1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
/*!
A DFA-backed `Regex`.

This module provides [`Regex`], which is defined generically over the
[`Automaton`] trait. A `Regex` implements convenience routines you might have
come to expect, such as finding the start/end of a match and iterating over
all non-overlapping matches. This `Regex` type is limited in its capabilities
to what a DFA can provide. Therefore, APIs involving capturing groups, for
example, are not provided.

Internally, a `Regex` is composed of two DFAs. One is a "forward" DFA that
finds the end offset of a match, where as the other is a "reverse" DFA that
find the start offset of a match.

See the [parent module](crate::dfa) for examples.
*/

#[cfg(feature = "alloc")]
use alloc::vec::Vec;

#[cfg(feature = "dfa-build")]
use crate::dfa::dense::BuildError;
use crate::{
    dfa::{automaton::Automaton, dense},
    util::{iter, search::Input},
    Anchored, Match, MatchError,
};
#[cfg(feature = "alloc")]
use crate::{
    dfa::{sparse, StartKind},
    util::search::MatchKind,
};

// When the alloc feature is enabled, the regex type sets its A type parameter
// to default to an owned dense DFA. But without alloc, we set no default. This
// makes things a lot more convenient in the common case, since writing out the
// DFA types is pretty annoying.
//
// Since we have two different definitions but only want to write one doc
// string, we use a macro to capture the doc and other attributes once and then
// repeat them for each definition.
macro_rules! define_regex_type {
    ($(#[$doc:meta])*) => {
        #[cfg(feature = "alloc")]
        $(#[$doc])*
        pub struct Regex<A = dense::OwnedDFA> {
            forward: A,
            reverse: A,
        }

        #[cfg(not(feature = "alloc"))]
        $(#[$doc])*
        pub struct Regex<A> {
            forward: A,
            reverse: A,
        }
    };
}

define_regex_type!(
    /// A regular expression that uses deterministic finite automata for fast
    /// searching.
    ///
    /// A regular expression is comprised of two DFAs, a "forward" DFA and a
    /// "reverse" DFA. The forward DFA is responsible for detecting the end of
    /// a match while the reverse DFA is responsible for detecting the start
    /// of a match. Thus, in order to find the bounds of any given match, a
    /// forward search must first be run followed by a reverse search. A match
    /// found by the forward DFA guarantees that the reverse DFA will also find
    /// a match.
    ///
    /// The type of the DFA used by a `Regex` corresponds to the `A` type
    /// parameter, which must satisfy the [`Automaton`] trait. Typically,
    /// `A` is either a [`dense::DFA`](crate::dfa::dense::DFA) or a
    /// [`sparse::DFA`](crate::dfa::sparse::DFA), where dense DFAs use more
    /// memory but search faster, while sparse DFAs use less memory but search
    /// more slowly.
    ///
    /// # Crate features
    ///
    /// Note that despite what the documentation auto-generates, the _only_
    /// crate feature needed to use this type is `dfa-search`. You do _not_
    /// need to enable the `alloc` feature.
    ///
    /// By default, a regex's automaton type parameter is set to
    /// `dense::DFA<Vec<u32>>` when the `alloc` feature is enabled. For most
    /// in-memory work loads, this is the most convenient type that gives the
    /// best search performance. When the `alloc` feature is disabled, no
    /// default type is used.
    ///
    /// # When should I use this?
    ///
    /// Generally speaking, if you can afford the overhead of building a full
    /// DFA for your regex, and you don't need things like capturing groups,
    /// then this is a good choice if you're looking to optimize for matching
    /// speed. Note however that its speed may be worse than a general purpose
    /// regex engine if you don't provide a [`dense::Config::prefilter`] to the
    /// underlying DFA.
    ///
    /// # Sparse DFAs
    ///
    /// Since a `Regex` is generic over the [`Automaton`] trait, it can be
    /// used with any kind of DFA. While this crate constructs dense DFAs by
    /// default, it is easy enough to build corresponding sparse DFAs, and then
    /// build a regex from them:
    ///
    /// ```
    /// use regex_automata::dfa::regex::Regex;
    ///
    /// // First, build a regex that uses dense DFAs.
    /// let dense_re = Regex::new("foo[0-9]+")?;
    ///
    /// // Second, build sparse DFAs from the forward and reverse dense DFAs.
    /// let fwd = dense_re.forward().to_sparse()?;
    /// let rev = dense_re.reverse().to_sparse()?;
    ///
    /// // Third, build a new regex from the constituent sparse DFAs.
    /// let sparse_re = Regex::builder().build_from_dfas(fwd, rev);
    ///
    /// // A regex that uses sparse DFAs can be used just like with dense DFAs.
    /// assert_eq!(true, sparse_re.is_match(b"foo123"));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// Alternatively, one can use a [`Builder`] to construct a sparse DFA
    /// more succinctly. (Note though that dense DFAs are still constructed
    /// first internally, and then converted to sparse DFAs, as in the example
    /// above.)
    ///
    /// ```
    /// use regex_automata::dfa::regex::Regex;
    ///
    /// let sparse_re = Regex::builder().build_sparse(r"foo[0-9]+")?;
    /// // A regex that uses sparse DFAs can be used just like with dense DFAs.
    /// assert!(sparse_re.is_match(b"foo123"));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Fallibility
    ///
    /// Most of the search routines defined on this type will _panic_ when the
    /// underlying search fails. This might be because the DFA gave up because
    /// it saw a quit byte, whether configured explicitly or via heuristic
    /// Unicode word boundary support, although neither are enabled by default.
    /// Or it might fail because an invalid `Input` configuration is given,
    /// for example, with an unsupported [`Anchored`] mode.
    ///
    /// If you need to handle these error cases instead of allowing them to
    /// trigger a panic, then the lower level [`Regex::try_search`] provides
    /// a fallible API that never panics.
    ///
    /// # Example
    ///
    /// This example shows how to cause a search to terminate if it sees a
    /// `\n` byte, and handle the error returned. This could be useful if, for
    /// example, you wanted to prevent a user supplied pattern from matching
    /// across a line boundary.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{dfa::{self, regex::Regex}, Input, MatchError};
    ///
    /// let re = Regex::builder()
    ///     .dense(dfa::dense::Config::new().quit(b'\n', true))
    ///     .build(r"foo\p{any}+bar")?;
    ///
    /// let input = Input::new("foo\nbar");
    /// // Normally this would produce a match, since \p{any} contains '\n'.
    /// // But since we instructed the automaton to enter a quit state if a
    /// // '\n' is observed, this produces a match error instead.
    /// let expected = MatchError::quit(b'\n', 3);
    /// let got = re.try_search(&input).unwrap_err();
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[derive(Clone, Debug)]
);

#[cfg(all(feature = "syntax", feature = "dfa-build"))]
impl Regex {
    /// Parse the given regular expression using the default configuration and
    /// return the corresponding regex.
    ///
    /// If you want a non-default configuration, then use the [`Builder`] to
    /// set your own configuration.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{Match, dfa::regex::Regex};
    ///
    /// let re = Regex::new("foo[0-9]+bar")?;
    /// assert_eq!(
    ///     Some(Match::must(0, 3..14)),
    ///     re.find(b"zzzfoo12345barzzz"),
    /// );
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn new(pattern: &str) -> Result<Regex, BuildError> {
        Builder::new().build(pattern)
    }

    /// Like `new`, but parses multiple patterns into a single "regex set."
    /// This similarly uses the default regex configuration.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{Match, dfa::regex::Regex};
    ///
    /// let re = Regex::new_many(&["[a-z]+", "[0-9]+"])?;
    ///
    /// let mut it = re.find_iter(b"abc 1 foo 4567 0 quux");
    /// assert_eq!(Some(Match::must(0, 0..3)), it.next());
    /// assert_eq!(Some(Match::must(1, 4..5)), it.next());
    /// assert_eq!(Some(Match::must(0, 6..9)), it.next());
    /// assert_eq!(Some(Match::must(1, 10..14)), it.next());
    /// assert_eq!(Some(Match::must(1, 15..16)), it.next());
    /// assert_eq!(Some(Match::must(0, 17..21)), it.next());
    /// assert_eq!(None, it.next());
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn new_many<P: AsRef<str>>(
        patterns: &[P],
    ) -> Result<Regex, BuildError> {
        Builder::new().build_many(patterns)
    }
}

#[cfg(all(feature = "syntax", feature = "dfa-build"))]
impl Regex<sparse::DFA<Vec<u8>>> {
    /// Parse the given regular expression using the default configuration,
    /// except using sparse DFAs, and return the corresponding regex.
    ///
    /// If you want a non-default configuration, then use the [`Builder`] to
    /// set your own configuration.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{Match, dfa::regex::Regex};
    ///
    /// let re = Regex::new_sparse("foo[0-9]+bar")?;
    /// assert_eq!(
    ///     Some(Match::must(0, 3..14)),
    ///     re.find(b"zzzfoo12345barzzz"),
    /// );
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn new_sparse(
        pattern: &str,
    ) -> Result<Regex<sparse::DFA<Vec<u8>>>, BuildError> {
        Builder::new().build_sparse(pattern)
    }

    /// Like `new`, but parses multiple patterns into a single "regex set"
    /// using sparse DFAs. This otherwise similarly uses the default regex
    /// configuration.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{Match, dfa::regex::Regex};
    ///
    /// let re = Regex::new_many_sparse(&["[a-z]+", "[0-9]+"])?;
    ///
    /// let mut it = re.find_iter(b"abc 1 foo 4567 0 quux");
    /// assert_eq!(Some(Match::must(0, 0..3)), it.next());
    /// assert_eq!(Some(Match::must(1, 4..5)), it.next());
    /// assert_eq!(Some(Match::must(0, 6..9)), it.next());
    /// assert_eq!(Some(Match::must(1, 10..14)), it.next());
    /// assert_eq!(Some(Match::must(1, 15..16)), it.next());
    /// assert_eq!(Some(Match::must(0, 17..21)), it.next());
    /// assert_eq!(None, it.next());
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn new_many_sparse<P: AsRef<str>>(
        patterns: &[P],
    ) -> Result<Regex<sparse::DFA<Vec<u8>>>, BuildError> {
        Builder::new().build_many_sparse(patterns)
    }
}

/// Convenience routines for regex construction.
impl Regex<dense::DFA<&'static [u32]>> {
    /// Return a builder for configuring the construction of a `Regex`.
    ///
    /// This is a convenience routine to avoid needing to import the
    /// [`Builder`] type in common cases.
    ///
    /// # Example
    ///
    /// This example shows how to use the builder to disable UTF-8 mode
    /// everywhere.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{
    ///     dfa::regex::Regex, nfa::thompson, util::syntax, Match,
    /// };
    ///
    /// let re = Regex::builder()
    ///     .syntax(syntax::Config::new().utf8(false))
    ///     .thompson(thompson::Config::new().utf8(false))
    ///     .build(r"foo(?-u:[^b])ar.*")?;
    /// let haystack = b"\xFEfoo\xFFarzz\xE2\x98\xFF\n";
    /// let expected = Some(Match::must(0, 1..9));
    /// let got = re.find(haystack);
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn builder() -> Builder {
        Builder::new()
    }
}

/// Standard search routines for finding and iterating over matches.
impl<A: Automaton> Regex<A> {
    /// Returns true if and only if this regex matches the given haystack.
    ///
    /// This routine may short circuit if it knows that scanning future input
    /// will never lead to a different result. In particular, if the underlying
    /// DFA enters a match state or a dead state, then this routine will return
    /// `true` or `false`, respectively, without inspecting any future input.
    ///
    /// # Panics
    ///
    /// This routine panics if the search could not complete. This can occur
    /// in a number of circumstances:
    ///
    /// * The configuration of the DFA may permit it to "quit" the search.
    /// For example, setting quit bytes or enabling heuristic support for
    /// Unicode word boundaries. The default configuration does not enable any
    /// option that could result in the DFA quitting.
    /// * When the provided `Input` configuration is not supported. For
    /// example, by providing an unsupported anchor mode.
    ///
    /// When a search panics, callers cannot know whether a match exists or
    /// not.
    ///
    /// Use [`Regex::try_search`] if you want to handle these error conditions.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::dfa::regex::Regex;
    ///
    /// let re = Regex::new("foo[0-9]+bar")?;
    /// assert_eq!(true, re.is_match("foo12345bar"));
    /// assert_eq!(false, re.is_match("foobar"));
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn is_match<'h, I: Into<Input<'h>>>(&self, input: I) -> bool {
        // Not only can we do an "earliest" search, but we can avoid doing a
        // reverse scan too.
        let input = input.into().earliest(true);
        self.forward().try_search_fwd(&input).map(|x| x.is_some()).unwrap()
    }

    /// Returns the start and end offset of the leftmost match. If no match
    /// exists, then `None` is returned.
    ///
    /// # Panics
    ///
    /// This routine panics if the search could not complete. This can occur
    /// in a number of circumstances:
    ///
    /// * The configuration of the DFA may permit it to "quit" the search.
    /// For example, setting quit bytes or enabling heuristic support for
    /// Unicode word boundaries. The default configuration does not enable any
    /// option that could result in the DFA quitting.
    /// * When the provided `Input` configuration is not supported. For
    /// example, by providing an unsupported anchor mode.
    ///
    /// When a search panics, callers cannot know whether a match exists or
    /// not.
    ///
    /// Use [`Regex::try_search`] if you want to handle these error conditions.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{Match, dfa::regex::Regex};
    ///
    /// // Greediness is applied appropriately.
    /// let re = Regex::new("foo[0-9]+")?;
    /// assert_eq!(Some(Match::must(0, 3..11)), re.find("zzzfoo12345zzz"));
    ///
    /// // Even though a match is found after reading the first byte (`a`),
    /// // the default leftmost-first match semantics demand that we find the
    /// // earliest match that prefers earlier parts of the pattern over latter
    /// // parts.
    /// let re = Regex::new("abc|a")?;
    /// assert_eq!(Some(Match::must(0, 0..3)), re.find("abc"));
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn find<'h, I: Into<Input<'h>>>(&self, input: I) -> Option<Match> {
        self.try_search(&input.into()).unwrap()
    }

    /// Returns an iterator over all non-overlapping leftmost matches in the
    /// given bytes. If no match exists, then the iterator yields no elements.
    ///
    /// This corresponds to the "standard" regex search iterator.
    ///
    /// # Panics
    ///
    /// If the search returns an error during iteration, then iteration
    /// panics. See [`Regex::find`] for the panic conditions.
    ///
    /// Use [`Regex::try_search`] with
    /// [`util::iter::Searcher`](crate::util::iter::Searcher) if you want to
    /// handle these error conditions.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{Match, dfa::regex::Regex};
    ///
    /// let re = Regex::new("foo[0-9]+")?;
    /// let text = "foo1 foo12 foo123";
    /// let matches: Vec<Match> = re.find_iter(text).collect();
    /// assert_eq!(matches, vec![
    ///     Match::must(0, 0..4),
    ///     Match::must(0, 5..10),
    ///     Match::must(0, 11..17),
    /// ]);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn find_iter<'r, 'h, I: Into<Input<'h>>>(
        &'r self,
        input: I,
    ) -> FindMatches<'r, 'h, A> {
        let it = iter::Searcher::new(input.into());
        FindMatches { re: self, it }
    }
}

/// Lower level fallible search routines that permit controlling where the
/// search starts and ends in a particular sequence.
impl<A: Automaton> Regex<A> {
    /// Returns the start and end offset of the leftmost match. If no match
    /// exists, then `None` is returned.
    ///
    /// This is like [`Regex::find`] but with two differences:
    ///
    /// 1. It is not generic over `Into<Input>` and instead accepts a
    /// `&Input`. This permits reusing the same `Input` for multiple searches
    /// without needing to create a new one. This _may_ help with latency.
    /// 2. It returns an error if the search could not complete where as
    /// [`Regex::find`] will panic.
    ///
    /// # Errors
    ///
    /// This routine errors if the search could not complete. This can occur
    /// in the following circumstances:
    ///
    /// * The configuration of the DFA may permit it to "quit" the search.
    /// For example, setting quit bytes or enabling heuristic support for
    /// Unicode word boundaries. The default configuration does not enable any
    /// option that could result in the DFA quitting.
    /// * When the provided `Input` configuration is not supported. For
    /// example, by providing an unsupported anchor mode.
    ///
    /// When a search returns an error, callers cannot know whether a match
    /// exists or not.
    #[inline]
    pub fn try_search(
        &self,
        input: &Input<'_>,
    ) -> Result<Option<Match>, MatchError> {
        let (fwd, rev) = (self.forward(), self.reverse());
        let end = match fwd.try_search_fwd(input)? {
            None => return Ok(None),
            Some(end) => end,
        };
        // This special cases an empty match at the beginning of the search. If
        // our end matches our start, then since a reverse DFA can't match past
        // the start, it must follow that our starting position is also our end
        // position. So short circuit and skip the reverse search.
        if input.start() == end.offset() {
            return Ok(Some(Match::new(
                end.pattern(),
                end.offset()..end.offset(),
            )));
        }
        // We can also skip the reverse search if we know our search was
        // anchored. This occurs either when the input config is anchored or
        // when we know the regex itself is anchored. In this case, we know the
        // start of the match, if one is found, must be the start of the
        // search.
        if self.is_anchored(input) {
            return Ok(Some(Match::new(
                end.pattern(),
                input.start()..end.offset(),
            )));
        }
        // N.B. I have tentatively convinced myself that it isn't necessary
        // to specify the specific pattern for the reverse search since the
        // reverse search will always find the same pattern to match as the
        // forward search. But I lack a rigorous proof. Why not just provide
        // the pattern anyway? Well, if it is needed, then leaving it out
        // gives us a chance to find a witness. (Also, if we don't need to
        // specify the pattern, then we don't need to build the reverse DFA
        // with 'starts_for_each_pattern' enabled.)
        //
        // We also need to be careful to disable 'earliest' for the reverse
        // search, since it could be enabled for the forward search. In the
        // reverse case, to satisfy "leftmost" criteria, we need to match
        // as much as we can. We also need to be careful to make the search
        // anchored. We don't want the reverse search to report any matches
        // other than the one beginning at the end of our forward search.
        let revsearch = input
            .clone()
            .span(input.start()..end.offset())
            .anchored(Anchored::Yes)
            .earliest(false);
        let start = rev
            .try_search_rev(&revsearch)?
            .expect("reverse search must match if forward search does");
        assert_eq!(
            start.pattern(),
            end.pattern(),
            "forward and reverse search must match same pattern",
        );
        assert!(start.offset() <= end.offset());
        Ok(Some(Match::new(end.pattern(), start.offset()..end.offset())))
    }

    /// Returns true if either the given input specifies an anchored search
    /// or if the underlying DFA is always anchored.
    fn is_anchored(&self, input: &Input<'_>) -> bool {
        match input.get_anchored() {
            Anchored::No => self.forward().is_always_start_anchored(),
            Anchored::Yes | Anchored::Pattern(_) => true,
        }
    }
}

/// Non-search APIs for querying information about the regex and setting a
/// prefilter.
impl<A: Automaton> Regex<A> {
    /// Return the underlying DFA responsible for forward matching.
    ///
    /// This is useful for accessing the underlying DFA and converting it to
    /// some other format or size. See the [`Builder::build_from_dfas`] docs
    /// for an example of where this might be useful.
    pub fn forward(&self) -> &A {
        &self.forward
    }

    /// Return the underlying DFA responsible for reverse matching.
    ///
    /// This is useful for accessing the underlying DFA and converting it to
    /// some other format or size. See the [`Builder::build_from_dfas`] docs
    /// for an example of where this might be useful.
    pub fn reverse(&self) -> &A {
        &self.reverse
    }

    /// Returns the total number of patterns matched by this regex.
    ///
    /// # Example
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::dfa::regex::Regex;
    ///
    /// let re = Regex::new_many(&[r"[a-z]+", r"[0-9]+", r"\w+"])?;
    /// assert_eq!(3, re.pattern_len());
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn pattern_len(&self) -> usize {
        assert_eq!(self.forward().pattern_len(), self.reverse().pattern_len());
        self.forward().pattern_len()
    }
}

/// An iterator over all non-overlapping matches for an infallible search.
///
/// The iterator yields a [`Match`] value until no more matches could be found.
/// If the underlying regex engine returns an error, then a panic occurs.
///
/// The type parameters are as follows:
///
/// * `A` represents the type of the underlying DFA that implements the
/// [`Automaton`] trait.
///
/// The lifetime parameters are as follows:
///
/// * `'h` represents the lifetime of the haystack being searched.
/// * `'r` represents the lifetime of the regex object itself.
///
/// This iterator can be created with the [`Regex::find_iter`] method.
#[derive(Debug)]
pub struct FindMatches<'r, 'h, A> {
    re: &'r Regex<A>,
    it: iter::Searcher<'h>,
}

impl<'r, 'h, A: Automaton> Iterator for FindMatches<'r, 'h, A> {
    type Item = Match;

    #[inline]
    fn next(&mut self) -> Option<Match> {
        let FindMatches { re, ref mut it } = *self;
        it.advance(|input| re.try_search(input))
    }
}

/// A builder for a regex based on deterministic finite automatons.
///
/// This builder permits configuring options for the syntax of a pattern, the
/// NFA construction, the DFA construction and finally the regex searching
/// itself. This builder is different from a general purpose regex builder in
/// that it permits fine grain configuration of the construction process. The
/// trade off for this is complexity, and the possibility of setting a
/// configuration that might not make sense. For example, there are two
/// different UTF-8 modes:
///
/// * [`syntax::Config::utf8`](crate::util::syntax::Config::utf8) controls
/// whether the pattern itself can contain sub-expressions that match invalid
/// UTF-8.
/// * [`thompson::Config::utf8`](crate::nfa::thompson::Config::utf8) controls
/// how the regex iterators themselves advance the starting position of the
/// next search when a match with zero length is found.
///
/// Generally speaking, callers will want to either enable all of these or
/// disable all of these.
///
/// Internally, building a regex requires building two DFAs, where one is
/// responsible for finding the end of a match and the other is responsible
/// for finding the start of a match. If you only need to detect whether
/// something matched, or only the end of a match, then you should use a
/// [`dense::Builder`] to construct a single DFA, which is cheaper than
/// building two DFAs.
///
/// # Build methods
///
/// This builder has a few "build" methods. In general, it's the result of
/// combining the following parameters:
///
/// * Building one or many regexes.
/// * Building a regex with dense or sparse DFAs.
///
/// The simplest "build" method is [`Builder::build`]. It accepts a single
/// pattern and builds a dense DFA using `usize` for the state identifier
/// representation.
///
/// The most general "build" method is [`Builder::build_many`], which permits
/// building a regex that searches for multiple patterns simultaneously while
/// using a specific state identifier representation.
///
/// The most flexible "build" method, but hardest to use, is
/// [`Builder::build_from_dfas`]. This exposes the fact that a [`Regex`] is
/// just a pair of DFAs, and this method allows you to specify those DFAs
/// exactly.
///
/// # Example
///
/// This example shows how to disable UTF-8 mode in the syntax and the regex
/// itself. This is generally what you want for matching on arbitrary bytes.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
///     dfa::regex::Regex, nfa::thompson, util::syntax, Match,
/// };
///
/// let re = Regex::builder()
///     .syntax(syntax::Config::new().utf8(false))
///     .thompson(thompson::Config::new().utf8(false))
///     .build(r"foo(?-u:[^b])ar.*")?;
/// let haystack = b"\xFEfoo\xFFarzz\xE2\x98\xFF\n";
/// let expected = Some(Match::must(0, 1..9));
/// let got = re.find(haystack);
/// assert_eq!(expected, got);
/// // Notice that `(?-u:[^b])` matches invalid UTF-8,
/// // but the subsequent `.*` does not! Disabling UTF-8
/// // on the syntax permits this.
/// assert_eq!(b"foo\xFFarzz", &haystack[got.unwrap().range()]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct Builder {
    #[cfg(feature = "dfa-build")]
    dfa: dense::Builder,
}

impl Builder {
    /// Create a new regex builder with the default configuration.
    pub fn new() -> Builder {
        Builder {
            #[cfg(feature = "dfa-build")]
            dfa: dense::Builder::new(),
        }
    }

    /// Build a regex from the given pattern.
    ///
    /// If there was a problem parsing or compiling the pattern, then an error
    /// is returned.
    #[cfg(all(feature = "syntax", feature = "dfa-build"))]
    pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> {
        self.build_many(&[pattern])
    }

    /// Build a regex from the given pattern using sparse DFAs.
    ///
    /// If there was a problem parsing or compiling the pattern, then an error
    /// is returned.
    #[cfg(all(feature = "syntax", feature = "dfa-build"))]
    pub fn build_sparse(
        &self,
        pattern: &str,
    ) -> Result<Regex<sparse::DFA<Vec<u8>>>, BuildError> {
        self.build_many_sparse(&[pattern])
    }

    /// Build a regex from the given patterns.
    #[cfg(all(feature = "syntax", feature = "dfa-build"))]
    pub fn build_many<P: AsRef<str>>(
        &self,
        patterns: &[P],
    ) -> Result<Regex, BuildError> {
        let forward = self.dfa.build_many(patterns)?;
        let reverse = self
            .dfa
            .clone()
            .configure(
                dense::Config::new()
                    .prefilter(None)
                    .specialize_start_states(false)
                    .start_kind(StartKind::Anchored)
                    .match_kind(MatchKind::All),
            )
            .thompson(crate::nfa::thompson::Config::new().reverse(true))
            .build_many(patterns)?;
        Ok(self.build_from_dfas(forward, reverse))
    }

    /// Build a sparse regex from the given patterns.
    #[cfg(all(feature = "syntax", feature = "dfa-build"))]
    pub fn build_many_sparse<P: AsRef<str>>(
        &self,
        patterns: &[P],
    ) -> Result<Regex<sparse::DFA<Vec<u8>>>, BuildError> {
        let re = self.build_many(patterns)?;
        let forward = re.forward().to_sparse()?;
        let reverse = re.reverse().to_sparse()?;
        Ok(self.build_from_dfas(forward, reverse))
    }

    /// Build a regex from its component forward and reverse DFAs.
    ///
    /// This is useful when deserializing a regex from some arbitrary
    /// memory region. This is also useful for building regexes from other
    /// types of DFAs.
    ///
    /// If you're building the DFAs from scratch instead of building new DFAs
    /// from other DFAs, then you'll need to make sure that the reverse DFA is
    /// configured correctly to match the intended semantics. Namely:
    ///
    /// * It should be anchored.
    /// * It should use [`MatchKind::All`] semantics.
    /// * It should match in reverse.
    /// * Otherwise, its configuration should match the forward DFA.
    ///
    /// If these conditions aren't satisfied, then the behavior of searches is
    /// unspecified.
    ///
    /// Note that when using this constructor, no configuration is applied.
    /// Since this routine provides the DFAs to the builder, there is no
    /// opportunity to apply other configuration options.
    ///
    /// # Example
    ///
    /// This example is a bit a contrived. The usual use of these methods
    /// would involve serializing `initial_re` somewhere and then deserializing
    /// it later to build a regex. But in this case, we do everything in
    /// memory.
    ///
    /// ```
    /// use regex_automata::dfa::regex::Regex;
    ///
    /// let initial_re = Regex::new("foo[0-9]+")?;
    /// assert_eq!(true, initial_re.is_match(b"foo123"));
    ///
    /// let (fwd, rev) = (initial_re.forward(), initial_re.reverse());
    /// let re = Regex::builder().build_from_dfas(fwd, rev);
    /// assert_eq!(true, re.is_match(b"foo123"));
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// This example shows how to build a `Regex` that uses sparse DFAs instead
    /// of dense DFAs without using one of the convenience `build_sparse`
    /// routines:
    ///
    /// ```
    /// use regex_automata::dfa::regex::Regex;
    ///
    /// let initial_re = Regex::new("foo[0-9]+")?;
    /// assert_eq!(true, initial_re.is_match(b"foo123"));
    ///
    /// let fwd = initial_re.forward().to_sparse()?;
    /// let rev = initial_re.reverse().to_sparse()?;
    /// let re = Regex::builder().build_from_dfas(fwd, rev);
    /// assert_eq!(true, re.is_match(b"foo123"));
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn build_from_dfas<A: Automaton>(
        &self,
        forward: A,
        reverse: A,
    ) -> Regex<A> {
        Regex { forward, reverse }
    }

    /// Set the syntax configuration for this builder using
    /// [`syntax::Config`](crate::util::syntax::Config).
    ///
    /// This permits setting things like case insensitivity, Unicode and multi
    /// line mode.
    #[cfg(all(feature = "syntax", feature = "dfa-build"))]
    pub fn syntax(
        &mut self,
        config: crate::util::syntax::Config,
    ) -> &mut Builder {
        self.dfa.syntax(config);
        self
    }

    /// Set the Thompson NFA configuration for this builder using
    /// [`nfa::thompson::Config`](crate::nfa::thompson::Config).
    ///
    /// This permits setting things like whether additional time should be
    /// spent shrinking the size of the NFA.
    #[cfg(all(feature = "syntax", feature = "dfa-build"))]
    pub fn thompson(
        &mut self,
        config: crate::nfa::thompson::Config,
    ) -> &mut Builder {
        self.dfa.thompson(config);
        self
    }

    /// Set the dense DFA compilation configuration for this builder using
    /// [`dense::Config`].
    ///
    /// This permits setting things like whether the underlying DFAs should
    /// be minimized.
    #[cfg(feature = "dfa-build")]
    pub fn dense(&mut self, config: dense::Config) -> &mut Builder {
        self.dfa.configure(config);
        self
    }
}

impl Default for Builder {
    fn default() -> Builder {
        Builder::new()
    }
}