1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
/*!
Types and routines specific to sparse DFAs.
This module is the home of [`sparse::DFA`](DFA).
Unlike the [`dense`] module, this module does not contain a builder or
configuration specific for sparse DFAs. Instead, the intended way to build a
sparse DFA is either by using a default configuration with its constructor
[`sparse::DFA::new`](DFA::new), or by first configuring the construction of a
dense DFA with [`dense::Builder`] and then calling [`dense::DFA::to_sparse`].
For example, this configures a sparse DFA to do an overlapping search:
```
use regex_automata::{
dfa::{Automaton, OverlappingState, dense},
HalfMatch, Input, MatchKind,
};
let dense_re = dense::Builder::new()
.configure(dense::Config::new().match_kind(MatchKind::All))
.build(r"Samwise|Sam")?;
let sparse_re = dense_re.to_sparse()?;
// Setup our haystack and initial start state.
let input = Input::new("Samwise");
let mut state = OverlappingState::start();
// First, 'Sam' will match.
sparse_re.try_search_overlapping_fwd(&input, &mut state)?;
assert_eq!(Some(HalfMatch::must(0, 3)), state.get_match());
// And now 'Samwise' will match.
sparse_re.try_search_overlapping_fwd(&input, &mut state)?;
assert_eq!(Some(HalfMatch::must(0, 7)), state.get_match());
# Ok::<(), Box<dyn std::error::Error>>(())
```
*/
#[cfg(feature = "dfa-build")]
use core::iter;
use core::{
convert::{TryFrom, TryInto},
fmt,
mem::size_of,
};
#[cfg(feature = "dfa-build")]
use alloc::{vec, vec::Vec};
#[cfg(feature = "dfa-build")]
use crate::dfa::dense::{self, BuildError};
use crate::{
dfa::{
automaton::{fmt_state_indicator, Automaton, StartError},
dense::Flags,
special::Special,
StartKind, DEAD,
},
util::{
alphabet::{ByteClasses, ByteSet},
escape::DebugByte,
int::{Pointer, Usize, U16, U32},
prefilter::Prefilter,
primitives::{PatternID, StateID},
search::Anchored,
start::{self, Start, StartByteMap},
wire::{self, DeserializeError, Endian, SerializeError},
},
};
const LABEL: &str = "rust-regex-automata-dfa-sparse";
const VERSION: u32 = 2;
/// A sparse deterministic finite automaton (DFA) with variable sized states.
///
/// In contrast to a [dense::DFA], a sparse DFA uses a more space efficient
/// representation for its transitions. Consequently, sparse DFAs may use much
/// less memory than dense DFAs, but this comes at a price. In particular,
/// reading the more space efficient transitions takes more work, and
/// consequently, searching using a sparse DFA is typically slower than a dense
/// DFA.
///
/// A sparse DFA can be built using the default configuration via the
/// [`DFA::new`] constructor. Otherwise, one can configure various aspects of a
/// dense DFA via [`dense::Builder`], and then convert a dense DFA to a sparse
/// DFA using [`dense::DFA::to_sparse`].
///
/// In general, a sparse DFA supports all the same search operations as a dense
/// DFA.
///
/// Making the choice between a dense and sparse DFA depends on your specific
/// work load. If you can sacrifice a bit of search time performance, then a
/// sparse DFA might be the best choice. In particular, while sparse DFAs are
/// probably always slower than dense DFAs, you may find that they are easily
/// fast enough for your purposes!
///
/// # Type parameters
///
/// A `DFA` has one type parameter, `T`, which is used to represent the parts
/// of a sparse DFA. `T` is typically a `Vec<u8>` or a `&[u8]`.
///
/// # The `Automaton` trait
///
/// This type implements the [`Automaton`] trait, which means it can be used
/// for searching. For example:
///
/// ```
/// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input};
///
/// let dfa = DFA::new("foo[0-9]+")?;
/// let expected = Some(HalfMatch::must(0, 8));
/// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone)]
pub struct DFA<T> {
// When compared to a dense DFA, a sparse DFA *looks* a lot simpler
// representation-wise. In reality, it is perhaps more complicated. Namely,
// in a dense DFA, all information needs to be very cheaply accessible
// using only state IDs. In a sparse DFA however, each state uses a
// variable amount of space because each state encodes more information
// than just its transitions. Each state also includes an accelerator if
// one exists, along with the matching pattern IDs if the state is a match
// state.
//
// That is, a lot of the complexity is pushed down into how each state
// itself is represented.
tt: Transitions<T>,
st: StartTable<T>,
special: Special,
pre: Option<Prefilter>,
quitset: ByteSet,
flags: Flags,
}
#[cfg(feature = "dfa-build")]
impl DFA<Vec<u8>> {
/// Parse the given regular expression using a default configuration and
/// return the corresponding sparse DFA.
///
/// If you want a non-default configuration, then use the
/// [`dense::Builder`] to set your own configuration, and then call
/// [`dense::DFA::to_sparse`] to create a sparse DFA.
///
/// # Example
///
/// ```
/// use regex_automata::{dfa::{Automaton, sparse}, HalfMatch, Input};
///
/// let dfa = sparse::DFA::new("foo[0-9]+bar")?;
///
/// let expected = Some(HalfMatch::must(0, 11));
/// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar"))?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn new(pattern: &str) -> Result<DFA<Vec<u8>>, BuildError> {
dense::Builder::new()
.build(pattern)
.and_then(|dense| dense.to_sparse())
}
/// Parse the given regular expressions using a default configuration and
/// return the corresponding multi-DFA.
///
/// If you want a non-default configuration, then use the
/// [`dense::Builder`] to set your own configuration, and then call
/// [`dense::DFA::to_sparse`] to create a sparse DFA.
///
/// # Example
///
/// ```
/// use regex_automata::{dfa::{Automaton, sparse}, HalfMatch, Input};
///
/// let dfa = sparse::DFA::new_many(&["[0-9]+", "[a-z]+"])?;
/// let expected = Some(HalfMatch::must(1, 3));
/// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar"))?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn new_many<P: AsRef<str>>(
patterns: &[P],
) -> Result<DFA<Vec<u8>>, BuildError> {
dense::Builder::new()
.build_many(patterns)
.and_then(|dense| dense.to_sparse())
}
}
#[cfg(feature = "dfa-build")]
impl DFA<Vec<u8>> {
/// Create a new DFA that matches every input.
///
/// # Example
///
/// ```
/// use regex_automata::{
/// dfa::{Automaton, sparse},
/// HalfMatch, Input,
/// };
///
/// let dfa = sparse::DFA::always_match()?;
///
/// let expected = Some(HalfMatch::must(0, 0));
/// assert_eq!(expected, dfa.try_search_fwd(&Input::new(""))?);
/// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo"))?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn always_match() -> Result<DFA<Vec<u8>>, BuildError> {
dense::DFA::always_match()?.to_sparse()
}
/// Create a new sparse DFA that never matches any input.
///
/// # Example
///
/// ```
/// use regex_automata::{dfa::{Automaton, sparse}, Input};
///
/// let dfa = sparse::DFA::never_match()?;
/// assert_eq!(None, dfa.try_search_fwd(&Input::new(""))?);
/// assert_eq!(None, dfa.try_search_fwd(&Input::new("foo"))?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn never_match() -> Result<DFA<Vec<u8>>, BuildError> {
dense::DFA::never_match()?.to_sparse()
}
/// The implementation for constructing a sparse DFA from a dense DFA.
pub(crate) fn from_dense<T: AsRef<[u32]>>(
dfa: &dense::DFA<T>,
) -> Result<DFA<Vec<u8>>, BuildError> {
// In order to build the transition table, we need to be able to write
// state identifiers for each of the "next" transitions in each state.
// Our state identifiers correspond to the byte offset in the
// transition table at which the state is encoded. Therefore, we do not
// actually know what the state identifiers are until we've allocated
// exactly as much space as we need for each state. Thus, construction
// of the transition table happens in two passes.
//
// In the first pass, we fill out the shell of each state, which
// includes the transition length, the input byte ranges and
// zero-filled space for the transitions and accelerators, if present.
// In this first pass, we also build up a map from the state identifier
// index of the dense DFA to the state identifier in this sparse DFA.
//
// In the second pass, we fill in the transitions based on the map
// built in the first pass.
// The capacity given here reflects a minimum. (Well, the true minimum
// is likely even bigger, but hopefully this saves a few reallocs.)
let mut sparse = Vec::with_capacity(StateID::SIZE * dfa.state_len());
// This maps state indices from the dense DFA to StateIDs in the sparse
// DFA. We build out this map on the first pass, and then use it in the
// second pass to back-fill our transitions.
let mut remap: Vec<StateID> = vec![DEAD; dfa.state_len()];
for state in dfa.states() {
let pos = sparse.len();
remap[dfa.to_index(state.id())] = StateID::new(pos)
.map_err(|_| BuildError::too_many_states())?;
// zero-filled space for the transition length
sparse.push(0);
sparse.push(0);
let mut transition_len = 0;
for (unit1, unit2, _) in state.sparse_transitions() {
match (unit1.as_u8(), unit2.as_u8()) {
(Some(b1), Some(b2)) => {
transition_len += 1;
sparse.push(b1);
sparse.push(b2);
}
(None, None) => {}
(Some(_), None) | (None, Some(_)) => {
// can never occur because sparse_transitions never
// groups EOI with any other transition.
unreachable!()
}
}
}
// Add dummy EOI transition. This is never actually read while
// searching, but having space equivalent to the total number
// of transitions is convenient. Otherwise, we'd need to track
// a different number of transitions for the byte ranges as for
// the 'next' states.
//
// N.B. The loop above is not guaranteed to yield the EOI
// transition, since it may point to a DEAD state. By putting
// it here, we always write the EOI transition, and thus
// guarantee that our transition length is >0. Why do we always
// need the EOI transition? Because in order to implement
// Automaton::next_eoi_state, this lets us just ask for the last
// transition. There are probably other/better ways to do this.
transition_len += 1;
sparse.push(0);
sparse.push(0);
// Check some assumptions about transition length.
assert_ne!(
transition_len, 0,
"transition length should be non-zero",
);
assert!(
transition_len <= 257,
"expected transition length {} to be <= 257",
transition_len,
);
// Fill in the transition length.
// Since transition length is always <= 257, we use the most
// significant bit to indicate whether this is a match state or
// not.
let ntrans = if dfa.is_match_state(state.id()) {
transition_len | (1 << 15)
} else {
transition_len
};
wire::NE::write_u16(ntrans, &mut sparse[pos..]);
// zero-fill the actual transitions.
// Unwraps are OK since transition_length <= 257 and our minimum
// support usize size is 16-bits.
let zeros = usize::try_from(transition_len)
.unwrap()
.checked_mul(StateID::SIZE)
.unwrap();
sparse.extend(iter::repeat(0).take(zeros));
// If this is a match state, write the pattern IDs matched by this
// state.
if dfa.is_match_state(state.id()) {
let plen = dfa.match_pattern_len(state.id());
// Write the actual pattern IDs with a u32 length prefix.
// First, zero-fill space.
let mut pos = sparse.len();
// Unwraps are OK since it's guaranteed that plen <=
// PatternID::LIMIT, which is in turn guaranteed to fit into a
// u32.
let zeros = size_of::<u32>()
.checked_mul(plen)
.unwrap()
.checked_add(size_of::<u32>())
.unwrap();
sparse.extend(iter::repeat(0).take(zeros));
// Now write the length prefix.
wire::NE::write_u32(
// Will never fail since u32::MAX is invalid pattern ID.
// Thus, the number of pattern IDs is representable by a
// u32.
plen.try_into().expect("pattern ID length fits in u32"),
&mut sparse[pos..],
);
pos += size_of::<u32>();
// Now write the pattern IDs.
for &pid in dfa.pattern_id_slice(state.id()) {
pos += wire::write_pattern_id::<wire::NE>(
pid,
&mut sparse[pos..],
);
}
}
// And now add the accelerator, if one exists. An accelerator is
// at most 4 bytes and at least 1 byte. The first byte is the
// length, N. N bytes follow the length. The set of bytes that
// follow correspond (exhaustively) to the bytes that must be seen
// to leave this state.
let accel = dfa.accelerator(state.id());
sparse.push(accel.len().try_into().unwrap());
sparse.extend_from_slice(accel);
}
let mut new = DFA {
tt: Transitions {
sparse,
classes: dfa.byte_classes().clone(),
state_len: dfa.state_len(),
pattern_len: dfa.pattern_len(),
},
st: StartTable::from_dense_dfa(dfa, &remap)?,
special: dfa.special().remap(|id| remap[dfa.to_index(id)]),
pre: dfa.get_prefilter().map(|p| p.clone()),
quitset: dfa.quitset().clone(),
flags: dfa.flags().clone(),
};
// And here's our second pass. Iterate over all of the dense states
// again, and update the transitions in each of the states in the
// sparse DFA.
for old_state in dfa.states() {
let new_id = remap[dfa.to_index(old_state.id())];
let mut new_state = new.tt.state_mut(new_id);
let sparse = old_state.sparse_transitions();
for (i, (_, _, next)) in sparse.enumerate() {
let next = remap[dfa.to_index(next)];
new_state.set_next_at(i, next);
}
}
debug!(
"created sparse DFA, memory usage: {} (dense memory usage: {})",
new.memory_usage(),
dfa.memory_usage(),
);
Ok(new)
}
}
impl<T: AsRef<[u8]>> DFA<T> {
/// Cheaply return a borrowed version of this sparse DFA. Specifically, the
/// DFA returned always uses `&[u8]` for its transitions.
pub fn as_ref<'a>(&'a self) -> DFA<&'a [u8]> {
DFA {
tt: self.tt.as_ref(),
st: self.st.as_ref(),
special: self.special,
pre: self.pre.clone(),
quitset: self.quitset,
flags: self.flags,
}
}
/// Return an owned version of this sparse DFA. Specifically, the DFA
/// returned always uses `Vec<u8>` for its transitions.
///
/// Effectively, this returns a sparse DFA whose transitions live on the
/// heap.
#[cfg(feature = "alloc")]
pub fn to_owned(&self) -> DFA<alloc::vec::Vec<u8>> {
DFA {
tt: self.tt.to_owned(),
st: self.st.to_owned(),
special: self.special,
pre: self.pre.clone(),
quitset: self.quitset,
flags: self.flags,
}
}
/// Returns the starting state configuration for this DFA.
///
/// The default is [`StartKind::Both`], which means the DFA supports both
/// unanchored and anchored searches. However, this can generally lead to
/// bigger DFAs. Therefore, a DFA might be compiled with support for just
/// unanchored or anchored searches. In that case, running a search with
/// an unsupported configuration will panic.
pub fn start_kind(&self) -> StartKind {
self.st.kind
}
/// Returns true only if this DFA has starting states for each pattern.
///
/// When a DFA has starting states for each pattern, then a search with the
/// DFA can be configured to only look for anchored matches of a specific
/// pattern. Specifically, APIs like [`Automaton::try_search_fwd`] can
/// accept a [`Anchored::Pattern`] if and only if this method returns true.
/// Otherwise, an error will be returned.
///
/// Note that if the DFA is empty, this always returns false.
pub fn starts_for_each_pattern(&self) -> bool {
self.st.pattern_len.is_some()
}
/// Returns the equivalence classes that make up the alphabet for this DFA.
///
/// Unless [`dense::Config::byte_classes`] was disabled, it is possible
/// that multiple distinct bytes are grouped into the same equivalence
/// class if it is impossible for them to discriminate between a match and
/// a non-match. This has the effect of reducing the overall alphabet size
/// and in turn potentially substantially reducing the size of the DFA's
/// transition table.
///
/// The downside of using equivalence classes like this is that every state
/// transition will automatically use this map to convert an arbitrary
/// byte to its corresponding equivalence class. In practice this has a
/// negligible impact on performance.
pub fn byte_classes(&self) -> &ByteClasses {
&self.tt.classes
}
/// Returns the memory usage, in bytes, of this DFA.
///
/// The memory usage is computed based on the number of bytes used to
/// represent this DFA.
///
/// This does **not** include the stack size used up by this DFA. To
/// compute that, use `std::mem::size_of::<sparse::DFA>()`.
pub fn memory_usage(&self) -> usize {
self.tt.memory_usage() + self.st.memory_usage()
}
}
/// Routines for converting a sparse DFA to other representations, such as raw
/// bytes suitable for persistent storage.
impl<T: AsRef<[u8]>> DFA<T> {
/// Serialize this DFA as raw bytes to a `Vec<u8>` in little endian
/// format.
///
/// The written bytes are guaranteed to be deserialized correctly and
/// without errors in a semver compatible release of this crate by a
/// `DFA`'s deserialization APIs (assuming all other criteria for the
/// deserialization APIs has been satisfied):
///
/// * [`DFA::from_bytes`]
/// * [`DFA::from_bytes_unchecked`]
///
/// Note that unlike a [`dense::DFA`]'s serialization methods, this does
/// not add any initial padding to the returned bytes. Padding isn't
/// required for sparse DFAs since they have no alignment requirements.
///
/// # Example
///
/// This example shows how to serialize and deserialize a DFA:
///
/// ```
/// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input};
///
/// // Compile our original DFA.
/// let original_dfa = DFA::new("foo[0-9]+")?;
///
/// // N.B. We use native endianness here to make the example work, but
/// // using to_bytes_little_endian would work on a little endian target.
/// let buf = original_dfa.to_bytes_native_endian();
/// // Even if buf has initial padding, DFA::from_bytes will automatically
/// // ignore it.
/// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf)?.0;
///
/// let expected = Some(HalfMatch::must(0, 8));
/// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "dfa-build")]
pub fn to_bytes_little_endian(&self) -> Vec<u8> {
self.to_bytes::<wire::LE>()
}
/// Serialize this DFA as raw bytes to a `Vec<u8>` in big endian
/// format.
///
/// The written bytes are guaranteed to be deserialized correctly and
/// without errors in a semver compatible release of this crate by a
/// `DFA`'s deserialization APIs (assuming all other criteria for the
/// deserialization APIs has been satisfied):
///
/// * [`DFA::from_bytes`]
/// * [`DFA::from_bytes_unchecked`]
///
/// Note that unlike a [`dense::DFA`]'s serialization methods, this does
/// not add any initial padding to the returned bytes. Padding isn't
/// required for sparse DFAs since they have no alignment requirements.
///
/// # Example
///
/// This example shows how to serialize and deserialize a DFA:
///
/// ```
/// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input};
///
/// // Compile our original DFA.
/// let original_dfa = DFA::new("foo[0-9]+")?;
///
/// // N.B. We use native endianness here to make the example work, but
/// // using to_bytes_big_endian would work on a big endian target.
/// let buf = original_dfa.to_bytes_native_endian();
/// // Even if buf has initial padding, DFA::from_bytes will automatically
/// // ignore it.
/// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf)?.0;
///
/// let expected = Some(HalfMatch::must(0, 8));
/// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "dfa-build")]
pub fn to_bytes_big_endian(&self) -> Vec<u8> {
self.to_bytes::<wire::BE>()
}
/// Serialize this DFA as raw bytes to a `Vec<u8>` in native endian
/// format.
///
/// The written bytes are guaranteed to be deserialized correctly and
/// without errors in a semver compatible release of this crate by a
/// `DFA`'s deserialization APIs (assuming all other criteria for the
/// deserialization APIs has been satisfied):
///
/// * [`DFA::from_bytes`]
/// * [`DFA::from_bytes_unchecked`]
///
/// Note that unlike a [`dense::DFA`]'s serialization methods, this does
/// not add any initial padding to the returned bytes. Padding isn't
/// required for sparse DFAs since they have no alignment requirements.
///
/// Generally speaking, native endian format should only be used when
/// you know that the target you're compiling the DFA for matches the
/// endianness of the target on which you're compiling DFA. For example,
/// if serialization and deserialization happen in the same process or on
/// the same machine. Otherwise, when serializing a DFA for use in a
/// portable environment, you'll almost certainly want to serialize _both_
/// a little endian and a big endian version and then load the correct one
/// based on the target's configuration.
///
/// # Example
///
/// This example shows how to serialize and deserialize a DFA:
///
/// ```
/// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input};
///
/// // Compile our original DFA.
/// let original_dfa = DFA::new("foo[0-9]+")?;
///
/// let buf = original_dfa.to_bytes_native_endian();
/// // Even if buf has initial padding, DFA::from_bytes will automatically
/// // ignore it.
/// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf)?.0;
///
/// let expected = Some(HalfMatch::must(0, 8));
/// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "dfa-build")]
pub fn to_bytes_native_endian(&self) -> Vec<u8> {
self.to_bytes::<wire::NE>()
}
/// The implementation of the public `to_bytes` serialization methods,
/// which is generic over endianness.
#[cfg(feature = "dfa-build")]
fn to_bytes<E: Endian>(&self) -> Vec<u8> {
let mut buf = vec![0; self.write_to_len()];
// This should always succeed since the only possible serialization
// error is providing a buffer that's too small, but we've ensured that
// `buf` is big enough here.
self.write_to::<E>(&mut buf).unwrap();
buf
}
/// Serialize this DFA as raw bytes to the given slice, in little endian
/// format. Upon success, the total number of bytes written to `dst` is
/// returned.
///
/// The written bytes are guaranteed to be deserialized correctly and
/// without errors in a semver compatible release of this crate by a
/// `DFA`'s deserialization APIs (assuming all other criteria for the
/// deserialization APIs has been satisfied):
///
/// * [`DFA::from_bytes`]
/// * [`DFA::from_bytes_unchecked`]
///
/// # Errors
///
/// This returns an error if the given destination slice is not big enough
/// to contain the full serialized DFA. If an error occurs, then nothing
/// is written to `dst`.
///
/// # Example
///
/// This example shows how to serialize and deserialize a DFA without
/// dynamic memory allocation.
///
/// ```
/// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input};
///
/// // Compile our original DFA.
/// let original_dfa = DFA::new("foo[0-9]+")?;
///
/// // Create a 4KB buffer on the stack to store our serialized DFA.
/// let mut buf = [0u8; 4 * (1<<10)];
/// // N.B. We use native endianness here to make the example work, but
/// // using write_to_little_endian would work on a little endian target.
/// let written = original_dfa.write_to_native_endian(&mut buf)?;
/// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf[..written])?.0;
///
/// let expected = Some(HalfMatch::must(0, 8));
/// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn write_to_little_endian(
&self,
dst: &mut [u8],
) -> Result<usize, SerializeError> {
self.write_to::<wire::LE>(dst)
}
/// Serialize this DFA as raw bytes to the given slice, in big endian
/// format. Upon success, the total number of bytes written to `dst` is
/// returned.
///
/// The written bytes are guaranteed to be deserialized correctly and
/// without errors in a semver compatible release of this crate by a
/// `DFA`'s deserialization APIs (assuming all other criteria for the
/// deserialization APIs has been satisfied):
///
/// * [`DFA::from_bytes`]
/// * [`DFA::from_bytes_unchecked`]
///
/// # Errors
///
/// This returns an error if the given destination slice is not big enough
/// to contain the full serialized DFA. If an error occurs, then nothing
/// is written to `dst`.
///
/// # Example
///
/// This example shows how to serialize and deserialize a DFA without
/// dynamic memory allocation.
///
/// ```
/// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input};
///
/// // Compile our original DFA.
/// let original_dfa = DFA::new("foo[0-9]+")?;
///
/// // Create a 4KB buffer on the stack to store our serialized DFA.
/// let mut buf = [0u8; 4 * (1<<10)];
/// // N.B. We use native endianness here to make the example work, but
/// // using write_to_big_endian would work on a big endian target.
/// let written = original_dfa.write_to_native_endian(&mut buf)?;
/// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf[..written])?.0;
///
/// let expected = Some(HalfMatch::must(0, 8));
/// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn write_to_big_endian(
&self,
dst: &mut [u8],
) -> Result<usize, SerializeError> {
self.write_to::<wire::BE>(dst)
}
/// Serialize this DFA as raw bytes to the given slice, in native endian
/// format. Upon success, the total number of bytes written to `dst` is
/// returned.
///
/// The written bytes are guaranteed to be deserialized correctly and
/// without errors in a semver compatible release of this crate by a
/// `DFA`'s deserialization APIs (assuming all other criteria for the
/// deserialization APIs has been satisfied):
///
/// * [`DFA::from_bytes`]
/// * [`DFA::from_bytes_unchecked`]
///
/// Generally speaking, native endian format should only be used when
/// you know that the target you're compiling the DFA for matches the
/// endianness of the target on which you're compiling DFA. For example,
/// if serialization and deserialization happen in the same process or on
/// the same machine. Otherwise, when serializing a DFA for use in a
/// portable environment, you'll almost certainly want to serialize _both_
/// a little endian and a big endian version and then load the correct one
/// based on the target's configuration.
///
/// # Errors
///
/// This returns an error if the given destination slice is not big enough
/// to contain the full serialized DFA. If an error occurs, then nothing
/// is written to `dst`.
///
/// # Example
///
/// This example shows how to serialize and deserialize a DFA without
/// dynamic memory allocation.
///
/// ```
/// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input};
///
/// // Compile our original DFA.
/// let original_dfa = DFA::new("foo[0-9]+")?;
///
/// // Create a 4KB buffer on the stack to store our serialized DFA.
/// let mut buf = [0u8; 4 * (1<<10)];
/// let written = original_dfa.write_to_native_endian(&mut buf)?;
/// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf[..written])?.0;
///
/// let expected = Some(HalfMatch::must(0, 8));
/// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn write_to_native_endian(
&self,
dst: &mut [u8],
) -> Result<usize, SerializeError> {
self.write_to::<wire::NE>(dst)
}
/// The implementation of the public `write_to` serialization methods,
/// which is generic over endianness.
fn write_to<E: Endian>(
&self,
dst: &mut [u8],
) -> Result<usize, SerializeError> {
let mut nw = 0;
nw += wire::write_label(LABEL, &mut dst[nw..])?;
nw += wire::write_endianness_check::<E>(&mut dst[nw..])?;
nw += wire::write_version::<E>(VERSION, &mut dst[nw..])?;
nw += {
// Currently unused, intended for future flexibility
E::write_u32(0, &mut dst[nw..]);
size_of::<u32>()
};
nw += self.flags.write_to::<E>(&mut dst[nw..])?;
nw += self.tt.write_to::<E>(&mut dst[nw..])?;
nw += self.st.write_to::<E>(&mut dst[nw..])?;
nw += self.special.write_to::<E>(&mut dst[nw..])?;
nw += self.quitset.write_to::<E>(&mut dst[nw..])?;
Ok(nw)
}
/// Return the total number of bytes required to serialize this DFA.
///
/// This is useful for determining the size of the buffer required to pass
/// to one of the serialization routines:
///
/// * [`DFA::write_to_little_endian`]
/// * [`DFA::write_to_big_endian`]
/// * [`DFA::write_to_native_endian`]
///
/// Passing a buffer smaller than the size returned by this method will
/// result in a serialization error.
///
/// # Example
///
/// This example shows how to dynamically allocate enough room to serialize
/// a sparse DFA.
///
/// ```
/// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input};
///
/// // Compile our original DFA.
/// let original_dfa = DFA::new("foo[0-9]+")?;
///
/// let mut buf = vec![0; original_dfa.write_to_len()];
/// let written = original_dfa.write_to_native_endian(&mut buf)?;
/// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf[..written])?.0;
///
/// let expected = Some(HalfMatch::must(0, 8));
/// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn write_to_len(&self) -> usize {
wire::write_label_len(LABEL)
+ wire::write_endianness_check_len()
+ wire::write_version_len()
+ size_of::<u32>() // unused, intended for future flexibility
+ self.flags.write_to_len()
+ self.tt.write_to_len()
+ self.st.write_to_len()
+ self.special.write_to_len()
+ self.quitset.write_to_len()
}
}
impl<'a> DFA<&'a [u8]> {
/// Safely deserialize a sparse DFA with a specific state identifier
/// representation. Upon success, this returns both the deserialized DFA
/// and the number of bytes read from the given slice. Namely, the contents
/// of the slice beyond the DFA are not read.
///
/// Deserializing a DFA using this routine will never allocate heap memory.
/// For safety purposes, the DFA's transitions will be verified such that
/// every transition points to a valid state. If this verification is too
/// costly, then a [`DFA::from_bytes_unchecked`] API is provided, which
/// will always execute in constant time.
///
/// The bytes given must be generated by one of the serialization APIs
/// of a `DFA` using a semver compatible release of this crate. Those
/// include:
///
/// * [`DFA::to_bytes_little_endian`]
/// * [`DFA::to_bytes_big_endian`]
/// * [`DFA::to_bytes_native_endian`]
/// * [`DFA::write_to_little_endian`]
/// * [`DFA::write_to_big_endian`]
/// * [`DFA::write_to_native_endian`]
///
/// The `to_bytes` methods allocate and return a `Vec<u8>` for you. The
/// `write_to` methods do not allocate and write to an existing slice
/// (which may be on the stack). Since deserialization always uses the
/// native endianness of the target platform, the serialization API you use
/// should match the endianness of the target platform. (It's often a good
/// idea to generate serialized DFAs for both forms of endianness and then
/// load the correct one based on endianness.)
///
/// # Errors
///
/// Generally speaking, it's easier to state the conditions in which an
/// error is _not_ returned. All of the following must be true:
///
/// * The bytes given must be produced by one of the serialization APIs
/// on this DFA, as mentioned above.
/// * The endianness of the target platform matches the endianness used to
/// serialized the provided DFA.
///
/// If any of the above are not true, then an error will be returned.
///
/// Note that unlike deserializing a [`dense::DFA`], deserializing a sparse
/// DFA has no alignment requirements. That is, an alignment of `1` is
/// valid.
///
/// # Panics
///
/// This routine will never panic for any input.
///
/// # Example
///
/// This example shows how to serialize a DFA to raw bytes, deserialize it
/// and then use it for searching.
///
/// ```
/// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input};
///
/// let initial = DFA::new("foo[0-9]+")?;
/// let bytes = initial.to_bytes_native_endian();
/// let dfa: DFA<&[u8]> = DFA::from_bytes(&bytes)?.0;
///
/// let expected = Some(HalfMatch::must(0, 8));
/// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: loading a DFA from static memory
///
/// One use case this library supports is the ability to serialize a
/// DFA to disk and then use `include_bytes!` to store it in a compiled
/// Rust program. Those bytes can then be cheaply deserialized into a
/// `DFA` structure at runtime and used for searching without having to
/// re-compile the DFA (which can be quite costly).
///
/// We can show this in two parts. The first part is serializing the DFA to
/// a file:
///
/// ```no_run
/// use regex_automata::dfa::sparse::DFA;
///
/// let dfa = DFA::new("foo[0-9]+")?;
///
/// // Write a big endian serialized version of this DFA to a file.
/// let bytes = dfa.to_bytes_big_endian();
/// std::fs::write("foo.bigendian.dfa", &bytes)?;
///
/// // Do it again, but this time for little endian.
/// let bytes = dfa.to_bytes_little_endian();
/// std::fs::write("foo.littleendian.dfa", &bytes)?;
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// And now the second part is embedding the DFA into the compiled program
/// and deserializing it at runtime on first use. We use conditional
/// compilation to choose the correct endianness. We do not need to employ
/// any special tricks to ensure a proper alignment, since a sparse DFA has
/// no alignment requirements.
///
/// ```no_run
/// use regex_automata::{
/// dfa::{Automaton, sparse::DFA},
/// util::lazy::Lazy,
/// HalfMatch, Input,
/// };
///
/// // This crate provides its own "lazy" type, kind of like
/// // lazy_static! or once_cell::sync::Lazy. But it works in no-alloc
/// // no-std environments and let's us write this using completely
/// // safe code.
/// static RE: Lazy<DFA<&'static [u8]>> = Lazy::new(|| {
/// # const _: &str = stringify! {
/// #[cfg(target_endian = "big")]
/// static BYTES: &[u8] = include_bytes!("foo.bigendian.dfa");
/// #[cfg(target_endian = "little")]
/// static BYTES: &[u8] = include_bytes!("foo.littleendian.dfa");
/// # };
/// # static BYTES: &[u8] = b"";
///
/// let (dfa, _) = DFA::from_bytes(BYTES)
/// .expect("serialized DFA should be valid");
/// dfa
/// });
///
/// let expected = Ok(Some(HalfMatch::must(0, 8)));
/// assert_eq!(expected, RE.try_search_fwd(&Input::new("foo12345")));
/// ```
///
/// Alternatively, consider using
/// [`lazy_static`](https://crates.io/crates/lazy_static)
/// or
/// [`once_cell`](https://crates.io/crates/once_cell),
/// which will guarantee safety for you.
pub fn from_bytes(
slice: &'a [u8],
) -> Result<(DFA<&'a [u8]>, usize), DeserializeError> {
// SAFETY: This is safe because we validate both the sparse transitions
// (by trying to decode every state) and start state ID list below. If
// either validation fails, then we return an error.
let (dfa, nread) = unsafe { DFA::from_bytes_unchecked(slice)? };
let seen = dfa.tt.validate(&dfa.special)?;
dfa.st.validate(&dfa.special, &seen)?;
// N.B. dfa.special doesn't have a way to do unchecked deserialization,
// so it has already been validated.
Ok((dfa, nread))
}
/// Deserialize a DFA with a specific state identifier representation in
/// constant time by omitting the verification of the validity of the
/// sparse transitions.
///
/// This is just like [`DFA::from_bytes`], except it can potentially return
/// a DFA that exhibits undefined behavior if its transitions contains
/// invalid state identifiers.
///
/// This routine is useful if you need to deserialize a DFA cheaply and
/// cannot afford the transition validation performed by `from_bytes`.
///
/// # Safety
///
/// This routine is not safe because it permits callers to provide
/// arbitrary transitions with possibly incorrect state identifiers. While
/// the various serialization routines will never return an incorrect
/// DFA, there is no guarantee that the bytes provided here are correct.
/// While `from_bytes_unchecked` will still do several forms of basic
/// validation, this routine does not check that the transitions themselves
/// are correct. Given an incorrect transition table, it is possible for
/// the search routines to access out-of-bounds memory because of explicit
/// bounds check elision.
///
/// # Example
///
/// ```
/// use regex_automata::{dfa::{Automaton, sparse::DFA}, HalfMatch, Input};
///
/// let initial = DFA::new("foo[0-9]+")?;
/// let bytes = initial.to_bytes_native_endian();
/// // SAFETY: This is guaranteed to be safe since the bytes given come
/// // directly from a compatible serialization routine.
/// let dfa: DFA<&[u8]> = unsafe { DFA::from_bytes_unchecked(&bytes)?.0 };
///
/// let expected = Some(HalfMatch::must(0, 8));
/// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub unsafe fn from_bytes_unchecked(
slice: &'a [u8],
) -> Result<(DFA<&'a [u8]>, usize), DeserializeError> {
let mut nr = 0;
nr += wire::read_label(&slice[nr..], LABEL)?;
nr += wire::read_endianness_check(&slice[nr..])?;
nr += wire::read_version(&slice[nr..], VERSION)?;
let _unused = wire::try_read_u32(&slice[nr..], "unused space")?;
nr += size_of::<u32>();
let (flags, nread) = Flags::from_bytes(&slice[nr..])?;
nr += nread;
let (tt, nread) = Transitions::from_bytes_unchecked(&slice[nr..])?;
nr += nread;
let (st, nread) = StartTable::from_bytes_unchecked(&slice[nr..])?;
nr += nread;
let (special, nread) = Special::from_bytes(&slice[nr..])?;
nr += nread;
if special.max.as_usize() >= tt.sparse().len() {
return Err(DeserializeError::generic(
"max should not be greater than or equal to sparse bytes",
));
}
let (quitset, nread) = ByteSet::from_bytes(&slice[nr..])?;
nr += nread;
// Prefilters don't support serialization, so they're always absent.
let pre = None;
Ok((DFA { tt, st, special, pre, quitset, flags }, nr))
}
}
impl<T: AsRef<[u8]>> fmt::Debug for DFA<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
writeln!(f, "sparse::DFA(")?;
for state in self.tt.states() {
fmt_state_indicator(f, self, state.id())?;
writeln!(f, "{:06?}: {:?}", state.id().as_usize(), state)?;
}
writeln!(f, "")?;
for (i, (start_id, anchored, sty)) in self.st.iter().enumerate() {
if i % self.st.stride == 0 {
match anchored {
Anchored::No => writeln!(f, "START-GROUP(unanchored)")?,
Anchored::Yes => writeln!(f, "START-GROUP(anchored)")?,
Anchored::Pattern(pid) => writeln!(
f,
"START_GROUP(pattern: {:?})",
pid.as_usize()
)?,
}
}
writeln!(f, " {:?} => {:06?}", sty, start_id.as_usize())?;
}
writeln!(f, "state length: {:?}", self.tt.state_len)?;
writeln!(f, "pattern length: {:?}", self.pattern_len())?;
writeln!(f, "flags: {:?}", self.flags)?;
writeln!(f, ")")?;
Ok(())
}
}
// SAFETY: We assert that our implementation of each method is correct.
unsafe impl<T: AsRef<[u8]>> Automaton for DFA<T> {
#[inline]
fn is_special_state(&self, id: StateID) -> bool {
self.special.is_special_state(id)
}
#[inline]
fn is_dead_state(&self, id: StateID) -> bool {
self.special.is_dead_state(id)
}
#[inline]
fn is_quit_state(&self, id: StateID) -> bool {
self.special.is_quit_state(id)
}
#[inline]
fn is_match_state(&self, id: StateID) -> bool {
self.special.is_match_state(id)
}
#[inline]
fn is_start_state(&self, id: StateID) -> bool {
self.special.is_start_state(id)
}
#[inline]
fn is_accel_state(&self, id: StateID) -> bool {
self.special.is_accel_state(id)
}
// This is marked as inline to help dramatically boost sparse searching,
// which decodes each state it enters to follow the next transition.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn next_state(&self, current: StateID, input: u8) -> StateID {
let input = self.tt.classes.get(input);
self.tt.state(current).next(input)
}
#[inline]
unsafe fn next_state_unchecked(
&self,
current: StateID,
input: u8,
) -> StateID {
self.next_state(current, input)
}
#[inline]
fn next_eoi_state(&self, current: StateID) -> StateID {
self.tt.state(current).next_eoi()
}
#[inline]
fn pattern_len(&self) -> usize {
self.tt.pattern_len
}
#[inline]
fn match_len(&self, id: StateID) -> usize {
self.tt.state(id).pattern_len()
}
#[inline]
fn match_pattern(&self, id: StateID, match_index: usize) -> PatternID {
// This is an optimization for the very common case of a DFA with a
// single pattern. This conditional avoids a somewhat more costly path
// that finds the pattern ID from the state machine, which requires
// a bit of slicing/pointer-chasing. This optimization tends to only
// matter when matches are frequent.
if self.tt.pattern_len == 1 {
return PatternID::ZERO;
}
self.tt.state(id).pattern_id(match_index)
}
#[inline]
fn has_empty(&self) -> bool {
self.flags.has_empty
}
#[inline]
fn is_utf8(&self) -> bool {
self.flags.is_utf8
}
#[inline]
fn is_always_start_anchored(&self) -> bool {
self.flags.is_always_start_anchored
}
#[inline]
fn start_state(
&self,
config: &start::Config,
) -> Result<StateID, StartError> {
let anchored = config.get_anchored();
let start = match config.get_look_behind() {
None => Start::Text,
Some(byte) => {
if !self.quitset.is_empty() && self.quitset.contains(byte) {
return Err(StartError::quit(byte));
}
self.st.start_map.get(byte)
}
};
self.st.start(anchored, start)
}
#[inline]
fn universal_start_state(&self, mode: Anchored) -> Option<StateID> {
match mode {
Anchored::No => self.st.universal_start_unanchored,
Anchored::Yes => self.st.universal_start_anchored,
Anchored::Pattern(_) => None,
}
}
#[inline]
fn accelerator(&self, id: StateID) -> &[u8] {
self.tt.state(id).accelerator()
}
#[inline]
fn get_prefilter(&self) -> Option<&Prefilter> {
self.pre.as_ref()
}
}
/// The transition table portion of a sparse DFA.
///
/// The transition table is the core part of the DFA in that it describes how
/// to move from one state to another based on the input sequence observed.
///
/// Unlike a typical dense table based DFA, states in a sparse transition
/// table have variable size. That is, states with more transitions use more
/// space than states with fewer transitions. This means that finding the next
/// transition takes more work than with a dense DFA, but also typically uses
/// much less space.
#[derive(Clone)]
struct Transitions<T> {
/// The raw encoding of each state in this DFA.
///
/// Each state has the following information:
///
/// * A set of transitions to subsequent states. Transitions to the dead
/// state are omitted.
/// * If the state can be accelerated, then any additional accelerator
/// information.
/// * If the state is a match state, then the state contains all pattern
/// IDs that match when in that state.
///
/// To decode a state, use Transitions::state.
///
/// In practice, T is either Vec<u8> or &[u8].
sparse: T,
/// A set of equivalence classes, where a single equivalence class
/// represents a set of bytes that never discriminate between a match
/// and a non-match in the DFA. Each equivalence class corresponds to a
/// single character in this DFA's alphabet, where the maximum number of
/// characters is 257 (each possible value of a byte plus the special
/// EOI transition). Consequently, the number of equivalence classes
/// corresponds to the number of transitions for each DFA state. Note
/// though that the *space* used by each DFA state in the transition table
/// may be larger. The total space used by each DFA state is known as the
/// stride and is documented above.
///
/// The only time the number of equivalence classes is fewer than 257 is
/// if the DFA's kind uses byte classes which is the default. Equivalence
/// classes should generally only be disabled when debugging, so that
/// the transitions themselves aren't obscured. Disabling them has no
/// other benefit, since the equivalence class map is always used while
/// searching. In the vast majority of cases, the number of equivalence
/// classes is substantially smaller than 257, particularly when large
/// Unicode classes aren't used.
///
/// N.B. Equivalence classes aren't particularly useful in a sparse DFA
/// in the current implementation, since equivalence classes generally tend
/// to correspond to continuous ranges of bytes that map to the same
/// transition. So in a sparse DFA, equivalence classes don't really lead
/// to a space savings. In the future, it would be good to try and remove
/// them from sparse DFAs entirely, but requires a bit of work since sparse
/// DFAs are built from dense DFAs, which are in turn built on top of
/// equivalence classes.
classes: ByteClasses,
/// The total number of states in this DFA. Note that a DFA always has at
/// least one state---the dead state---even the empty DFA. In particular,
/// the dead state always has ID 0 and is correspondingly always the first
/// state. The dead state is never a match state.
state_len: usize,
/// The total number of unique patterns represented by these match states.
pattern_len: usize,
}
impl<'a> Transitions<&'a [u8]> {
unsafe fn from_bytes_unchecked(
mut slice: &'a [u8],
) -> Result<(Transitions<&'a [u8]>, usize), DeserializeError> {
let slice_start = slice.as_ptr().as_usize();
let (state_len, nr) =
wire::try_read_u32_as_usize(&slice, "state length")?;
slice = &slice[nr..];
let (pattern_len, nr) =
wire::try_read_u32_as_usize(&slice, "pattern length")?;
slice = &slice[nr..];
let (classes, nr) = ByteClasses::from_bytes(&slice)?;
slice = &slice[nr..];
let (len, nr) =
wire::try_read_u32_as_usize(&slice, "sparse transitions length")?;
slice = &slice[nr..];
wire::check_slice_len(slice, len, "sparse states byte length")?;
let sparse = &slice[..len];
slice = &slice[len..];
let trans = Transitions { sparse, classes, state_len, pattern_len };
Ok((trans, slice.as_ptr().as_usize() - slice_start))
}
}
impl<T: AsRef<[u8]>> Transitions<T> {
/// Writes a serialized form of this transition table to the buffer given.
/// If the buffer is too small, then an error is returned. To determine
/// how big the buffer must be, use `write_to_len`.
fn write_to<E: Endian>(
&self,
mut dst: &mut [u8],
) -> Result<usize, SerializeError> {
let nwrite = self.write_to_len();
if dst.len() < nwrite {
return Err(SerializeError::buffer_too_small(
"sparse transition table",
));
}
dst = &mut dst[..nwrite];
// write state length
E::write_u32(u32::try_from(self.state_len).unwrap(), dst);
dst = &mut dst[size_of::<u32>()..];
// write pattern length
E::write_u32(u32::try_from(self.pattern_len).unwrap(), dst);
dst = &mut dst[size_of::<u32>()..];
// write byte class map
let n = self.classes.write_to(dst)?;
dst = &mut dst[n..];
// write number of bytes in sparse transitions
E::write_u32(u32::try_from(self.sparse().len()).unwrap(), dst);
dst = &mut dst[size_of::<u32>()..];
// write actual transitions
let mut id = DEAD;
while id.as_usize() < self.sparse().len() {
let state = self.state(id);
let n = state.write_to::<E>(&mut dst)?;
dst = &mut dst[n..];
// The next ID is the offset immediately following `state`.
id = StateID::new(id.as_usize() + state.write_to_len()).unwrap();
}
Ok(nwrite)
}
/// Returns the number of bytes the serialized form of this transition
/// table will use.
fn write_to_len(&self) -> usize {
size_of::<u32>() // state length
+ size_of::<u32>() // pattern length
+ self.classes.write_to_len()
+ size_of::<u32>() // sparse transitions length
+ self.sparse().len()
}
/// Validates that every state ID in this transition table is valid.
///
/// That is, every state ID can be used to correctly index a state in this
/// table.
fn validate(&self, sp: &Special) -> Result<Seen, DeserializeError> {
let mut verified = Seen::new();
// We need to make sure that we decode the correct number of states.
// Otherwise, an empty set of transitions would validate even if the
// recorded state length is non-empty.
let mut len = 0;
// We can't use the self.states() iterator because it assumes the state
// encodings are valid. It could panic if they aren't.
let mut id = DEAD;
while id.as_usize() < self.sparse().len() {
// Before we even decode the state, we check that the ID itself
// is well formed. That is, if it's a special state then it must
// actually be a quit, dead, accel, match or start state.
if sp.is_special_state(id) {
let is_actually_special = sp.is_dead_state(id)
|| sp.is_quit_state(id)
|| sp.is_match_state(id)
|| sp.is_start_state(id)
|| sp.is_accel_state(id);
if !is_actually_special {
// This is kind of a cryptic error message...
return Err(DeserializeError::generic(
"found sparse state tagged as special but \
wasn't actually special",
));
}
}
let state = self.try_state(sp, id)?;
verified.insert(id);
// The next ID should be the offset immediately following `state`.
id = StateID::new(wire::add(
id.as_usize(),
state.write_to_len(),
"next state ID offset",
)?)
.map_err(|err| {
DeserializeError::state_id_error(err, "next state ID offset")
})?;
len += 1;
}
// Now that we've checked that all top-level states are correct and
// importantly, collected a set of valid state IDs, we have all the
// information we need to check that all transitions are correct too.
//
// Note that we can't use `valid_ids` to iterate because it will
// be empty in no-std no-alloc contexts. (And yes, that means our
// verification isn't quite as good.) We can use `self.states()`
// though at least, since we know that all states can at least be
// decoded and traversed correctly.
for state in self.states() {
// Check that all transitions in this state are correct.
for i in 0..state.ntrans {
let to = state.next_at(i);
// For no-alloc, we just check that the state can decode. It is
// technically possible that the state ID could still point to
// a non-existent state even if it decodes (fuzzing proved this
// to be true), but it shouldn't result in any memory unsafety
// or panics in non-debug mode.
#[cfg(not(feature = "alloc"))]
{
let _ = self.try_state(sp, to)?;
}
#[cfg(feature = "alloc")]
{
if !verified.contains(&to) {
return Err(DeserializeError::generic(
"found transition that points to a \
non-existent state",
));
}
}
}
}
if len != self.state_len {
return Err(DeserializeError::generic(
"mismatching sparse state length",
));
}
Ok(verified)
}
/// Converts these transitions to a borrowed value.
fn as_ref(&self) -> Transitions<&'_ [u8]> {
Transitions {
sparse: self.sparse(),
classes: self.classes.clone(),
state_len: self.state_len,
pattern_len: self.pattern_len,
}
}
/// Converts these transitions to an owned value.
#[cfg(feature = "alloc")]
fn to_owned(&self) -> Transitions<alloc::vec::Vec<u8>> {
Transitions {
sparse: self.sparse().to_vec(),
classes: self.classes.clone(),
state_len: self.state_len,
pattern_len: self.pattern_len,
}
}
/// Return a convenient representation of the given state.
///
/// This panics if the state is invalid.
///
/// This is marked as inline to help dramatically boost sparse searching,
/// which decodes each state it enters to follow the next transition. Other
/// functions involved are also inlined, which should hopefully eliminate
/// a lot of the extraneous decoding that is never needed just to follow
/// the next transition.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn state(&self, id: StateID) -> State<'_> {
let mut state = &self.sparse()[id.as_usize()..];
let mut ntrans = wire::read_u16(&state).as_usize();
let is_match = (1 << 15) & ntrans != 0;
ntrans &= !(1 << 15);
state = &state[2..];
let (input_ranges, state) = state.split_at(ntrans * 2);
let (next, state) = state.split_at(ntrans * StateID::SIZE);
let (pattern_ids, state) = if is_match {
let npats = wire::read_u32(&state).as_usize();
state[4..].split_at(npats * 4)
} else {
(&[][..], state)
};
let accel_len = usize::from(state[0]);
let accel = &state[1..accel_len + 1];
State { id, is_match, ntrans, input_ranges, next, pattern_ids, accel }
}
/// Like `state`, but will return an error if the state encoding is
/// invalid. This is useful for verifying states after deserialization,
/// which is required for a safe deserialization API.
///
/// Note that this only verifies that this state is decodable and that
/// all of its data is consistent. It does not verify that its state ID
/// transitions point to valid states themselves, nor does it verify that
/// every pattern ID is valid.
fn try_state(
&self,
sp: &Special,
id: StateID,
) -> Result<State<'_>, DeserializeError> {
if id.as_usize() > self.sparse().len() {
return Err(DeserializeError::generic(
"invalid caller provided sparse state ID",
));
}
let mut state = &self.sparse()[id.as_usize()..];
// Encoding format starts with a u16 that stores the total number of
// transitions in this state.
let (mut ntrans, _) =
wire::try_read_u16_as_usize(state, "state transition length")?;
let is_match = ((1 << 15) & ntrans) != 0;
ntrans &= !(1 << 15);
state = &state[2..];
if ntrans > 257 || ntrans == 0 {
return Err(DeserializeError::generic(
"invalid transition length",
));
}
if is_match && !sp.is_match_state(id) {
return Err(DeserializeError::generic(
"state marked as match but not in match ID range",
));
} else if !is_match && sp.is_match_state(id) {
return Err(DeserializeError::generic(
"state in match ID range but not marked as match state",
));
}
// Each transition has two pieces: an inclusive range of bytes on which
// it is defined, and the state ID that those bytes transition to. The
// pairs come first, followed by a corresponding sequence of state IDs.
let input_ranges_len = ntrans.checked_mul(2).unwrap();
wire::check_slice_len(state, input_ranges_len, "sparse byte pairs")?;
let (input_ranges, state) = state.split_at(input_ranges_len);
// Every range should be of the form A-B, where A<=B.
for pair in input_ranges.chunks(2) {
let (start, end) = (pair[0], pair[1]);
if start > end {
return Err(DeserializeError::generic("invalid input range"));
}
}
// And now extract the corresponding sequence of state IDs. We leave
// this sequence as a &[u8] instead of a &[S] because sparse DFAs do
// not have any alignment requirements.
let next_len = ntrans
.checked_mul(self.id_len())
.expect("state size * #trans should always fit in a usize");
wire::check_slice_len(state, next_len, "sparse trans state IDs")?;
let (next, state) = state.split_at(next_len);
// We can at least verify that every state ID is in bounds.
for idbytes in next.chunks(self.id_len()) {
let (id, _) =
wire::read_state_id(idbytes, "sparse state ID in try_state")?;
wire::check_slice_len(
self.sparse(),
id.as_usize(),
"invalid sparse state ID",
)?;
}
// If this is a match state, then read the pattern IDs for this state.
// Pattern IDs is a u32-length prefixed sequence of native endian
// encoded 32-bit integers.
let (pattern_ids, state) = if is_match {
let (npats, nr) =
wire::try_read_u32_as_usize(state, "pattern ID length")?;
let state = &state[nr..];
if npats == 0 {
return Err(DeserializeError::generic(
"state marked as a match, but pattern length is zero",
));
}
let pattern_ids_len =
wire::mul(npats, 4, "sparse pattern ID byte length")?;
wire::check_slice_len(
state,
pattern_ids_len,
"sparse pattern IDs",
)?;
let (pattern_ids, state) = state.split_at(pattern_ids_len);
for patbytes in pattern_ids.chunks(PatternID::SIZE) {
wire::read_pattern_id(
patbytes,
"sparse pattern ID in try_state",
)?;
}
(pattern_ids, state)
} else {
(&[][..], state)
};
if is_match && pattern_ids.is_empty() {
return Err(DeserializeError::generic(
"state marked as a match, but has no pattern IDs",
));
}
if sp.is_match_state(id) && pattern_ids.is_empty() {
return Err(DeserializeError::generic(
"state marked special as a match, but has no pattern IDs",
));
}
if sp.is_match_state(id) != is_match {
return Err(DeserializeError::generic(
"whether state is a match or not is inconsistent",
));
}
// Now read this state's accelerator info. The first byte is the length
// of the accelerator, which is typically 0 (for no acceleration) but
// is no bigger than 3. The length indicates the number of bytes that
// follow, where each byte corresponds to a transition out of this
// state.
if state.is_empty() {
return Err(DeserializeError::generic("no accelerator length"));
}
let (accel_len, state) = (usize::from(state[0]), &state[1..]);
if accel_len > 3 {
return Err(DeserializeError::generic(
"sparse invalid accelerator length",
));
} else if accel_len == 0 && sp.is_accel_state(id) {
return Err(DeserializeError::generic(
"got no accelerators in state, but in accelerator ID range",
));
} else if accel_len > 0 && !sp.is_accel_state(id) {
return Err(DeserializeError::generic(
"state in accelerator ID range, but has no accelerators",
));
}
wire::check_slice_len(
state,
accel_len,
"sparse corrupt accelerator length",
)?;
let (accel, _) = (&state[..accel_len], &state[accel_len..]);
let state = State {
id,
is_match,
ntrans,
input_ranges,
next,
pattern_ids,
accel,
};
if sp.is_quit_state(state.next_at(state.ntrans - 1)) {
return Err(DeserializeError::generic(
"state with EOI transition to quit state is illegal",
));
}
Ok(state)
}
/// Return an iterator over all of the states in this DFA.
///
/// The iterator returned yields tuples, where the first element is the
/// state ID and the second element is the state itself.
fn states(&self) -> StateIter<'_, T> {
StateIter { trans: self, id: DEAD.as_usize() }
}
/// Returns the sparse transitions as raw bytes.
fn sparse(&self) -> &[u8] {
self.sparse.as_ref()
}
/// Returns the number of bytes represented by a single state ID.
fn id_len(&self) -> usize {
StateID::SIZE
}
/// Return the memory usage, in bytes, of these transitions.
///
/// This does not include the size of a `Transitions` value itself.
fn memory_usage(&self) -> usize {
self.sparse().len()
}
}
#[cfg(feature = "dfa-build")]
impl<T: AsMut<[u8]>> Transitions<T> {
/// Return a convenient mutable representation of the given state.
/// This panics if the state is invalid.
fn state_mut(&mut self, id: StateID) -> StateMut<'_> {
let mut state = &mut self.sparse_mut()[id.as_usize()..];
let mut ntrans = wire::read_u16(&state).as_usize();
let is_match = (1 << 15) & ntrans != 0;
ntrans &= !(1 << 15);
state = &mut state[2..];
let (input_ranges, state) = state.split_at_mut(ntrans * 2);
let (next, state) = state.split_at_mut(ntrans * StateID::SIZE);
let (pattern_ids, state) = if is_match {
let npats = wire::read_u32(&state).as_usize();
state[4..].split_at_mut(npats * 4)
} else {
(&mut [][..], state)
};
let accel_len = usize::from(state[0]);
let accel = &mut state[1..accel_len + 1];
StateMut {
id,
is_match,
ntrans,
input_ranges,
next,
pattern_ids,
accel,
}
}
/// Returns the sparse transitions as raw mutable bytes.
fn sparse_mut(&mut self) -> &mut [u8] {
self.sparse.as_mut()
}
}
/// The set of all possible starting states in a DFA.
///
/// See the eponymous type in the `dense` module for more details. This type
/// is very similar to `dense::StartTable`, except that its underlying
/// representation is `&[u8]` instead of `&[S]`. (The latter would require
/// sparse DFAs to be aligned, which is explicitly something we do not require
/// because we don't really need it.)
#[derive(Clone)]
struct StartTable<T> {
/// The initial start state IDs as a contiguous table of native endian
/// encoded integers, represented by `S`.
///
/// In practice, T is either Vec<u8> or &[u8] and has no alignment
/// requirements.
///
/// The first `2 * stride` (currently always 8) entries always correspond
/// to the starts states for the entire DFA, with the first 4 entries being
/// for unanchored searches and the second 4 entries being for anchored
/// searches. To keep things simple, we always use 8 entries even if the
/// `StartKind` is not both.
///
/// After that, there are `stride * patterns` state IDs, where `patterns`
/// may be zero in the case of a DFA with no patterns or in the case where
/// the DFA was built without enabling starting states for each pattern.
table: T,
/// The starting state configuration supported. When 'both', both
/// unanchored and anchored searches work. When 'unanchored', anchored
/// searches panic. When 'anchored', unanchored searches panic.
kind: StartKind,
/// The start state configuration for every possible byte.
start_map: StartByteMap,
/// The number of starting state IDs per pattern.
stride: usize,
/// The total number of patterns for which starting states are encoded.
/// This is `None` for DFAs that were built without start states for each
/// pattern. Thus, one cannot use this field to say how many patterns
/// are in the DFA in all cases. It is specific to how many patterns are
/// represented in this start table.
pattern_len: Option<usize>,
/// The universal starting state for unanchored searches. This is only
/// present when the DFA supports unanchored searches and when all starting
/// state IDs for an unanchored search are equivalent.
universal_start_unanchored: Option<StateID>,
/// The universal starting state for anchored searches. This is only
/// present when the DFA supports anchored searches and when all starting
/// state IDs for an anchored search are equivalent.
universal_start_anchored: Option<StateID>,
}
#[cfg(feature = "dfa-build")]
impl StartTable<Vec<u8>> {
fn new<T: AsRef<[u32]>>(
dfa: &dense::DFA<T>,
pattern_len: Option<usize>,
) -> StartTable<Vec<u8>> {
let stride = Start::len();
// This is OK since the only way we're here is if a dense DFA could be
// constructed successfully, which uses the same space.
let len = stride
.checked_mul(pattern_len.unwrap_or(0))
.unwrap()
.checked_add(stride.checked_mul(2).unwrap())
.unwrap()
.checked_mul(StateID::SIZE)
.unwrap();
StartTable {
table: vec![0; len],
kind: dfa.start_kind(),
start_map: dfa.start_map().clone(),
stride,
pattern_len,
universal_start_unanchored: dfa
.universal_start_state(Anchored::No),
universal_start_anchored: dfa.universal_start_state(Anchored::Yes),
}
}
fn from_dense_dfa<T: AsRef<[u32]>>(
dfa: &dense::DFA<T>,
remap: &[StateID],
) -> Result<StartTable<Vec<u8>>, BuildError> {
// Unless the DFA has start states compiled for each pattern, then
// as far as the starting state table is concerned, there are zero
// patterns to account for. It will instead only store starting states
// for the entire DFA.
let start_pattern_len = if dfa.starts_for_each_pattern() {
Some(dfa.pattern_len())
} else {
None
};
let mut sl = StartTable::new(dfa, start_pattern_len);
for (old_start_id, anchored, sty) in dfa.starts() {
let new_start_id = remap[dfa.to_index(old_start_id)];
sl.set_start(anchored, sty, new_start_id);
}
Ok(sl)
}
}
impl<'a> StartTable<&'a [u8]> {
unsafe fn from_bytes_unchecked(
mut slice: &'a [u8],
) -> Result<(StartTable<&'a [u8]>, usize), DeserializeError> {
let slice_start = slice.as_ptr().as_usize();
let (kind, nr) = StartKind::from_bytes(slice)?;
slice = &slice[nr..];
let (start_map, nr) = StartByteMap::from_bytes(slice)?;
slice = &slice[nr..];
let (stride, nr) =
wire::try_read_u32_as_usize(slice, "sparse start table stride")?;
slice = &slice[nr..];
if stride != Start::len() {
return Err(DeserializeError::generic(
"invalid sparse starting table stride",
));
}
let (maybe_pattern_len, nr) =
wire::try_read_u32_as_usize(slice, "sparse start table patterns")?;
slice = &slice[nr..];
let pattern_len = if maybe_pattern_len.as_u32() == u32::MAX {
None
} else {
Some(maybe_pattern_len)
};
if pattern_len.map_or(false, |len| len > PatternID::LIMIT) {
return Err(DeserializeError::generic(
"sparse invalid number of patterns",
));
}
let (universal_unanchored, nr) =
wire::try_read_u32(slice, "universal unanchored start")?;
slice = &slice[nr..];
let universal_start_unanchored = if universal_unanchored == u32::MAX {
None
} else {
Some(StateID::try_from(universal_unanchored).map_err(|e| {
DeserializeError::state_id_error(
e,
"universal unanchored start",
)
})?)
};
let (universal_anchored, nr) =
wire::try_read_u32(slice, "universal anchored start")?;
slice = &slice[nr..];
let universal_start_anchored = if universal_anchored == u32::MAX {
None
} else {
Some(StateID::try_from(universal_anchored).map_err(|e| {
DeserializeError::state_id_error(e, "universal anchored start")
})?)
};
let pattern_table_size = wire::mul(
stride,
pattern_len.unwrap_or(0),
"sparse invalid pattern length",
)?;
// Our start states always start with a single stride of start states
// for the entire automaton which permit it to match any pattern. What
// follows it are an optional set of start states for each pattern.
let start_state_len = wire::add(
wire::mul(2, stride, "start state stride too big")?,
pattern_table_size,
"sparse invalid 'any' pattern starts size",
)?;
let table_bytes_len = wire::mul(
start_state_len,
StateID::SIZE,
"sparse pattern table bytes length",
)?;
wire::check_slice_len(
slice,
table_bytes_len,
"sparse start ID table",
)?;
let table = &slice[..table_bytes_len];
slice = &slice[table_bytes_len..];
let sl = StartTable {
table,
kind,
start_map,
stride,
pattern_len,
universal_start_unanchored,
universal_start_anchored,
};
Ok((sl, slice.as_ptr().as_usize() - slice_start))
}
}
impl<T: AsRef<[u8]>> StartTable<T> {
fn write_to<E: Endian>(
&self,
mut dst: &mut [u8],
) -> Result<usize, SerializeError> {
let nwrite = self.write_to_len();
if dst.len() < nwrite {
return Err(SerializeError::buffer_too_small(
"sparse starting table ids",
));
}
dst = &mut dst[..nwrite];
// write start kind
let nw = self.kind.write_to::<E>(dst)?;
dst = &mut dst[nw..];
// write start byte map
let nw = self.start_map.write_to(dst)?;
dst = &mut dst[nw..];
// write stride
E::write_u32(u32::try_from(self.stride).unwrap(), dst);
dst = &mut dst[size_of::<u32>()..];
// write pattern length
E::write_u32(
u32::try_from(self.pattern_len.unwrap_or(0xFFFF_FFFF)).unwrap(),
dst,
);
dst = &mut dst[size_of::<u32>()..];
// write universal start unanchored state id, u32::MAX if absent
E::write_u32(
self.universal_start_unanchored
.map_or(u32::MAX, |sid| sid.as_u32()),
dst,
);
dst = &mut dst[size_of::<u32>()..];
// write universal start anchored state id, u32::MAX if absent
E::write_u32(
self.universal_start_anchored.map_or(u32::MAX, |sid| sid.as_u32()),
dst,
);
dst = &mut dst[size_of::<u32>()..];
// write start IDs
for (sid, _, _) in self.iter() {
E::write_u32(sid.as_u32(), dst);
dst = &mut dst[StateID::SIZE..];
}
Ok(nwrite)
}
/// Returns the number of bytes the serialized form of this transition
/// table will use.
fn write_to_len(&self) -> usize {
self.kind.write_to_len()
+ self.start_map.write_to_len()
+ size_of::<u32>() // stride
+ size_of::<u32>() // # patterns
+ size_of::<u32>() // universal unanchored start
+ size_of::<u32>() // universal anchored start
+ self.table().len()
}
/// Validates that every starting state ID in this table is valid.
///
/// That is, every starting state ID can be used to correctly decode a
/// state in the DFA's sparse transitions.
fn validate(
&self,
sp: &Special,
seen: &Seen,
) -> Result<(), DeserializeError> {
for (id, _, _) in self.iter() {
if !seen.contains(&id) {
return Err(DeserializeError::generic(
"found invalid start state ID",
));
}
if sp.is_match_state(id) {
return Err(DeserializeError::generic(
"start states cannot be match states",
));
}
}
Ok(())
}
/// Converts this start list to a borrowed value.
fn as_ref(&self) -> StartTable<&'_ [u8]> {
StartTable {
table: self.table(),
kind: self.kind,
start_map: self.start_map.clone(),
stride: self.stride,
pattern_len: self.pattern_len,
universal_start_unanchored: self.universal_start_unanchored,
universal_start_anchored: self.universal_start_anchored,
}
}
/// Converts this start list to an owned value.
#[cfg(feature = "alloc")]
fn to_owned(&self) -> StartTable<alloc::vec::Vec<u8>> {
StartTable {
table: self.table().to_vec(),
kind: self.kind,
start_map: self.start_map.clone(),
stride: self.stride,
pattern_len: self.pattern_len,
universal_start_unanchored: self.universal_start_unanchored,
universal_start_anchored: self.universal_start_anchored,
}
}
/// Return the start state for the given index and pattern ID. If the
/// pattern ID is None, then the corresponding start state for the entire
/// DFA is returned. If the pattern ID is not None, then the corresponding
/// starting state for the given pattern is returned. If this start table
/// does not have individual starting states for each pattern, then this
/// panics.
fn start(
&self,
anchored: Anchored,
start: Start,
) -> Result<StateID, StartError> {
let start_index = start.as_usize();
let index = match anchored {
Anchored::No => {
if !self.kind.has_unanchored() {
return Err(StartError::unsupported_anchored(anchored));
}
start_index
}
Anchored::Yes => {
if !self.kind.has_anchored() {
return Err(StartError::unsupported_anchored(anchored));
}
self.stride + start_index
}
Anchored::Pattern(pid) => {
let len = match self.pattern_len {
None => {
return Err(StartError::unsupported_anchored(anchored))
}
Some(len) => len,
};
if pid.as_usize() >= len {
return Ok(DEAD);
}
(2 * self.stride)
+ (self.stride * pid.as_usize())
+ start_index
}
};
let start = index * StateID::SIZE;
// This OK since we're allowed to assume that the start table contains
// valid StateIDs.
Ok(wire::read_state_id_unchecked(&self.table()[start..]).0)
}
/// Return an iterator over all start IDs in this table.
fn iter(&self) -> StartStateIter<'_, T> {
StartStateIter { st: self, i: 0 }
}
/// Returns the total number of start state IDs in this table.
fn len(&self) -> usize {
self.table().len() / StateID::SIZE
}
/// Returns the table as a raw slice of bytes.
fn table(&self) -> &[u8] {
self.table.as_ref()
}
/// Return the memory usage, in bytes, of this start list.
///
/// This does not include the size of a `StartTable` value itself.
fn memory_usage(&self) -> usize {
self.table().len()
}
}
#[cfg(feature = "dfa-build")]
impl<T: AsMut<[u8]>> StartTable<T> {
/// Set the start state for the given index and pattern.
///
/// If the pattern ID or state ID are not valid, then this will panic.
fn set_start(&mut self, anchored: Anchored, start: Start, id: StateID) {
let start_index = start.as_usize();
let index = match anchored {
Anchored::No => start_index,
Anchored::Yes => self.stride + start_index,
Anchored::Pattern(pid) => {
let pid = pid.as_usize();
let len = self
.pattern_len
.expect("start states for each pattern enabled");
assert!(pid < len, "invalid pattern ID {:?}", pid);
self.stride
.checked_mul(pid)
.unwrap()
.checked_add(self.stride.checked_mul(2).unwrap())
.unwrap()
.checked_add(start_index)
.unwrap()
}
};
let start = index * StateID::SIZE;
let end = start + StateID::SIZE;
wire::write_state_id::<wire::NE>(
id,
&mut self.table.as_mut()[start..end],
);
}
}
/// An iterator over all state state IDs in a sparse DFA.
struct StartStateIter<'a, T> {
st: &'a StartTable<T>,
i: usize,
}
impl<'a, T: AsRef<[u8]>> Iterator for StartStateIter<'a, T> {
type Item = (StateID, Anchored, Start);
fn next(&mut self) -> Option<(StateID, Anchored, Start)> {
let i = self.i;
if i >= self.st.len() {
return None;
}
self.i += 1;
// This unwrap is okay since the stride of any DFA must always match
// the number of start state types.
let start_type = Start::from_usize(i % self.st.stride).unwrap();
let anchored = if i < self.st.stride {
Anchored::No
} else if i < (2 * self.st.stride) {
Anchored::Yes
} else {
let pid = (i - (2 * self.st.stride)) / self.st.stride;
Anchored::Pattern(PatternID::new(pid).unwrap())
};
let start = i * StateID::SIZE;
let end = start + StateID::SIZE;
let bytes = self.st.table()[start..end].try_into().unwrap();
// This is OK since we're allowed to assume that any IDs in this start
// table are correct and valid for this DFA.
let id = StateID::from_ne_bytes_unchecked(bytes);
Some((id, anchored, start_type))
}
}
impl<'a, T> fmt::Debug for StartStateIter<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("StartStateIter").field("i", &self.i).finish()
}
}
/// An iterator over all states in a sparse DFA.
///
/// This iterator yields tuples, where the first element is the state ID and
/// the second element is the state itself.
struct StateIter<'a, T> {
trans: &'a Transitions<T>,
id: usize,
}
impl<'a, T: AsRef<[u8]>> Iterator for StateIter<'a, T> {
type Item = State<'a>;
fn next(&mut self) -> Option<State<'a>> {
if self.id >= self.trans.sparse().len() {
return None;
}
let state = self.trans.state(StateID::new_unchecked(self.id));
self.id = self.id + state.write_to_len();
Some(state)
}
}
impl<'a, T> fmt::Debug for StateIter<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("StateIter").field("id", &self.id).finish()
}
}
/// A representation of a sparse DFA state that can be cheaply materialized
/// from a state identifier.
#[derive(Clone)]
struct State<'a> {
/// The identifier of this state.
id: StateID,
/// Whether this is a match state or not.
is_match: bool,
/// The number of transitions in this state.
ntrans: usize,
/// Pairs of input ranges, where there is one pair for each transition.
/// Each pair specifies an inclusive start and end byte range for the
/// corresponding transition.
input_ranges: &'a [u8],
/// Transitions to the next state. This slice contains native endian
/// encoded state identifiers, with `S` as the representation. Thus, there
/// are `ntrans * size_of::<S>()` bytes in this slice.
next: &'a [u8],
/// If this is a match state, then this contains the pattern IDs that match
/// when the DFA is in this state.
///
/// This is a contiguous sequence of 32-bit native endian encoded integers.
pattern_ids: &'a [u8],
/// An accelerator for this state, if present. If this state has no
/// accelerator, then this is an empty slice. When non-empty, this slice
/// has length at most 3 and corresponds to the exhaustive set of bytes
/// that must be seen in order to transition out of this state.
accel: &'a [u8],
}
impl<'a> State<'a> {
/// Searches for the next transition given an input byte. If no such
/// transition could be found, then a dead state is returned.
///
/// This is marked as inline to help dramatically boost sparse searching,
/// which decodes each state it enters to follow the next transition.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn next(&self, input: u8) -> StateID {
// This straight linear search was observed to be much better than
// binary search on ASCII haystacks, likely because a binary search
// visits the ASCII case last but a linear search sees it first. A
// binary search does do a little better on non-ASCII haystacks, but
// not by much. There might be a better trade off lurking here.
for i in 0..(self.ntrans - 1) {
let (start, end) = self.range(i);
if start <= input && input <= end {
return self.next_at(i);
}
// We could bail early with an extra branch: if input < b1, then
// we know we'll never find a matching transition. Interestingly,
// this extra branch seems to not help performance, or will even
// hurt it. It's likely very dependent on the DFA itself and what
// is being searched.
}
DEAD
}
/// Returns the next state ID for the special EOI transition.
fn next_eoi(&self) -> StateID {
self.next_at(self.ntrans - 1)
}
/// Returns the identifier for this state.
fn id(&self) -> StateID {
self.id
}
/// Returns the inclusive input byte range for the ith transition in this
/// state.
fn range(&self, i: usize) -> (u8, u8) {
(self.input_ranges[i * 2], self.input_ranges[i * 2 + 1])
}
/// Returns the next state for the ith transition in this state.
fn next_at(&self, i: usize) -> StateID {
let start = i * StateID::SIZE;
let end = start + StateID::SIZE;
let bytes = self.next[start..end].try_into().unwrap();
StateID::from_ne_bytes_unchecked(bytes)
}
/// Returns the pattern ID for the given match index. If the match index
/// is invalid, then this panics.
fn pattern_id(&self, match_index: usize) -> PatternID {
let start = match_index * PatternID::SIZE;
wire::read_pattern_id_unchecked(&self.pattern_ids[start..]).0
}
/// Returns the total number of pattern IDs for this state. This is always
/// zero when `is_match` is false.
fn pattern_len(&self) -> usize {
assert_eq!(0, self.pattern_ids.len() % 4);
self.pattern_ids.len() / 4
}
/// Return an accelerator for this state.
fn accelerator(&self) -> &'a [u8] {
self.accel
}
/// Write the raw representation of this state to the given buffer using
/// the given endianness.
fn write_to<E: Endian>(
&self,
mut dst: &mut [u8],
) -> Result<usize, SerializeError> {
let nwrite = self.write_to_len();
if dst.len() < nwrite {
return Err(SerializeError::buffer_too_small(
"sparse state transitions",
));
}
let ntrans =
if self.is_match { self.ntrans | (1 << 15) } else { self.ntrans };
E::write_u16(u16::try_from(ntrans).unwrap(), dst);
dst = &mut dst[size_of::<u16>()..];
dst[..self.input_ranges.len()].copy_from_slice(self.input_ranges);
dst = &mut dst[self.input_ranges.len()..];
for i in 0..self.ntrans {
E::write_u32(self.next_at(i).as_u32(), dst);
dst = &mut dst[StateID::SIZE..];
}
if self.is_match {
E::write_u32(u32::try_from(self.pattern_len()).unwrap(), dst);
dst = &mut dst[size_of::<u32>()..];
for i in 0..self.pattern_len() {
let pid = self.pattern_id(i);
E::write_u32(pid.as_u32(), dst);
dst = &mut dst[PatternID::SIZE..];
}
}
dst[0] = u8::try_from(self.accel.len()).unwrap();
dst[1..][..self.accel.len()].copy_from_slice(self.accel);
Ok(nwrite)
}
/// Return the total number of bytes that this state consumes in its
/// encoded form.
fn write_to_len(&self) -> usize {
let mut len = 2
+ (self.ntrans * 2)
+ (self.ntrans * StateID::SIZE)
+ (1 + self.accel.len());
if self.is_match {
len += size_of::<u32>() + self.pattern_ids.len();
}
len
}
}
impl<'a> fmt::Debug for State<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut printed = false;
for i in 0..(self.ntrans - 1) {
let next = self.next_at(i);
if next == DEAD {
continue;
}
if printed {
write!(f, ", ")?;
}
let (start, end) = self.range(i);
if start == end {
write!(f, "{:?} => {:?}", DebugByte(start), next.as_usize())?;
} else {
write!(
f,
"{:?}-{:?} => {:?}",
DebugByte(start),
DebugByte(end),
next.as_usize(),
)?;
}
printed = true;
}
let eoi = self.next_at(self.ntrans - 1);
if eoi != DEAD {
if printed {
write!(f, ", ")?;
}
write!(f, "EOI => {:?}", eoi.as_usize())?;
}
Ok(())
}
}
/// A representation of a mutable sparse DFA state that can be cheaply
/// materialized from a state identifier.
#[cfg(feature = "dfa-build")]
struct StateMut<'a> {
/// The identifier of this state.
id: StateID,
/// Whether this is a match state or not.
is_match: bool,
/// The number of transitions in this state.
ntrans: usize,
/// Pairs of input ranges, where there is one pair for each transition.
/// Each pair specifies an inclusive start and end byte range for the
/// corresponding transition.
input_ranges: &'a mut [u8],
/// Transitions to the next state. This slice contains native endian
/// encoded state identifiers, with `S` as the representation. Thus, there
/// are `ntrans * size_of::<S>()` bytes in this slice.
next: &'a mut [u8],
/// If this is a match state, then this contains the pattern IDs that match
/// when the DFA is in this state.
///
/// This is a contiguous sequence of 32-bit native endian encoded integers.
pattern_ids: &'a [u8],
/// An accelerator for this state, if present. If this state has no
/// accelerator, then this is an empty slice. When non-empty, this slice
/// has length at most 3 and corresponds to the exhaustive set of bytes
/// that must be seen in order to transition out of this state.
accel: &'a mut [u8],
}
#[cfg(feature = "dfa-build")]
impl<'a> StateMut<'a> {
/// Sets the ith transition to the given state.
fn set_next_at(&mut self, i: usize, next: StateID) {
let start = i * StateID::SIZE;
let end = start + StateID::SIZE;
wire::write_state_id::<wire::NE>(next, &mut self.next[start..end]);
}
}
#[cfg(feature = "dfa-build")]
impl<'a> fmt::Debug for StateMut<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let state = State {
id: self.id,
is_match: self.is_match,
ntrans: self.ntrans,
input_ranges: self.input_ranges,
next: self.next,
pattern_ids: self.pattern_ids,
accel: self.accel,
};
fmt::Debug::fmt(&state, f)
}
}
// In order to validate everything, we not only need to make sure we
// can decode every state, but that every transition in every state
// points to a valid state. There are many duplicative transitions, so
// we record state IDs that we've verified so that we don't redo the
// decoding work.
//
// Except, when in no_std mode, we don't have dynamic memory allocation
// available to us, so we skip this optimization. It's not clear
// whether doing something more clever is worth it just yet. If you're
// profiling this code and need it to run faster, please file an issue.
//
// OK, so we also use this to record the set of valid state IDs. Since
// it is possible for a transition to point to an invalid state ID that
// still (somehow) deserializes to a valid state. So we need to make
// sure our transitions are limited to actually correct state IDs.
// The problem is, I'm not sure how to do this verification step in
// no-std no-alloc mode. I think we'd *have* to store the set of valid
// state IDs in the DFA itself. For now, we don't do this verification
// in no-std no-alloc mode. The worst thing that can happen is an
// incorrect result. But no panics or memory safety problems should
// result. Because we still do validate that the state itself is
// "valid" in the sense that everything it points to actually exists.
//
// ---AG
#[derive(Debug)]
struct Seen {
#[cfg(feature = "alloc")]
set: alloc::collections::BTreeSet<StateID>,
#[cfg(not(feature = "alloc"))]
set: core::marker::PhantomData<StateID>,
}
#[cfg(feature = "alloc")]
impl Seen {
fn new() -> Seen {
Seen { set: alloc::collections::BTreeSet::new() }
}
fn insert(&mut self, id: StateID) {
self.set.insert(id);
}
fn contains(&self, id: &StateID) -> bool {
self.set.contains(id)
}
}
#[cfg(not(feature = "alloc"))]
impl Seen {
fn new() -> Seen {
Seen { set: core::marker::PhantomData }
}
fn insert(&mut self, _id: StateID) {}
fn contains(&self, _id: &StateID) -> bool {
true
}
}
/*
/// A binary search routine specialized specifically to a sparse DFA state's
/// transitions. Specifically, the transitions are defined as a set of pairs
/// of input bytes that delineate an inclusive range of bytes. If the input
/// byte is in the range, then the corresponding transition is a match.
///
/// This binary search accepts a slice of these pairs and returns the position
/// of the matching pair (the ith transition), or None if no matching pair
/// could be found.
///
/// Note that this routine is not currently used since it was observed to
/// either decrease performance when searching ASCII, or did not provide enough
/// of a boost on non-ASCII haystacks to be worth it. However, we leave it here
/// for posterity in case we can find a way to use it.
///
/// In theory, we could use the standard library's search routine if we could
/// cast a `&[u8]` to a `&[(u8, u8)]`, but I don't believe this is currently
/// guaranteed to be safe and is thus UB (since I don't think the in-memory
/// representation of `(u8, u8)` has been nailed down). One could define a
/// repr(C) type, but the casting doesn't seem justified.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn binary_search_ranges(ranges: &[u8], needle: u8) -> Option<usize> {
debug_assert!(ranges.len() % 2 == 0, "ranges must have even length");
debug_assert!(ranges.len() <= 512, "ranges should be short");
let (mut left, mut right) = (0, ranges.len() / 2);
while left < right {
let mid = (left + right) / 2;
let (b1, b2) = (ranges[mid * 2], ranges[mid * 2 + 1]);
if needle < b1 {
right = mid;
} else if needle > b2 {
left = mid + 1;
} else {
return Some(mid);
}
}
None
}
*/
#[cfg(all(test, feature = "syntax", feature = "dfa-build"))]
mod tests {
use crate::{
dfa::{dense::DFA, Automaton},
nfa::thompson,
Input, MatchError,
};
// See the analogous test in src/hybrid/dfa.rs and src/dfa/dense.rs.
#[test]
fn heuristic_unicode_forward() {
let dfa = DFA::builder()
.configure(DFA::config().unicode_word_boundary(true))
.thompson(thompson::Config::new().reverse(true))
.build(r"\b[0-9]+\b")
.unwrap()
.to_sparse()
.unwrap();
let input = Input::new("β123").range(2..);
let expected = MatchError::quit(0xB2, 1);
let got = dfa.try_search_fwd(&input);
assert_eq!(Err(expected), got);
let input = Input::new("123β").range(..3);
let expected = MatchError::quit(0xCE, 3);
let got = dfa.try_search_fwd(&input);
assert_eq!(Err(expected), got);
}
// See the analogous test in src/hybrid/dfa.rs and src/dfa/dense.rs.
#[test]
fn heuristic_unicode_reverse() {
let dfa = DFA::builder()
.configure(DFA::config().unicode_word_boundary(true))
.thompson(thompson::Config::new().reverse(true))
.build(r"\b[0-9]+\b")
.unwrap()
.to_sparse()
.unwrap();
let input = Input::new("β123").range(2..);
let expected = MatchError::quit(0xB2, 1);
let got = dfa.try_search_rev(&input);
assert_eq!(Err(expected), got);
let input = Input::new("123β").range(..3);
let expected = MatchError::quit(0xCE, 3);
let got = dfa.try_search_rev(&input);
assert_eq!(Err(expected), got);
}
}