///
    /// Values are produced in the same order that they appear in `self`.
    pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2>
    where
        S2: BuildHasher,
    {
        Difference::new(self, other)
    }

    /// Return an iterator over the values that are in `self` or `other`,
    /// but not in both.
    ///
    /// Values from `self` are produced in their original order, followed by
    /// values from `other` in their original order.
    pub fn symmetric_difference<'a, S2>(
        &'a self,
        other: &'a IndexSet<T, S2>,
    ) -> SymmetricDifference<'a, T, S, S2>
    where
        S2: BuildHasher,
    {
        SymmetricDifference::new(self, other)
    }

    /// Return an iterator over the values that are in both `self` and `other`.
    ///
    /// Values are produced in the same order that they appear in `self`.
    pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2>
    where
        S2: BuildHasher,
    {
        Intersection::new(self, other)
    }

    /// Return an iterator over all values that are in `self` or `other`.
    ///
    /// Values from `self` are produced in their original order, followed by
    /// values that are unique to `other` in their original order.
    pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S>
    where
        S2: BuildHasher,
    {
        Union::new(self, other)
    }

    /// Creates a splicing iterator that replaces the specified range in the set
    /// with the given `replace_with` iterator and yields the removed items.
    /// `replace_with` does not need to be the same length as `range`.
    ///
    /// The `range` is removed even if the iterator is not consumed until the
    /// end. It is unspecified how many elements are removed from the set if the
    /// `Splice` value is leaked.
    ///
    /// The input iterator `replace_with` is only consumed when the `Splice`
    /// value is dropped. If a value from the iterator matches an existing entry
    /// in the set (outside of `range`), then the original will be unchanged.
    /// Otherwise, the new value will be inserted in the replaced `range`.
    ///
    /// ***Panics*** if the starting point is greater than the end point or if
    /// the end point is greater than the length of the set.
    ///
    /// # Examples
    ///
    /// ```
    /// use indexmap::IndexSet;
    ///
    /// let mut set = IndexSet::from([0, 1, 2, 3, 4]);
    /// let new = [5, 4, 3, 2, 1];
    /// let removed: Vec<_> = set.splice(2..4, new).collect();
    ///
    /// // 1 and 4 kept their positions, while 5, 3, and 2 were newly inserted.
    /// assert!(set.into_iter().eq([0, 1, 5, 3, 2, 4]));
    /// assert_eq!(removed, &[2, 3]);
    /// ```
    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, T, S>
    where
        R: RangeBounds<usize>,
        I: IntoIterator<Item = T>,
    {
        Splice::new(self, range, replace_with.into_iter())
    }
}

impl<T, S> IndexSet<T, S>
where
    S: BuildHasher,
{
    /// Return `true` if an equivalent to `value` exists in the set.
    ///
    /// Computes in **O(1)** time (average).
    pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool
    where
        Q: Hash + Equivalent<T>,
    {
        self.map.contains_key(value)
    }

    /// Return a reference to the value stored in the set, if it is present,
    /// else `None`.
    ///
    /// Computes in **O(1)** time (average).
    pub fn get<Q: ?Sized>(&self, value: &Q) -> Option<&T>
    where
        Q: Hash + Equivalent<T>,
    {
        self.map.get_key_value(value).map(|(x, &())| x)
    }

    /// Return item index and value
    pub fn get_full<Q: ?Sized>(&self, value: &Q) -> Option<(usize, &T)>
    where
        Q: Hash + Equivalent<T>,
    {
        self.map.get_full(value).map(|(i, x, &())| (i, x))
    }

    /// Return item index, if it exists in the set
    ///
    /// Computes in **O(1)** time (average).
    pub fn get_index_of<Q: ?Sized>(&self, value: &Q) -> Option<usize>
    where
        Q: Hash + Equivalent<T>,
    {
        self.map.get_index_of(value)
    }

    /// Remove the value from the set, and return `true` if it was present.
    ///
    /// **NOTE:** This is equivalent to [`.swap_remove(value)`][Self::swap_remove], replacing this
    /// value's position with the last element, and it is deprecated in favor of calling that
    /// explicitly. If you need to preserve the relative order of the values in the set, use
    /// [`.shift_remove(value)`][Self::shift_remove] instead.
    #[deprecated(note = "`remove` disrupts the set order -- \
        use `swap_remove` or `shift_remove` for explicit behavior.")]
    pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool
    where
        Q: Hash + Equivalent<T>,
    {
        self.swap_remove(value)
    }

    /// Remove the value from the set, and return `true` if it was present.
    ///
    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
    /// last element of the set and popping it off. **This perturbs
    /// the position of what used to be the last element!**
    ///
    /// Return `false` if `value` was not in the set.
    ///
    /// Computes in **O(1)** time (average).
    pub fn swap_remove<Q: ?Sized>(&mut self, value: &Q) -> bool
    where
        Q: Hash + Equivalent<T>,
    {
        self.map.swap_remove(value).is_some()
    }

    /// Remove the value from the set, and return `true` if it was present.
    ///
    /// Like [`Vec::remove`], the value is removed by shifting all of the
    /// elements that follow it, preserving their relative order.
    /// **This perturbs the index of all of those elements!**
    ///
    /// Return `false` if `value` was not in the set.
    ///
    /// Computes in **O(n)** time (average).
    pub fn shift_remove<Q: ?Sized>(&mut self, value: &Q) -> bool
    where
        Q: Hash + Equivalent<T>,
    {
        self.map.shift_remove(value).is_some()
    }

    /// Removes and returns the value in the set, if any, that is equal to the
    /// given one.
    ///
    /// **NOTE:** This is equivalent to [`.swap_take(value)`][Self::swap_take], replacing this
    /// value's position with the last element, and it is deprecated in favor of calling that
    /// explicitly. If you need to preserve the relative order of the values in the set, use
    /// [`.shift_take(value)`][Self::shift_take] instead.
    #[deprecated(note = "`take` disrupts the set order -- \
        use `swap_take` or `shift_take` for explicit behavior.")]
    pub fn take<Q: ?Sized>(&mut self, value: &Q) -> Option<T>
    where
        Q: Hash + Equivalent<T>,
    {
        self.swap_take(value)
    }

    /// Removes and returns the value in the set, if any, that is equal to the
    /// given one.
    ///
    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
    /// last element of the set and popping it off. **This perturbs
    /// the position of what used to be the last element!**
    ///
    /// Return `None` if `value` was not in the set.
    ///
    /// Computes in **O(1)** time (average).
    pub fn swap_take<Q: ?Sized>(&mut self, value: &Q) -> Option<T>
    where
        Q: Hash + Equivalent<T>,
    {
        self.map.swap_remove_entry(value).map(|(x, ())| x)
    }

    /// Removes and returns the value in the set, if any, that is equal to the
    /// given one.
    ///
    /// Like [`Vec::remove`], the value is removed by shifting all of the
    /// elements that follow it, preserving their relative order.
    /// **This perturbs the index of all of those elements!**
    ///
    /// Return `None` if `value` was not in the set.
    ///
    /// Computes in **O(n)** time (average).
    pub fn shift_take<Q: ?Sized>(&mut self, value: &Q) -> Option<T>
    where
        Q: Hash + Equivalent<T>,
    {
        self.map.shift_remove_entry(value).map(|(x, ())| x)
    }

    /// Remove the value from the set return it and the index it had.
    ///
    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
    /// last element of the set and popping it off. **This perturbs
    /// the position of what used to be the last element!**
    ///
    /// Return `None` if `value` was not in the set.
    pub fn swap_remove_full<Q: ?Sized>(&mut self, value: &Q) -> Option<(usize, T)>
    where
        Q: Hash + Equivalent<T>,
    {
        self.map.swap_remove_full(value).map(|(i, x, ())| (i, x))
    }

    /// Remove the value from the set return it and the index it had.
    ///
    /// Like [`Vec::remove`], the value is removed by shifting all of the
    /// elements that follow it, preserving their relative order.
    /// **This perturbs the index of all of those elements!**
    ///
    /// Return `None` if `value` was not in the set.
    pub fn shift_remove_full<Q: ?Sized>(&mut self, value: &Q) -> Option<(usize, T)>
    where
        Q: Hash + Equivalent<T>,
    {
        self.map.shift_remove_full(value).map(|(i, x, ())| (i, x))
    }
}

impl<T, S> IndexSet<T, S> {
    /// Remove the last value
    ///
    /// This preserves the order of the remaining elements.
    ///
    /// Computes in **O(1)** time (average).
    pub fn pop(&mut self) -> Option<T> {
        self.map.pop().map(|(x, ())| x)
    }

    /// Scan through each value in the set and keep those where the
    /// closure `keep` returns `true`.
    ///
    /// The elements are visited in order, and remaining elements keep their
    /// order.
    ///
    /// Computes in **O(n)** time (average).
    pub fn retain<F>(&mut self, mut keep: F)
    where
        F: FnMut(&T) -> bool,
    {
        self.map.retain(move |x, &mut ()| keep(x))
    }

    /// Sort the set’s values by their default ordering.
    ///
    /// See [`sort_by`](Self::sort_by) for details.
    pub fn sort(&mut self)
    where
        T: Ord,
    {
        self.map.sort_keys()
    }

    /// Sort the set’s values in place using the comparison function `cmp`.
    ///
    /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
    pub fn sort_by<F>(&mut self, mut cmp: F)
    where
        F: FnMut(&T, &T) -> Ordering,
    {
        self.map.sort_by(move |a, _, b, _| cmp(a, b));
    }

    /// Sort the values of the set and return a by-value iterator of
    /// the values with the result.
    ///
    /// The sort is stable.
    pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T>
    where
        F: FnMut(&T, &T) -> Ordering,
    {
        let mut entries = self.into_entries();
        entries.sort_by(move |a, b| cmp(&a.key, &b.key));
        IntoIter::new(entries)
    }

    /// Sort the set's values by their default ordering.
    ///
    /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
    pub fn sort_unstable(&mut self)
    where
        T: Ord,
    {
        self.map.sort_unstable_keys()
    }

    /// Sort the set's values in place using the comparison function `cmp`.
    ///
    /// Computes in **O(n log n)** time. The sort is unstable.
    pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
    where
        F: FnMut(&T, &T) -> Ordering,
    {
        self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b))
    }

    /// Sort the values of the set and return a by-value iterator of
    /// the values with the result.
    pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<T>
    where
        F: FnMut(&T, &T) -> Ordering,
    {
        let mut entries = self.into_entries();
        entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key));
        IntoIter::new(entries)
    }

    /// Sort the set’s values in place using a key extraction function.
    ///
    /// During sorting, the function is called at most once per entry, by using temporary storage
    /// to remember the results of its evaluation. The order of calls to the function is
    /// unspecified and may change between versions of `indexmap` or the standard library.
    ///
    /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
    /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
    pub fn sort_by_cached_key<K, F>(&mut self, mut sort_key: F)
    where
        K: Ord,
        F: FnMut(&T) -> K,
    {
        self.with_entries(move |entries| {
            entries.sort_by_cached_key(move |a| sort_key(&a.key));
        });
    }

    /// Search over a sorted set for a value.
    ///
    /// Returns the position where that value is present, or the position where it can be inserted
    /// to maintain the sort. See [`slice::binary_search`] for more details.
    ///
    /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up
    /// using [`get_index_of`][IndexSet::get_index_of], but this can also position missing values.
    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
    where
        T: Ord,
    {
        self.as_slice().binary_search(x)
    }

    /// Search over a sorted set with a comparator function.
    ///
    /// Returns the position where that value is present, or the position where it can be inserted
    /// to maintain the sort. See [`slice::binary_search_by`] for more details.
    ///
    /// Computes in **O(log(n))** time.
    #[inline]
    pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
    where
        F: FnMut(&'a T) -> Ordering,
    {
        self.as_slice().binary_search_by(f)
    }

    /// Search over a sorted set with an extraction function.
    ///
    /// Returns the position where that value is present, or the position where it can be inserted
    /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
    ///
    /// Computes in **O(log(n))** time.
    #[inline]
    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
    where
        F: FnMut(&'a T) -> B,
        B: Ord,
    {
        self.as_slice().binary_search_by_key(b, f)
    }

    /// Returns the index of the partition point of a sorted set according to the given predicate
    /// (the index of the first element of the second partition).
    ///
    /// See [`slice::partition_point`] for more details.
    ///
    /// Computes in **O(log(n))** time.
    #[must_use]
    pub fn partition_point<P>(&self, pred: P) -> usize
    where
        P: FnMut(&T) -> bool,
    {
        self.as_slice().partition_point(pred)
    }

    /// Reverses the order of the set’s values in place.
    ///
    /// Computes in **O(n)** time and **O(1)** space.
    pub fn reverse(&mut self) {
        self.map.reverse()
    }

    /// Returns a slice of all the values in the set.
    ///
    /// Computes in **O(1)** time.
    pub fn as_slice(&self) -> &Slice<T> {
        Slice::from_slice(self.as_entries())
    }

    /// Converts into a boxed slice of all the values in the set.
    ///
    /// Note that this will drop the inner hash table and any excess capacity.
    pub fn into_boxed_slice(self) -> Box<Slice<T>> {
        Slice::from_boxed(self.into_entries().into_boxed_slice())
    }

    /// Get a value by index
    ///
    /// Valid indices are *0 <= index < self.len()*
    ///
    /// Computes in **O(1)** time.
    pub fn get_index(&self, index: usize) -> Option<&T> {
        self.as_entries().get(index).map(Bucket::key_ref)
    }

    /// Returns a slice of values in the given range of indices.
    ///
    /// Valid indices are *0 <= index < self.len()*
    ///
    /// Computes in **O(1)** time.
    pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<T>> {
        let entries = self.as_entries();
        let range = try_simplify_range(range, entries.len())?;
        entries.get(range).map(Slice::from_slice)
    }

    /// Get the first value
    ///
    /// Computes in **O(1)** time.
    pub fn first(&self) -> Option<&T> {
        self.as_entries().first().map(Bucket::key_ref)
    }

    /// Get the last value
    ///
    /// Computes in **O(1)** time.
    pub fn last(&self) -> Option<&T> {
        self.as_entries().last().map(Bucket::key_ref)
    }

    /// Remove the value by index
    ///
    /// Valid indices are *0 <= index < self.len()*
    ///
    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
    /// last element of the set and popping it off. **This perturbs
    /// the position of what used to be the last element!**
    ///
    /// Computes in **O(1)** time (average).
    pub fn swap_remove_index(&mut self, index: usize) -> Option<T> {
        self.map.swap_remove_index(index).map(|(x, ())| x)
    }

    /// Remove the value by index
    ///
    /// Valid indices are *0 <= index < self.len()*
    ///
    /// Like [`Vec::remove`], the value is removed by shifting all of the
    /// elements that follow it, preserving their relative order.
    /// **This perturbs the index of all of those elements!**
    ///
    /// Computes in **O(n)** time (average).
    pub fn shift_remove_index(&mut self, index: usize) -> Option<T> {
        self.map.shift_remove_index(index).map(|(x, ())| x)
    }

    /// Moves the position of a value from one index to another
    /// by shifting all other values in-between.
    ///
    /// * If `from < to`, the other values will shift down while the targeted value moves up.
    /// * If `from > to`, the other values will shift up while the targeted value moves down.
    ///
    /// ***Panics*** if `from` or `to` are out of bounds.
    ///
    /// Computes in **O(n)** time (average).
    pub fn move_index(&mut self, from: usize, to: usize) {
        self.map.move_index(from, to)
    }

    /// Swaps the position of two values in the set.
    ///
    /// ***Panics*** if `a` or `b` are out of bounds.
    ///
    /// Computes in **O(1)** time (average).
    pub fn swap_indices(&mut self, a: usize, b: usize) {
        self.map.swap_indices(a, b)
    }
}

/// Access [`IndexSet`] values at indexed positions.
///
/// # Examples
///
/// ```
/// use indexmap::IndexSet;
///
/// let mut set = IndexSet::new();
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
///     set.insert(word.to_string());
/// }
/// assert_eq!(set[0], "Lorem");
/// assert_eq!(set[1], "ipsum");
/// set.reverse();
/// assert_eq!(set[0], "amet");
/// assert_eq!(set[1], "sit");
/// set.sort();
/// assert_eq!(set[0], "Lorem");
/// assert_eq!(set[1], "amet");
/// ```
///
/// ```should_panic
/// use indexmap::IndexSet;
///
/// let mut set = IndexSet::new();
/// set.insert("foo");
/// println!("{:?}", set[10]); // panics!
/// ```
impl<T, S> Index<usize> for IndexSet<T, S> {
    type Output = T;

    /// Returns a reference to the value at the supplied `index`.
    ///
    /// ***Panics*** if `index` is out of bounds.
    fn index(&self, index: usize) -> &T {
        self.get_index(index)
            .expect("IndexSet: index out of bounds")
    }
}

impl<T, S> FromIterator<T> for IndexSet<T, S>
where
    T: Hash + Eq,
    S: BuildHasher + Default,
{
    fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self {
        let iter = iterable.into_iter().map(|x| (x, ()));
        IndexSet {
            map: IndexMap::from_iter(iter),
        }
    }
}

#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl<T, const N: usize> From<[T; N]> for IndexSet<T, RandomState>
where
    T: Eq + Hash,
{
    /// # Examples
    ///
    /// ```
    /// use indexmap::IndexSet;
    ///
    /// let set1 = IndexSet::from([1, 2, 3, 4]);
    /// let set2: IndexSet<_> = [1, 2, 3, 4].into();
    /// assert_eq!(set1, set2);
    /// ```
    fn from(arr: [T; N]) -> Self {
        Self::from_iter(arr)
    }
}

impl<T, S> Extend<T> for IndexSet<T, S>
where
    T: Hash + Eq,
    S: BuildHasher,
{
    fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) {
        let iter = iterable.into_iter().map(|x| (x, ()));
        self.map.extend(iter);
    }
}

impl<'a, T, S> Extend<&'a T> for IndexSet<T, S>
where
    T: Hash + Eq + Copy + 'a,
    S: BuildHasher,
{
    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) {
        let iter = iterable.into_iter().copied();
        self.extend(iter);
    }
}

impl<T, S> Default for IndexSet<T, S>
where
    S: Default,
{
    /// Return an empty [`IndexSet`]
    fn default() -> Self {
        IndexSet {
            map: IndexMap::default(),
        }
    }
}

impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1>
where
    T: Hash + Eq,
    S1: BuildHasher,
    S2: BuildHasher,
{
    fn eq(&self, other: &IndexSet<T, S2>) -> bool {
        self.len() == other.len() && self.is_subset(other)
    }
}

impl<T, S> Eq for IndexSet<T, S>
where
    T: Eq + Hash,
    S: BuildHasher,
{
}

impl<T, S> IndexSet<T, S>
where
    T: Eq + Hash,
    S: BuildHasher,
{
    /// Returns `true` if `self` has no elements in common with `other`.
    pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool
    where
        S2: BuildHasher,
    {
        if self.len() <= other.len() {
            self.iter().all(move |value| !other.contains(value))
        } else {
            other.iter().all(move |value| !self.contains(value))
        }
    }

    /// Returns `true` if all elements of `self` are contained in `other`.
    pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool
    where
        S2: BuildHasher,
    {
        self.len() <= other.len() && self.iter().all(move |value| other.contains(value))
    }

    /// Returns `true` if all elements of `other` are contained in `self`.
    pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool
    where
        S2: BuildHasher,
    {
        other.is_subset(self)
    }
}

impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1>
where
    T: Eq + Hash + Clone,
    S1: BuildHasher + Default,
    S2: BuildHasher,
{
    type Output = IndexSet<T, S1>;

    /// Returns the set intersection, cloned into a new set.
    ///
    /// Values are collected in the same order that they appear in `self`.
    fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output {
        self.intersection(other).cloned().collect()
    }
}

impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1>
where
    T: Eq + Hash + Clone,
    S1: BuildHasher + Default,
    S2: BuildHasher,
{
    type Output = IndexSet<T, S1>;

    /// Returns the set union, cloned into a new set.
    ///
    /// Values from `self` are collected in their original order, followed by
    /// values that are unique to `other` in their original order.
    fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output {
        self.union(other).cloned().collect()
    }
}

impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1>
where
    T: Eq + Hash + Clone,
    S1: BuildHasher + Default,
    S2: BuildHasher,
{
    type Output = IndexSet<T, S1>;

    /// Returns the set symmetric-difference, cloned into a new set.
    ///
    /// Values from `self` are collected in their original order, followed by
    /// values from `other` in their original order.
    fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output {
        self.symmetric_difference(other).cloned().collect()
    }
}

impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1>
where
    T: Eq + Hash + Clone,
    S1: BuildHasher + Default,
    S2: BuildHasher,
{
    type Output = IndexSet<T, S1>;

    /// Returns the set difference, cloned into a new set.
    ///
    /// Values are collected in the same order that they appear in `self`.
    fn sub(self, other: &IndexSet<T, S2>) -> Self::Output {
        self.difference(other).cloned().collect()
    }
}