1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
use crate::arena::{Arena, Handle, Range, UniqueArena};
type Index = std::num::NonZeroU32;
/// A set of `Handle<T>` values.
pub struct HandleSet<T> {
/// Bound on zero-based indexes of handles stored in this set.
len: usize,
/// `members[i]` is true if the handle with zero-based index `i`
/// is a member.
members: bit_set::BitSet,
/// This type is indexed by values of type `T`.
as_keys: std::marker::PhantomData<T>,
}
impl<T> HandleSet<T> {
pub fn for_arena(arena: &impl ArenaType<T>) -> Self {
let len = arena.len();
Self {
len,
members: bit_set::BitSet::with_capacity(len),
as_keys: std::marker::PhantomData,
}
}
/// Add `handle` to the set.
pub fn insert(&mut self, handle: Handle<T>) {
// Note that, oddly, `Handle::index` does not return a 1-based
// `Index`, but rather a zero-based `usize`.
self.members.insert(handle.index());
}
/// Add handles from `iter` to the set.
pub fn insert_iter(&mut self, iter: impl IntoIterator<Item = Handle<T>>) {
for handle in iter {
self.insert(handle);
}
}
pub fn contains(&self, handle: Handle<T>) -> bool {
// Note that, oddly, `Handle::index` does not return a 1-based
// `Index`, but rather a zero-based `usize`.
self.members.contains(handle.index())
}
}
pub trait ArenaType<T> {
fn len(&self) -> usize;
}
impl<T> ArenaType<T> for Arena<T> {
fn len(&self) -> usize {
self.len()
}
}
impl<T: std::hash::Hash + Eq> ArenaType<T> for UniqueArena<T> {
fn len(&self) -> usize {
self.len()
}
}
/// A map from old handle indices to new, compressed handle indices.
pub struct HandleMap<T> {
/// The indices assigned to handles in the compacted module.
///
/// If `new_index[i]` is `Some(n)`, then `n` is the 1-based
/// `Index` of the compacted `Handle` corresponding to the
/// pre-compacted `Handle` whose zero-based index is `i`. ("Clear
/// as mud.")
new_index: Vec<Option<Index>>,
/// This type is indexed by values of type `T`.
as_keys: std::marker::PhantomData<T>,
}
impl<T: 'static> HandleMap<T> {
pub fn from_set(set: HandleSet<T>) -> Self {
let mut next_index = Index::new(1).unwrap();
Self {
new_index: (0..set.len)
.map(|zero_based_index| {
if set.members.contains(zero_based_index) {
// This handle will be retained in the compacted version,
// so assign it a new index.
let this = next_index;
next_index = next_index.checked_add(1).unwrap();
Some(this)
} else {
// This handle will be omitted in the compacted version.
None
}
})
.collect(),
as_keys: std::marker::PhantomData,
}
}
/// Return true if `old` is used in the compacted module.
pub fn used(&self, old: Handle<T>) -> bool {
self.new_index[old.index()].is_some()
}
/// Return the counterpart to `old` in the compacted module.
///
/// If we thought `old` wouldn't be used in the compacted module, return
/// `None`.
pub fn try_adjust(&self, old: Handle<T>) -> Option<Handle<T>> {
log::trace!(
"adjusting {} handle [{}] -> [{:?}]",
std::any::type_name::<T>(),
old.index() + 1,
self.new_index[old.index()]
);
// Note that `Handle::index` returns a zero-based index,
// but `Handle::new` accepts a 1-based `Index`.
self.new_index[old.index()].map(Handle::new)
}
/// Return the counterpart to `old` in the compacted module.
///
/// If we thought `old` wouldn't be used in the compacted module, panic.
pub fn adjust(&self, handle: &mut Handle<T>) {
*handle = self.try_adjust(*handle).unwrap();
}
/// Like `adjust`, but for optional handles.
pub fn adjust_option(&self, handle: &mut Option<Handle<T>>) {
if let Some(ref mut handle) = *handle {
self.adjust(handle);
}
}
/// Shrink `range` to include only used handles.
///
/// Fortunately, compaction doesn't arbitrarily scramble the expressions
/// in the arena, but instead preserves the order of the elements while
/// squeezing out unused ones. That means that a contiguous range in the
/// pre-compacted arena always maps to a contiguous range in the
/// post-compacted arena. So we just need to adjust the endpoints.
///
/// Compaction may have eliminated the endpoints themselves.
///
/// Use `compacted_arena` to bounds-check the result.
pub fn adjust_range(&self, range: &mut Range<T>, compacted_arena: &Arena<T>) {
let mut index_range = range.zero_based_index_range();
let compacted;
// Remember that the indices we retrieve from `new_index` are 1-based
// compacted indices, but the index range we're computing is zero-based
// compacted indices.
if let Some(first1) = index_range.find_map(|i| self.new_index[i as usize]) {
// The first call to `find_map` mutated `index_range` to hold the
// remainder of original range, which is exactly the range we need
// to search for the new last handle.
if let Some(last1) = index_range.rev().find_map(|i| self.new_index[i as usize]) {
// Build a zero-based end-exclusive range, given one-based handle indices.
compacted = first1.get() - 1..last1.get();
} else {
// The range contains only a single live handle, which
// we identified with the first `find_map` call.
compacted = first1.get() - 1..first1.get();
}
} else {
compacted = 0..0;
};
*range = Range::from_zero_based_index_range(compacted, compacted_arena);
}
}