1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
/*!
A DFA-backed `Regex`.
This module provides [`Regex`], which is defined generically over the
[`Automaton`] trait. A `Regex` implements convenience routines you might have
come to expect, such as finding the start/end of a match and iterating over
all non-overlapping matches. This `Regex` type is limited in its capabilities
to what a DFA can provide. Therefore, APIs involving capturing groups, for
example, are not provided.
Internally, a `Regex` is composed of two DFAs. One is a "forward" DFA that
finds the end offset of a match, where as the other is a "reverse" DFA that
find the start offset of a match.
See the [parent module](crate::dfa) for examples.
*/
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
#[cfg(feature = "dfa-build")]
use crate::dfa::dense::BuildError;
use crate::{
dfa::{automaton::Automaton, dense},
util::{iter, search::Input},
Anchored, Match, MatchError,
};
#[cfg(feature = "alloc")]
use crate::{
dfa::{sparse, StartKind},
util::search::MatchKind,
};
// When the alloc feature is enabled, the regex type sets its A type parameter
// to default to an owned dense DFA. But without alloc, we set no default. This
// makes things a lot more convenient in the common case, since writing out the
// DFA types is pretty annoying.
//
// Since we have two different definitions but only want to write one doc
// string, we use a macro to capture the doc and other attributes once and then
// repeat them for each definition.
macro_rules! define_regex_type {
($(#[$doc:meta])*) => {
#[cfg(feature = "alloc")]
$(#[$doc])*
pub struct Regex<A = dense::OwnedDFA> {
forward: A,
reverse: A,
}
#[cfg(not(feature = "alloc"))]
$(#[$doc])*
pub struct Regex<A> {
forward: A,
reverse: A,
}
};
}
define_regex_type!(
/// A regular expression that uses deterministic finite automata for fast
/// searching.
///
/// A regular expression is comprised of two DFAs, a "forward" DFA and a
/// "reverse" DFA. The forward DFA is responsible for detecting the end of
/// a match while the reverse DFA is responsible for detecting the start
/// of a match. Thus, in order to find the bounds of any given match, a
/// forward search must first be run followed by a reverse search. A match
/// found by the forward DFA guarantees that the reverse DFA will also find
/// a match.
///
/// The type of the DFA used by a `Regex` corresponds to the `A` type
/// parameter, which must satisfy the [`Automaton`] trait. Typically,
/// `A` is either a [`dense::DFA`](crate::dfa::dense::DFA) or a
/// [`sparse::DFA`](crate::dfa::sparse::DFA), where dense DFAs use more
/// memory but search faster, while sparse DFAs use less memory but search
/// more slowly.
///
/// # Crate features
///
/// Note that despite what the documentation auto-generates, the _only_
/// crate feature needed to use this type is `dfa-search`. You do _not_
/// need to enable the `alloc` feature.
///
/// By default, a regex's automaton type parameter is set to
/// `dense::DFA<Vec<u32>>` when the `alloc` feature is enabled. For most
/// in-memory work loads, this is the most convenient type that gives the
/// best search performance. When the `alloc` feature is disabled, no
/// default type is used.
///
/// # When should I use this?
///
/// Generally speaking, if you can afford the overhead of building a full
/// DFA for your regex, and you don't need things like capturing groups,
/// then this is a good choice if you're looking to optimize for matching
/// speed. Note however that its speed may be worse than a general purpose
/// regex engine if you don't provide a [`dense::Config::prefilter`] to the
/// underlying DFA.
///
/// # Sparse DFAs
///
/// Since a `Regex` is generic over the [`Automaton`] trait, it can be
/// used with any kind of DFA. While this crate constructs dense DFAs by
/// default, it is easy enough to build corresponding sparse DFAs, and then
/// build a regex from them:
///
/// ```
/// use regex_automata::dfa::regex::Regex;
///
/// // First, build a regex that uses dense DFAs.
/// let dense_re = Regex::new("foo[0-9]+")?;
///
/// // Second, build sparse DFAs from the forward and reverse dense DFAs.
/// let fwd = dense_re.forward().to_sparse()?;
/// let rev = dense_re.reverse().to_sparse()?;
///
/// // Third, build a new regex from the constituent sparse DFAs.
/// let sparse_re = Regex::builder().build_from_dfas(fwd, rev);
///
/// // A regex that uses sparse DFAs can be used just like with dense DFAs.
/// assert_eq!(true, sparse_re.is_match(b"foo123"));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Alternatively, one can use a [`Builder`] to construct a sparse DFA
/// more succinctly. (Note though that dense DFAs are still constructed
/// first internally, and then converted to sparse DFAs, as in the example
/// above.)
///
/// ```
/// use regex_automata::dfa::regex::Regex;
///
/// let sparse_re = Regex::builder().build_sparse(r"foo[0-9]+")?;
/// // A regex that uses sparse DFAs can be used just like with dense DFAs.
/// assert!(sparse_re.is_match(b"foo123"));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Fallibility
///
/// Most of the search routines defined on this type will _panic_ when the
/// underlying search fails. This might be because the DFA gave up because
/// it saw a quit byte, whether configured explicitly or via heuristic
/// Unicode word boundary support, although neither are enabled by default.
/// Or it might fail because an invalid `Input` configuration is given,
/// for example, with an unsupported [`Anchored`] mode.
///
/// If you need to handle these error cases instead of allowing them to
/// trigger a panic, then the lower level [`Regex::try_search`] provides
/// a fallible API that never panics.
///
/// # Example
///
/// This example shows how to cause a search to terminate if it sees a
/// `\n` byte, and handle the error returned. This could be useful if, for
/// example, you wanted to prevent a user supplied pattern from matching
/// across a line boundary.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{dfa::{self, regex::Regex}, Input, MatchError};
///
/// let re = Regex::builder()
/// .dense(dfa::dense::Config::new().quit(b'\n', true))
/// .build(r"foo\p{any}+bar")?;
///
/// let input = Input::new("foo\nbar");
/// // Normally this would produce a match, since \p{any} contains '\n'.
/// // But since we instructed the automaton to enter a quit state if a
/// // '\n' is observed, this produces a match error instead.
/// let expected = MatchError::quit(b'\n', 3);
/// let got = re.try_search(&input).unwrap_err();
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
);
#[cfg(all(feature = "syntax", feature = "dfa-build"))]
impl Regex {
/// Parse the given regular expression using the default configuration and
/// return the corresponding regex.
///
/// If you want a non-default configuration, then use the [`Builder`] to
/// set your own configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{Match, dfa::regex::Regex};
///
/// let re = Regex::new("foo[0-9]+bar")?;
/// assert_eq!(
/// Some(Match::must(0, 3..14)),
/// re.find(b"zzzfoo12345barzzz"),
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn new(pattern: &str) -> Result<Regex, BuildError> {
Builder::new().build(pattern)
}
/// Like `new`, but parses multiple patterns into a single "regex set."
/// This similarly uses the default regex configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{Match, dfa::regex::Regex};
///
/// let re = Regex::new_many(&["[a-z]+", "[0-9]+"])?;
///
/// let mut it = re.find_iter(b"abc 1 foo 4567 0 quux");
/// assert_eq!(Some(Match::must(0, 0..3)), it.next());
/// assert_eq!(Some(Match::must(1, 4..5)), it.next());
/// assert_eq!(Some(Match::must(0, 6..9)), it.next());
/// assert_eq!(Some(Match::must(1, 10..14)), it.next());
/// assert_eq!(Some(Match::must(1, 15..16)), it.next());
/// assert_eq!(Some(Match::must(0, 17..21)), it.next());
/// assert_eq!(None, it.next());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn new_many<P: AsRef<str>>(
patterns: &[P],
) -> Result<Regex, BuildError> {
Builder::new().build_many(patterns)
}
}
#[cfg(all(feature = "syntax", feature = "dfa-build"))]
impl Regex<sparse::DFA<Vec<u8>>> {
/// Parse the given regular expression using the default configuration,
/// except using sparse DFAs, and return the corresponding regex.
///
/// If you want a non-default configuration, then use the [`Builder`] to
/// set your own configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{Match, dfa::regex::Regex};
///
/// let re = Regex::new_sparse("foo[0-9]+bar")?;
/// assert_eq!(
/// Some(Match::must(0, 3..14)),
/// re.find(b"zzzfoo12345barzzz"),
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn new_sparse(
pattern: &str,
) -> Result<Regex<sparse::DFA<Vec<u8>>>, BuildError> {
Builder::new().build_sparse(pattern)
}
/// Like `new`, but parses multiple patterns into a single "regex set"
/// using sparse DFAs. This otherwise similarly uses the default regex
/// configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{Match, dfa::regex::Regex};
///
/// let re = Regex::new_many_sparse(&["[a-z]+", "[0-9]+"])?;
///
/// let mut it = re.find_iter(b"abc 1 foo 4567 0 quux");
/// assert_eq!(Some(Match::must(0, 0..3)), it.next());
/// assert_eq!(Some(Match::must(1, 4..5)), it.next());
/// assert_eq!(Some(Match::must(0, 6..9)), it.next());
/// assert_eq!(Some(Match::must(1, 10..14)), it.next());
/// assert_eq!(Some(Match::must(1, 15..16)), it.next());
/// assert_eq!(Some(Match::must(0, 17..21)), it.next());
/// assert_eq!(None, it.next());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn new_many_sparse<P: AsRef<str>>(
patterns: &[P],
) -> Result<Regex<sparse::DFA<Vec<u8>>>, BuildError> {
Builder::new().build_many_sparse(patterns)
}
}
/// Convenience routines for regex construction.
impl Regex<dense::DFA<&'static [u32]>> {
/// Return a builder for configuring the construction of a `Regex`.
///
/// This is a convenience routine to avoid needing to import the
/// [`Builder`] type in common cases.
///
/// # Example
///
/// This example shows how to use the builder to disable UTF-8 mode
/// everywhere.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// dfa::regex::Regex, nfa::thompson, util::syntax, Match,
/// };
///
/// let re = Regex::builder()
/// .syntax(syntax::Config::new().utf8(false))
/// .thompson(thompson::Config::new().utf8(false))
/// .build(r"foo(?-u:[^b])ar.*")?;
/// let haystack = b"\xFEfoo\xFFarzz\xE2\x98\xFF\n";
/// let expected = Some(Match::must(0, 1..9));
/// let got = re.find(haystack);
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn builder() -> Builder {
Builder::new()
}
}
/// Standard search routines for finding and iterating over matches.
impl<A: Automaton> Regex<A> {
/// Returns true if and only if this regex matches the given haystack.
///
/// This routine may short circuit if it knows that scanning future input
/// will never lead to a different result. In particular, if the underlying
/// DFA enters a match state or a dead state, then this routine will return
/// `true` or `false`, respectively, without inspecting any future input.
///
/// # Panics
///
/// This routine panics if the search could not complete. This can occur
/// in a number of circumstances:
///
/// * The configuration of the DFA may permit it to "quit" the search.
/// For example, setting quit bytes or enabling heuristic support for
/// Unicode word boundaries. The default configuration does not enable any
/// option that could result in the DFA quitting.
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode.
///
/// When a search panics, callers cannot know whether a match exists or
/// not.
///
/// Use [`Regex::try_search`] if you want to handle these error conditions.
///
/// # Example
///
/// ```
/// use regex_automata::dfa::regex::Regex;
///
/// let re = Regex::new("foo[0-9]+bar")?;
/// assert_eq!(true, re.is_match("foo12345bar"));
/// assert_eq!(false, re.is_match("foobar"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn is_match<'h, I: Into<Input<'h>>>(&self, input: I) -> bool {
// Not only can we do an "earliest" search, but we can avoid doing a
// reverse scan too.
let input = input.into().earliest(true);
self.forward().try_search_fwd(&input).map(|x| x.is_some()).unwrap()
}
/// Returns the start and end offset of the leftmost match. If no match
/// exists, then `None` is returned.
///
/// # Panics
///
/// This routine panics if the search could not complete. This can occur
/// in a number of circumstances:
///
/// * The configuration of the DFA may permit it to "quit" the search.
/// For example, setting quit bytes or enabling heuristic support for
/// Unicode word boundaries. The default configuration does not enable any
/// option that could result in the DFA quitting.
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode.
///
/// When a search panics, callers cannot know whether a match exists or
/// not.
///
/// Use [`Regex::try_search`] if you want to handle these error conditions.
///
/// # Example
///
/// ```
/// use regex_automata::{Match, dfa::regex::Regex};
///
/// // Greediness is applied appropriately.
/// let re = Regex::new("foo[0-9]+")?;
/// assert_eq!(Some(Match::must(0, 3..11)), re.find("zzzfoo12345zzz"));
///
/// // Even though a match is found after reading the first byte (`a`),
/// // the default leftmost-first match semantics demand that we find the
/// // earliest match that prefers earlier parts of the pattern over latter
/// // parts.
/// let re = Regex::new("abc|a")?;
/// assert_eq!(Some(Match::must(0, 0..3)), re.find("abc"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn find<'h, I: Into<Input<'h>>>(&self, input: I) -> Option<Match> {
self.try_search(&input.into()).unwrap()
}
/// Returns an iterator over all non-overlapping leftmost matches in the
/// given bytes. If no match exists, then the iterator yields no elements.
///
/// This corresponds to the "standard" regex search iterator.
///
/// # Panics
///
/// If the search returns an error during iteration, then iteration
/// panics. See [`Regex::find`] for the panic conditions.
///
/// Use [`Regex::try_search`] with
/// [`util::iter::Searcher`](crate::util::iter::Searcher) if you want to
/// handle these error conditions.
///
/// # Example
///
/// ```
/// use regex_automata::{Match, dfa::regex::Regex};
///
/// let re = Regex::new("foo[0-9]+")?;
/// let text = "foo1 foo12 foo123";
/// let matches: Vec<Match> = re.find_iter(text).collect();
/// assert_eq!(matches, vec![
/// Match::must(0, 0..4),
/// Match::must(0, 5..10),
/// Match::must(0, 11..17),
/// ]);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn find_iter<'r, 'h, I: Into<Input<'h>>>(
&'r self,
input: I,
) -> FindMatches<'r, 'h, A> {
let it = iter::Searcher::new(input.into());
FindMatches { re: self, it }
}
}
/// Lower level fallible search routines that permit controlling where the
/// search starts and ends in a particular sequence.
impl<A: Automaton> Regex<A> {
/// Returns the start and end offset of the leftmost match. If no match
/// exists, then `None` is returned.
///
/// This is like [`Regex::find`] but with two differences:
///
/// 1. It is not generic over `Into<Input>` and instead accepts a
/// `&Input`. This permits reusing the same `Input` for multiple searches
/// without needing to create a new one. This _may_ help with latency.
/// 2. It returns an error if the search could not complete where as
/// [`Regex::find`] will panic.
///
/// # Errors
///
/// This routine errors if the search could not complete. This can occur
/// in the following circumstances:
///
/// * The configuration of the DFA may permit it to "quit" the search.
/// For example, setting quit bytes or enabling heuristic support for
/// Unicode word boundaries. The default configuration does not enable any
/// option that could result in the DFA quitting.
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode.
///
/// When a search returns an error, callers cannot know whether a match
/// exists or not.
#[inline]
pub fn try_search(
&self,
input: &Input<'_>,
) -> Result<Option<Match>, MatchError> {
let (fwd, rev) = (self.forward(), self.reverse());
let end = match fwd.try_search_fwd(input)? {
None => return Ok(None),
Some(end) => end,
};
// This special cases an empty match at the beginning of the search. If
// our end matches our start, then since a reverse DFA can't match past
// the start, it must follow that our starting position is also our end
// position. So short circuit and skip the reverse search.
if input.start() == end.offset() {
return Ok(Some(Match::new(
end.pattern(),
end.offset()..end.offset(),
)));
}
// We can also skip the reverse search if we know our search was
// anchored. This occurs either when the input config is anchored or
// when we know the regex itself is anchored. In this case, we know the
// start of the match, if one is found, must be the start of the
// search.
if self.is_anchored(input) {
return Ok(Some(Match::new(
end.pattern(),
input.start()..end.offset(),
)));
}
// N.B. I have tentatively convinced myself that it isn't necessary
// to specify the specific pattern for the reverse search since the
// reverse search will always find the same pattern to match as the
// forward search. But I lack a rigorous proof. Why not just provide
// the pattern anyway? Well, if it is needed, then leaving it out
// gives us a chance to find a witness. (Also, if we don't need to
// specify the pattern, then we don't need to build the reverse DFA
// with 'starts_for_each_pattern' enabled.)
//
// We also need to be careful to disable 'earliest' for the reverse
// search, since it could be enabled for the forward search. In the
// reverse case, to satisfy "leftmost" criteria, we need to match
// as much as we can. We also need to be careful to make the search
// anchored. We don't want the reverse search to report any matches
// other than the one beginning at the end of our forward search.
let revsearch = input
.clone()
.span(input.start()..end.offset())
.anchored(Anchored::Yes)
.earliest(false);
let start = rev
.try_search_rev(&revsearch)?
.expect("reverse search must match if forward search does");
assert_eq!(
start.pattern(),
end.pattern(),
"forward and reverse search must match same pattern",
);
assert!(start.offset() <= end.offset());
Ok(Some(Match::new(end.pattern(), start.offset()..end.offset())))
}
/// Returns true if either the given input specifies an anchored search
/// or if the underlying DFA is always anchored.
fn is_anchored(&self, input: &Input<'_>) -> bool {
match input.get_anchored() {
Anchored::No => self.forward().is_always_start_anchored(),
Anchored::Yes | Anchored::Pattern(_) => true,
}
}
}
/// Non-search APIs for querying information about the regex and setting a
/// prefilter.
impl<A: Automaton> Regex<A> {
/// Return the underlying DFA responsible for forward matching.
///
/// This is useful for accessing the underlying DFA and converting it to
/// some other format or size. See the [`Builder::build_from_dfas`] docs
/// for an example of where this might be useful.
pub fn forward(&self) -> &A {
&self.forward
}
/// Return the underlying DFA responsible for reverse matching.
///
/// This is useful for accessing the underlying DFA and converting it to
/// some other format or size. See the [`Builder::build_from_dfas`] docs
/// for an example of where this might be useful.
pub fn reverse(&self) -> &A {
&self.reverse
}
/// Returns the total number of patterns matched by this regex.
///
/// # Example
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::dfa::regex::Regex;
///
/// let re = Regex::new_many(&[r"[a-z]+", r"[0-9]+", r"\w+"])?;
/// assert_eq!(3, re.pattern_len());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn pattern_len(&self) -> usize {
assert_eq!(self.forward().pattern_len(), self.reverse().pattern_len());
self.forward().pattern_len()
}
}
/// An iterator over all non-overlapping matches for an infallible search.
///
/// The iterator yields a [`Match`] value until no more matches could be found.
/// If the underlying regex engine returns an error, then a panic occurs.
///
/// The type parameters are as follows:
///
/// * `A` represents the type of the underlying DFA that implements the
/// [`Automaton`] trait.
///
/// The lifetime parameters are as follows:
///
/// * `'h` represents the lifetime of the haystack being searched.
/// * `'r` represents the lifetime of the regex object itself.
///
/// This iterator can be created with the [`Regex::find_iter`] method.
#[derive(Debug)]
pub struct FindMatches<'r, 'h, A> {
re: &'r Regex<A>,
it: iter::Searcher<'h>,
}
impl<'r, 'h, A: Automaton> Iterator for FindMatches<'r, 'h, A> {
type Item = Match;
#[inline]
fn next(&mut self) -> Option<Match> {
let FindMatches { re, ref mut it } = *self;
it.advance(|input| re.try_search(input))
}
}
/// A builder for a regex based on deterministic finite automatons.
///
/// This builder permits configuring options for the syntax of a pattern, the
/// NFA construction, the DFA construction and finally the regex searching
/// itself. This builder is different from a general purpose regex builder in
/// that it permits fine grain configuration of the construction process. The
/// trade off for this is complexity, and the possibility of setting a
/// configuration that might not make sense. For example, there are two
/// different UTF-8 modes:
///
/// * [`syntax::Config::utf8`](crate::util::syntax::Config::utf8) controls
/// whether the pattern itself can contain sub-expressions that match invalid
/// UTF-8.
/// * [`thompson::Config::utf8`](crate::nfa::thompson::Config::utf8) controls
/// how the regex iterators themselves advance the starting position of the
/// next search when a match with zero length is found.
///
/// Generally speaking, callers will want to either enable all of these or
/// disable all of these.
///
/// Internally, building a regex requires building two DFAs, where one is
/// responsible for finding the end of a match and the other is responsible
/// for finding the start of a match. If you only need to detect whether
/// something matched, or only the end of a match, then you should use a
/// [`dense::Builder`] to construct a single DFA, which is cheaper than
/// building two DFAs.
///
/// # Build methods
///
/// This builder has a few "build" methods. In general, it's the result of
/// combining the following parameters:
///
/// * Building one or many regexes.
/// * Building a regex with dense or sparse DFAs.
///
/// The simplest "build" method is [`Builder::build`]. It accepts a single
/// pattern and builds a dense DFA using `usize` for the state identifier
/// representation.
///
/// The most general "build" method is [`Builder::build_many`], which permits
/// building a regex that searches for multiple patterns simultaneously while
/// using a specific state identifier representation.
///
/// The most flexible "build" method, but hardest to use, is
/// [`Builder::build_from_dfas`]. This exposes the fact that a [`Regex`] is
/// just a pair of DFAs, and this method allows you to specify those DFAs
/// exactly.
///
/// # Example
///
/// This example shows how to disable UTF-8 mode in the syntax and the regex
/// itself. This is generally what you want for matching on arbitrary bytes.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// dfa::regex::Regex, nfa::thompson, util::syntax, Match,
/// };
///
/// let re = Regex::builder()
/// .syntax(syntax::Config::new().utf8(false))
/// .thompson(thompson::Config::new().utf8(false))
/// .build(r"foo(?-u:[^b])ar.*")?;
/// let haystack = b"\xFEfoo\xFFarzz\xE2\x98\xFF\n";
/// let expected = Some(Match::must(0, 1..9));
/// let got = re.find(haystack);
/// assert_eq!(expected, got);
/// // Notice that `(?-u:[^b])` matches invalid UTF-8,
/// // but the subsequent `.*` does not! Disabling UTF-8
/// // on the syntax permits this.
/// assert_eq!(b"foo\xFFarzz", &haystack[got.unwrap().range()]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct Builder {
#[cfg(feature = "dfa-build")]
dfa: dense::Builder,
}
impl Builder {
/// Create a new regex builder with the default configuration.
pub fn new() -> Builder {
Builder {
#[cfg(feature = "dfa-build")]
dfa: dense::Builder::new(),
}
}
/// Build a regex from the given pattern.
///
/// If there was a problem parsing or compiling the pattern, then an error
/// is returned.
#[cfg(all(feature = "syntax", feature = "dfa-build"))]
pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> {
self.build_many(&[pattern])
}
/// Build a regex from the given pattern using sparse DFAs.
///
/// If there was a problem parsing or compiling the pattern, then an error
/// is returned.
#[cfg(all(feature = "syntax", feature = "dfa-build"))]
pub fn build_sparse(
&self,
pattern: &str,
) -> Result<Regex<sparse::DFA<Vec<u8>>>, BuildError> {
self.build_many_sparse(&[pattern])
}
/// Build a regex from the given patterns.
#[cfg(all(feature = "syntax", feature = "dfa-build"))]
pub fn build_many<P: AsRef<str>>(
&self,
patterns: &[P],
) -> Result<Regex, BuildError> {
let forward = self.dfa.build_many(patterns)?;
let reverse = self
.dfa
.clone()
.configure(
dense::Config::new()
.prefilter(None)
.specialize_start_states(false)
.start_kind(StartKind::Anchored)
.match_kind(MatchKind::All),
)
.thompson(crate::nfa::thompson::Config::new().reverse(true))
.build_many(patterns)?;
Ok(self.build_from_dfas(forward, reverse))
}
/// Build a sparse regex from the given patterns.
#[cfg(all(feature = "syntax", feature = "dfa-build"))]
pub fn build_many_sparse<P: AsRef<str>>(
&self,
patterns: &[P],
) -> Result<Regex<sparse::DFA<Vec<u8>>>, BuildError> {
let re = self.build_many(patterns)?;
let forward = re.forward().to_sparse()?;
let reverse = re.reverse().to_sparse()?;
Ok(self.build_from_dfas(forward, reverse))
}
/// Build a regex from its component forward and reverse DFAs.
///
/// This is useful when deserializing a regex from some arbitrary
/// memory region. This is also useful for building regexes from other
/// types of DFAs.
///
/// If you're building the DFAs from scratch instead of building new DFAs
/// from other DFAs, then you'll need to make sure that the reverse DFA is
/// configured correctly to match the intended semantics. Namely:
///
/// * It should be anchored.
/// * It should use [`MatchKind::All`] semantics.
/// * It should match in reverse.
/// * Otherwise, its configuration should match the forward DFA.
///
/// If these conditions aren't satisfied, then the behavior of searches is
/// unspecified.
///
/// Note that when using this constructor, no configuration is applied.
/// Since this routine provides the DFAs to the builder, there is no
/// opportunity to apply other configuration options.
///
/// # Example
///
/// This example is a bit a contrived. The usual use of these methods
/// would involve serializing `initial_re` somewhere and then deserializing
/// it later to build a regex. But in this case, we do everything in
/// memory.
///
/// ```
/// use regex_automata::dfa::regex::Regex;
///
/// let initial_re = Regex::new("foo[0-9]+")?;
/// assert_eq!(true, initial_re.is_match(b"foo123"));
///
/// let (fwd, rev) = (initial_re.forward(), initial_re.reverse());
/// let re = Regex::builder().build_from_dfas(fwd, rev);
/// assert_eq!(true, re.is_match(b"foo123"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// This example shows how to build a `Regex` that uses sparse DFAs instead
/// of dense DFAs without using one of the convenience `build_sparse`
/// routines:
///
/// ```
/// use regex_automata::dfa::regex::Regex;
///
/// let initial_re = Regex::new("foo[0-9]+")?;
/// assert_eq!(true, initial_re.is_match(b"foo123"));
///
/// let fwd = initial_re.forward().to_sparse()?;
/// let rev = initial_re.reverse().to_sparse()?;
/// let re = Regex::builder().build_from_dfas(fwd, rev);
/// assert_eq!(true, re.is_match(b"foo123"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn build_from_dfas<A: Automaton>(
&self,
forward: A,
reverse: A,
) -> Regex<A> {
Regex { forward, reverse }
}
/// Set the syntax configuration for this builder using
/// [`syntax::Config`](crate::util::syntax::Config).
///
/// This permits setting things like case insensitivity, Unicode and multi
/// line mode.
#[cfg(all(feature = "syntax", feature = "dfa-build"))]
pub fn syntax(
&mut self,
config: crate::util::syntax::Config,
) -> &mut Builder {
self.dfa.syntax(config);
self
}
/// Set the Thompson NFA configuration for this builder using
/// [`nfa::thompson::Config`](crate::nfa::thompson::Config).
///
/// This permits setting things like whether additional time should be
/// spent shrinking the size of the NFA.
#[cfg(all(feature = "syntax", feature = "dfa-build"))]
pub fn thompson(
&mut self,
config: crate::nfa::thompson::Config,
) -> &mut Builder {
self.dfa.thompson(config);
self
}
/// Set the dense DFA compilation configuration for this builder using
/// [`dense::Config`].
///
/// This permits setting things like whether the underlying DFAs should
/// be minimized.
#[cfg(feature = "dfa-build")]
pub fn dense(&mut self, config: dense::Config) -> &mut Builder {
self.dfa.configure(config);
self
}
}
impl Default for Builder {
fn default() -> Builder {
Builder::new()
}
}