1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
//! `radsort` is a radix sort implementation for sorting by scalar keys
//! (integers, floats, chars, bools).
//!
//! All built-in scalar types can be used as sorting keys: Booleans, characters,
//! integers, and floating point-numbers. To sort by multiple keys, put them in
//! a tuple, starting from the most significant key. See [`Key`] for a full list
//! of supported keys.
//!
//! - best and worst-case running time is `O(n)` – see [benchmarks] for more
//! detailed performance characteristics
//! - space complexity is `O(n)` – direct sort allocates temporary storage the
//! size of the slice, for indirect see [`sort_by_cached_key`]
//! - stable, i.e. does not reorder equal elements
//! - uses `#![no_std]`, but needs an allocator
//!
//! This sort can be several times faster than `slice::sort` and
//! `slice::sort_unstable`, typically on large slices (hundreds of elements or
//! more). It performs worse on short slices and when using wide keys
//! (16 bytes). See [benchmarks] to get a better picture of the performance
//! characteristics.
//!
//! `radsort` is an implementation of LSB radix sort, using counting sort to
//! sort the slice by each digit (byte) of the key. As an optimization, the
//! slice is sorted only by digits which differ between the keys. See the
//! [`unopt`] module for more details and functions which don't use this
//! optimization.
//!
//! This implementation is based on radix sort by Pierre Terdiman,
//! published at
//! [http://codercorner.com/RadixSortRevisited.htm](http://codercorner.com/RadixSortRevisited.htm),
//! with select optimizations published by Michael Herf at
//! [http://stereopsis.com/radix.html](http://stereopsis.com/radix.html).
//!
//! # Floating-point numbers
//!
//! Floating-point number keys are effectively sorted according to their partial
//! order (see [`PartialOrd`]), with `NaN` values at the beginning (before the
//! negative infinity) and at the end (after the positive infinity), depending
//! on the sign bit of each `NaN`.
//!
//! # Examples
//!
//! Slices of scalar types (integers, floating-point numbers, Booleans, and
//! characters) can be sorted directly:
//! ```rust
//! let mut data = [2i32, -1, 1, 0, -2];
//!
//! radsort::sort(&mut data);
//!
//! assert_eq!(data, [-2, -1, 0, 1, 2]);
//! ```
//!
//! Use a key extraction function to sort other types:
//! ```rust
//! let mut friends = ["Punchy", "Isabelle", "Sly", "Puddles", "Gladys"];
//!
//! // sort by the length of the string in bytes
//! radsort::sort_by_key(&mut friends, |s| s.len());
//!
//! assert_eq!(friends, ["Sly", "Punchy", "Gladys", "Puddles", "Isabelle"]);
//! ```
//!
//! To sort by two or more keys, put them in a tuple, starting with the most
//! significant key:
//! ```rust
//! # #[derive(Debug, PartialEq)]
//! struct Height { feet: u8, inches: u8, }
//!
//! let mut heights = [
//! Height { feet: 6, inches: 1 },
//! Height { feet: 5, inches: 9 },
//! Height { feet: 6, inches: 0 },
//! ];
//!
//! // sort by feet, if feet are equal, sort by inches
//! radsort::sort_by_key(&mut heights, |h| (h.feet, h.inches));
//!
//! assert_eq!(heights, [
//! Height { feet: 5, inches: 9 },
//! Height { feet: 6, inches: 0 },
//! Height { feet: 6, inches: 1 },
//! ]);
//! ```
//!
//! [`Key`]: ./trait.Key.html
//! [`unopt`]: ./unopt/index.html
//! [benchmarks]: https://github.com/JakubValtar/radsort/wiki/Benchmarks
//! [`sort_by_cached_key`]: ./fn.sort_by_cached_key.html
//! [`PartialOrd`]: https://doc.rust-lang.org/std/cmp/trait.PartialOrd.html
#![warn(clippy::all)]
#![no_std]
extern crate alloc;
use alloc::vec::Vec;
mod scalar;
mod sort;
use scalar::Scalar;
use sort::RadixKey;
/// Sorts the slice.
///
/// Slice elements can be any scalar type. See [`Key`] for a full list.
///
/// This sort is stable (i.e., does not reorder equal elements) and `O(w n)`,
/// where `w` is the size of the key in bytes.
///
/// Allocates temporary storage the size of the slice.
///
/// # Examples
/// ```rust
/// let mut data = [5i32, -1, 3, 15, -42];
///
/// radsort::sort(&mut data);
///
/// assert_eq!(data, [-42, -1, 3, 5, 15]);
/// ```
/// [`Key`]: trait.Key.html
#[inline]
pub fn sort<T: Key>(slice: &mut [T]) {
Key::sort_by_key(slice, |v| *v, false);
}
/// Sorts the slice using a key extraction function.
///
/// Key can be any scalar type. See [`Key`] for a full list.
///
/// This sort is stable (i.e., does not reorder equal elements) and `O(w m n)`,
/// where the key function is `O(m)` and `w` is the size of the key in bytes.
///
/// Allocates temporary storage the size of the slice.
///
/// See [`sort_by_cached_key`] if you use expensive key function or if you need
/// to sort large elements.
///
/// # Panics
///
/// Can panic if the key function returns different keys for the same element
/// when called repeatedly. The panic is on a best-effort basis. In case of
/// panic, the order of elements in the slice is not specified.
///
/// # Examples
///
/// ```rust
/// let mut friends = ["Punchy", "Isabelle", "Sly", "Puddles", "Gladys"];
///
/// // sort by the length of the string in bytes
/// radsort::sort_by_key(&mut friends, |s| s.len());
///
/// assert_eq!(friends, ["Sly", "Punchy", "Gladys", "Puddles", "Isabelle"]);
/// ```
///
/// [`Key`]: trait.Key.html
/// [`sort_by_cached_key`]: fn.sort_by_cached_key.html
#[inline]
pub fn sort_by_key<T, F, K>(slice: &mut [T], mut key_fn: F)
where F: FnMut(&T) -> K, K: Key
{
Key::sort_by_key(slice, |t| key_fn(t), false);
}
/// Sorts the slice indirectly, using a key extraction function and caching the keys.
///
/// Key can be any scalar type. See [`Key`] for a full list.
///
/// This sort is stable (i.e., does not reorder equal elements) and
/// `O(m n + w n)`, where the key function is `O(m)`.
///
/// This function can be significantly faster for sorting by an expensive key
/// function or for sorting large elements. The keys are extracted, sorted, and
/// then the elements of the slice are reordered in-place. This saves CPU cycles
/// in case of an expensive key function and saves memory bandwidth in case of
/// large elements.
///
/// For sorting small elements by simple key functions (e.g., functions that are
/// property accesses or basic operations), [`sort_by_key`] is likely to be
/// faster.
///
/// In the worst case, allocates temporary storage in a `Vec<(K, usize)>` twice
/// the length of the slice.
///
/// # Examples
///
/// ```rust
/// let mut data = ["-6", "2", "15", "-1", "0"];
///
/// radsort::sort_by_cached_key(&mut data, |s| s.parse::<i32>().unwrap());
///
/// assert_eq!(data, ["-6", "-1", "0", "2", "15"]);
/// ```
///
/// [`Key`]: ./trait.Key.html
/// [`sort_by_key`]: fn.sort_by_key.html
#[inline]
pub fn sort_by_cached_key<T, F, K>(slice: &mut [T], key_fn: F)
where F: FnMut(&T) -> K, K: Key
{
sort_by_cached_key_internal(slice, key_fn, false);
}
/// Sorting functions which don't use optimizations based on the values
/// of the keys. Useful for benchmarks and consistent performance.
///
/// For each digit (byte) of the key, `radsort` reorders the slice once.
/// Functions in the crate root sort only by the bytes which differ between the
/// keys. This can lead to large differences in sorting time, based on the
/// values in the slice.
///
/// For example, sorting `u32` all less than `u8::MAX` will sort only by
/// the least significant byte and skip the three most significant bytes,
/// which are zero; this cuts the sorting time to roughly one quarter, plus
/// the overhead of analyzing the keys.
///
/// Unlike functions in the crate root, functions in this module don't use
/// this optimization and sort by all bytes of the key. This leads to worse but
/// more consistent performance. The effects of the CPU cache will still play a
/// role, but at least the number of executed instructions will not depend on
/// the values in the slice, only on the length of the slice and the width of
/// the key type.
pub mod unopt {
use super::*;
/// Version of [`sort`](../fn.sort.html) which does not skip digits (bytes).
///
/// See the [module documentation](./index.html) for more details.
#[inline]
pub fn sort<T: Key>(slice: &mut [T]) {
Key::sort_by_key(slice, |v| *v, true);
}
/// Version of [`sort_by_key`](../fn.sort_by_key.html) which does not skip digits (bytes).
///
/// See the [module documentation](./index.html) for more details.
#[inline]
pub fn sort_by_key<T, F, K>(slice: &mut [T], mut key_fn: F)
where F: FnMut(&T) -> K, K: Key
{
Key::sort_by_key(slice, |t| key_fn(t), true);
}
/// Version of [`sort_by_cached_key`](../fn.sort_by_cached_key.html) which does not skip digits (bytes).
///
/// See the [module documentation](./index.html) for more details.
#[inline]
pub fn sort_by_cached_key<T, F, K>(slice: &mut [T], key_fn: F)
where F: FnMut(&T) -> K, K: Key
{
sort_by_cached_key_internal(slice, key_fn, true);
}
}
#[inline]
fn sort_by_cached_key_internal<T, F, K>(slice: &mut [T], mut key_fn: F, unopt: bool)
where F: FnMut(&T) -> K, K: Key
{
// Adapted from std::slice::sort_by_cached_key
macro_rules! radsort_by_cached_key {
($index:ty) => ({
let mut indices: Vec<(K, $index)> = slice.iter()
.map(|t| key_fn(t))
.enumerate()
.map(|(i, k)| (k, i as $index))
.collect();
Key::sort_by_key(&mut indices, |(k, _)| *k, unopt);
for i in 0..slice.len() {
let mut index = indices[i].1;
while (index as usize) < i {
// The previous value was swapped somewhere else. The index to which
// the original value was swapped was marked into the index array.
// Follow the indices to find out where the original value ended up.
index = indices[index as usize].1;
}
// Mark down the index to which the current value goes
indices[i].1 = index;
slice.swap(i, index as usize);
}
})
}
let len = slice.len();
if len < 2 {
return;
}
let sz_u8 = core::mem::size_of::<(K, u8)>();
let sz_u16 = core::mem::size_of::<(K, u16)>();
let sz_u32 = core::mem::size_of::<(K, u32)>();
let sz_usize = core::mem::size_of::<(K, usize)>();
if sz_u8 < sz_u16 && len <= (core:: u8::MAX as usize + 1) { return radsort_by_cached_key!( u8) }
if sz_u16 < sz_u32 && len <= (core::u16::MAX as usize + 1) { return radsort_by_cached_key!(u16) }
if sz_u32 < sz_usize && len <= (core::u32::MAX as usize + 1) { return radsort_by_cached_key!(u32) }
radsort_by_cached_key!(usize)
}
/// Types which can be used as sorting keys.
///
/// Implemented for all scalar types and their tuples.
///
/// Slices of types for which `Key` is implemented can be sorted directly using
/// [`sort`]. Slices of other types can be sorted using [`sort_by_key`] with a
/// key extraction function.
///
/// [`sort`]: fn.sort.html
/// [`sort_by_key`]: fn.sort_by_key.html
pub trait Key: Copy + private::Sealed {
// If this crate didn't support tuples, this trait wouldn't be needed and
// Scalar could be exposed directly to users as the `Key` trait.
/// Sorts the slice using `Self` as the type of the key.
///
/// You shouldn't need to call this directly, use one of the functions in
/// the [crate root](index.html#functions) instead.
#[doc(hidden)]
fn sort_by_key<T, F>(slice: &mut [T], key_fn: F, unopt: bool)
where F: FnMut(&T) -> Self;
}
macro_rules! impl_for_scalar { ($($t:ty)*) => ($(
impl Key for $t {
#[doc(hidden)]
#[inline]
fn sort_by_key<T, F>(slice: &mut [T], mut key_fn: F, unopt: bool)
where F: FnMut(&T) -> Self
{
RadixKey::radix_sort(slice, |t| key_fn(t).to_radix_key(), unopt);
}
}
)*) }
impl_for_scalar! {
bool char
u8 u16 u32 u64 u128 usize
i8 i16 i32 i64 i128 isize
f32 f64
}
impl<A: Key> Key for (A,) {
#[doc(hidden)]
#[inline]
fn sort_by_key<T, F>(slice: &mut [T], mut key_fn: F, unopt: bool)
where F: FnMut(&T) -> Self
{
A::sort_by_key(slice, |t| key_fn(t).0, unopt);
}
}
impl<A: Key, B: Key> Key for (A, B) {
#[doc(hidden)]
#[inline]
fn sort_by_key<T, F>(slice: &mut [T], mut key_fn: F, unopt: bool)
where F: FnMut(&T) -> Self
{
B::sort_by_key(slice, |t| key_fn(t).1, unopt);
A::sort_by_key(slice, |t| key_fn(t).0, unopt);
}
}
impl<A: Key, B: Key, C: Key> Key for (A, B, C) {
#[doc(hidden)]
#[inline]
fn sort_by_key<T, F>(slice: &mut [T], mut key_fn: F, unopt: bool)
where F: FnMut(&T) -> Self
{
C::sort_by_key(slice, |t| key_fn(t).2, unopt);
B::sort_by_key(slice, |t| key_fn(t).1, unopt);
A::sort_by_key(slice, |t| key_fn(t).0, unopt);
}
}
impl<A: Key, B: Key, C: Key, D: Key> Key for (A, B, C, D) {
#[doc(hidden)]
#[inline]
fn sort_by_key<T, F>(slice: &mut [T], mut key_fn: F, unopt: bool)
where F: FnMut(&T) -> Self
{
D::sort_by_key(slice, |t| key_fn(t).3, unopt);
C::sort_by_key(slice, |t| key_fn(t).2, unopt);
B::sort_by_key(slice, |t| key_fn(t).1, unopt);
A::sort_by_key(slice, |t| key_fn(t).0, unopt);
}
}
mod private {
use super::*;
/// This trait serves as a seal for the `Key` trait to prevent downstream
/// implementations.
pub trait Sealed {}
macro_rules! sealed_impl { ($($t:ty)*) => ($(
impl Sealed for $t {}
)*) }
sealed_impl! {
()
bool char
u8 u16 u32 u64 u128 usize
i8 i16 i32 i64 i128 isize
f32 f64
}
impl<A: Key> Sealed for (A,) {}
impl<A: Key, B: Key> Sealed for (A, B) {}
impl<A: Key, B: Key, C: Key> Sealed for (A, B, C) {}
impl<A: Key, B: Key, C: Key, D: Key> Sealed for (A, B, C, D) {}
}