1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
use crate::io::{Error, Read, Write};
use alloc::vec::Vec;
use core::hash::Hasher;
use twox_hash::XxHash64;
use super::ringbuffer::RingBuffer;
pub struct Decodebuffer {
buffer: RingBuffer,
pub dict_content: Vec<u8>,
pub window_size: usize,
total_output_counter: u64,
pub hash: XxHash64,
}
#[derive(Debug, derive_more::Display)]
#[cfg_attr(feature = "std", derive(derive_more::Error))]
#[non_exhaustive]
pub enum DecodebufferError {
#[display(fmt = "Need {need} bytes from the dictionary but it is only {got} bytes long")]
NotEnoughBytesInDictionary { got: usize, need: usize },
#[display(fmt = "offset: {offset} bigger than buffer: {buf_len}")]
OffsetTooBig { offset: usize, buf_len: usize },
}
impl Read for Decodebuffer {
fn read(&mut self, target: &mut [u8]) -> Result<usize, Error> {
let max_amount = self.can_drain_to_window_size().unwrap_or(0);
let amount = max_amount.min(target.len());
let mut written = 0;
self.drain_to(amount, |buf| {
target[written..][..buf.len()].copy_from_slice(buf);
written += buf.len();
(buf.len(), Ok(()))
})?;
Ok(amount)
}
}
impl Decodebuffer {
pub fn new(window_size: usize) -> Decodebuffer {
Decodebuffer {
buffer: RingBuffer::new(),
dict_content: Vec::new(),
window_size,
total_output_counter: 0,
hash: XxHash64::with_seed(0),
}
}
pub fn reset(&mut self, window_size: usize) {
self.window_size = window_size;
self.buffer.clear();
self.buffer.reserve(self.window_size);
self.dict_content.clear();
self.total_output_counter = 0;
self.hash = XxHash64::with_seed(0);
}
pub fn len(&self) -> usize {
self.buffer.len()
}
pub fn is_empty(&self) -> bool {
self.buffer.is_empty()
}
pub fn push(&mut self, data: &[u8]) {
self.buffer.extend(data);
self.total_output_counter += data.len() as u64;
}
pub fn repeat(&mut self, offset: usize, match_length: usize) -> Result<(), DecodebufferError> {
if offset > self.buffer.len() {
if self.total_output_counter <= self.window_size as u64 {
// at least part of that repeat is from the dictionary content
let bytes_from_dict = offset - self.buffer.len();
if bytes_from_dict > self.dict_content.len() {
return Err(DecodebufferError::NotEnoughBytesInDictionary {
got: self.dict_content.len(),
need: bytes_from_dict,
});
}
if bytes_from_dict < match_length {
let dict_slice =
&self.dict_content[self.dict_content.len() - bytes_from_dict..];
self.buffer.extend(dict_slice);
self.total_output_counter += bytes_from_dict as u64;
return self.repeat(self.buffer.len(), match_length - bytes_from_dict);
} else {
let low = self.dict_content.len() - bytes_from_dict;
let high = low + match_length;
let dict_slice = &self.dict_content[low..high];
self.buffer.extend(dict_slice);
}
} else {
return Err(DecodebufferError::OffsetTooBig {
offset,
buf_len: self.buffer.len(),
});
}
} else {
let buf_len = self.buffer.len();
let start_idx = buf_len - offset;
let end_idx = start_idx + match_length;
self.buffer.reserve(match_length);
if end_idx > buf_len {
// We need to copy in chunks.
// We have at max offset bytes in one chunk, the last one can be smaller
let mut start_idx = start_idx;
let mut copied_counter_left = match_length;
// TODO this can be optimized further I think.
// Each time we copy a chunk we have a repetiton of length 'offset', so we can copy offset * iteration many bytes from start_idx
while copied_counter_left > 0 {
let chunksize = usize::min(offset, copied_counter_left);
// SAFETY: Requirements checked:
// 1. start_idx + chunksize must be <= self.buffer.len()
// We know that:
// 1. start_idx starts at buffer.len() - offset
// 2. chunksize <= offset (== offset for each iteration but the last, and match_length modulo offset in the last iteration)
// 3. the buffer grows by offset many bytes each iteration but the last
// 4. start_idx is increased by the same amount as the buffer grows each iteration
//
// Thus follows: start_idx + chunksize == self.buffer.len() in each iteration but the last, where match_length modulo offset == chunksize < offset
// Meaning: start_idx + chunksize <= self.buffer.len()
//
// 2. explicitly reserved enough memory for the whole match_length
unsafe {
self.buffer
.extend_from_within_unchecked(start_idx, chunksize)
};
copied_counter_left -= chunksize;
start_idx += chunksize;
}
} else {
// can just copy parts of the existing buffer
// SAFETY: Requirements checked:
// 1. start_idx + match_length must be <= self.buffer.len()
// We know that:
// 1. start_idx = self.buffer.len() - offset
// 2. end_idx = start_idx + match_length
// 3. end_idx <= self.buffer.len()
// Thus follows: start_idx + match_length <= self.buffer.len()
//
// 2. explicitly reserved enough memory for the whole match_length
unsafe {
self.buffer
.extend_from_within_unchecked(start_idx, match_length)
};
}
self.total_output_counter += match_length as u64;
}
Ok(())
}
// Check if and how many bytes can currently be drawn from the buffer
pub fn can_drain_to_window_size(&self) -> Option<usize> {
if self.buffer.len() > self.window_size {
Some(self.buffer.len() - self.window_size)
} else {
None
}
}
//How many bytes can be drained if the window_size does not have to be maintained
pub fn can_drain(&self) -> usize {
self.buffer.len()
}
//drain as much as possible while retaining enough so that decoding si still possible with the required window_size
//At best call only if can_drain_to_window_size reports a 'high' number of bytes to reduce allocations
pub fn drain_to_window_size(&mut self) -> Option<Vec<u8>> {
//TODO investigate if it is possible to return the std::vec::Drain iterator directly without collecting here
match self.can_drain_to_window_size() {
None => None,
Some(can_drain) => {
let mut vec = Vec::with_capacity(can_drain);
self.drain_to(can_drain, |buf| {
vec.extend_from_slice(buf);
(buf.len(), Ok(()))
})
.ok()?;
Some(vec)
}
}
}
pub fn drain_to_window_size_writer(&mut self, mut sink: impl Write) -> Result<usize, Error> {
match self.can_drain_to_window_size() {
None => Ok(0),
Some(can_drain) => {
self.drain_to(can_drain, |buf| write_all_bytes(&mut sink, buf))?;
Ok(can_drain)
}
}
}
//drain the buffer completely
pub fn drain(&mut self) -> Vec<u8> {
let (slice1, slice2) = self.buffer.as_slices();
self.hash.write(slice1);
self.hash.write(slice2);
let mut vec = Vec::with_capacity(slice1.len() + slice2.len());
vec.extend_from_slice(slice1);
vec.extend_from_slice(slice2);
self.buffer.clear();
vec
}
pub fn drain_to_writer(&mut self, mut sink: impl Write) -> Result<usize, Error> {
let len = self.buffer.len();
self.drain_to(len, |buf| write_all_bytes(&mut sink, buf))?;
Ok(len)
}
pub fn read_all(&mut self, target: &mut [u8]) -> Result<usize, Error> {
let amount = self.buffer.len().min(target.len());
let mut written = 0;
self.drain_to(amount, |buf| {
target[written..][..buf.len()].copy_from_slice(buf);
written += buf.len();
(buf.len(), Ok(()))
})?;
Ok(amount)
}
/// Semantics of write_bytes:
/// Should dump as many of the provided bytes as possible to whatever sink until no bytes are left or an error is encountered
/// Return how many bytes have actually been dumped to the sink.
fn drain_to(
&mut self,
amount: usize,
mut write_bytes: impl FnMut(&[u8]) -> (usize, Result<(), Error>),
) -> Result<(), Error> {
if amount == 0 {
return Ok(());
}
struct DrainGuard<'a> {
buffer: &'a mut RingBuffer,
amount: usize,
}
impl<'a> Drop for DrainGuard<'a> {
fn drop(&mut self) {
if self.amount != 0 {
self.buffer.drop_first_n(self.amount);
}
}
}
let mut drain_guard = DrainGuard {
buffer: &mut self.buffer,
amount: 0,
};
let (slice1, slice2) = drain_guard.buffer.as_slices();
let n1 = slice1.len().min(amount);
let n2 = slice2.len().min(amount - n1);
if n1 != 0 {
let (written1, res1) = write_bytes(&slice1[..n1]);
self.hash.write(&slice1[..written1]);
drain_guard.amount += written1;
// Apparently this is what clippy thinks is the best way of expressing this
res1?;
// Only if the first call to write_bytes was not a partial write we can continue with slice2
// Partial writes SHOULD never happen without res1 being an error, but lets just protect against it anyways.
if written1 == n1 && n2 != 0 {
let (written2, res2) = write_bytes(&slice2[..n2]);
self.hash.write(&slice2[..written2]);
drain_guard.amount += written2;
// Apparently this is what clippy thinks is the best way of expressing this
res2?;
}
}
// Make sure we don't accidentally drop `DrainGuard` earlier.
drop(drain_guard);
Ok(())
}
}
/// Like Write::write_all but returns partial write length even on error
fn write_all_bytes(mut sink: impl Write, buf: &[u8]) -> (usize, Result<(), Error>) {
let mut written = 0;
while written < buf.len() {
match sink.write(&buf[written..]) {
Ok(w) => written += w,
Err(e) => return (written, Err(e)),
}
}
(written, Ok(()))
}
#[cfg(test)]
mod tests {
use super::Decodebuffer;
use crate::io::{Error, ErrorKind, Write};
extern crate std;
use alloc::vec;
use alloc::vec::Vec;
#[test]
fn short_writer() {
struct ShortWriter {
buf: Vec<u8>,
write_len: usize,
}
impl Write for ShortWriter {
fn write(&mut self, buf: &[u8]) -> std::result::Result<usize, Error> {
if buf.len() > self.write_len {
self.buf.extend_from_slice(&buf[..self.write_len]);
Ok(self.write_len)
} else {
self.buf.extend_from_slice(buf);
Ok(buf.len())
}
}
fn flush(&mut self) -> std::result::Result<(), Error> {
Ok(())
}
}
let mut short_writer = ShortWriter {
buf: vec![],
write_len: 10,
};
let mut decode_buf = Decodebuffer::new(100);
decode_buf.push(b"0123456789");
decode_buf.repeat(10, 90).unwrap();
let repeats = 1000;
for _ in 0..repeats {
assert_eq!(decode_buf.len(), 100);
decode_buf.repeat(10, 50).unwrap();
assert_eq!(decode_buf.len(), 150);
decode_buf
.drain_to_window_size_writer(&mut short_writer)
.unwrap();
assert_eq!(decode_buf.len(), 100);
}
assert_eq!(short_writer.buf.len(), repeats * 50);
decode_buf.drain_to_writer(&mut short_writer).unwrap();
assert_eq!(short_writer.buf.len(), repeats * 50 + 100);
}
#[test]
fn wouldblock_writer() {
struct WouldblockWriter {
buf: Vec<u8>,
last_blocked: usize,
block_every: usize,
}
impl Write for WouldblockWriter {
fn write(&mut self, buf: &[u8]) -> std::result::Result<usize, Error> {
if self.last_blocked < self.block_every {
self.buf.extend_from_slice(buf);
self.last_blocked += 1;
Ok(buf.len())
} else {
self.last_blocked = 0;
Err(Error::from(ErrorKind::WouldBlock))
}
}
fn flush(&mut self) -> std::result::Result<(), Error> {
Ok(())
}
}
let mut short_writer = WouldblockWriter {
buf: vec![],
last_blocked: 0,
block_every: 5,
};
let mut decode_buf = Decodebuffer::new(100);
decode_buf.push(b"0123456789");
decode_buf.repeat(10, 90).unwrap();
let repeats = 1000;
for _ in 0..repeats {
assert_eq!(decode_buf.len(), 100);
decode_buf.repeat(10, 50).unwrap();
assert_eq!(decode_buf.len(), 150);
loop {
match decode_buf.drain_to_window_size_writer(&mut short_writer) {
Ok(written) => {
if written == 0 {
break;
}
}
Err(e) => {
if e.kind() == ErrorKind::WouldBlock {
continue;
} else {
panic!("Unexpected error {:?}", e);
}
}
}
}
assert_eq!(decode_buf.len(), 100);
}
assert_eq!(short_writer.buf.len(), repeats * 50);
loop {
match decode_buf.drain_to_writer(&mut short_writer) {
Ok(written) => {
if written == 0 {
break;
}
}
Err(e) => {
if e.kind() == ErrorKind::WouldBlock {
continue;
} else {
panic!("Unexpected error {:?}", e);
}
}
}
}
assert_eq!(short_writer.buf.len(), repeats * 50 + 100);
}
}