1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
//! Geometric primitives useful for layout
use crate::style::{Dimension, FlexDirection};
use crate::sys::f32_max;
use core::ops::Add;
#[cfg(feature = "grid")]
use crate::axis::AbstractAxis;
/// An axis-aligned UI rectangle
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Rect<T> {
/// This can represent either the x-coordinate of the starting edge,
/// or the amount of padding on the starting side.
///
/// The starting edge is the left edge when working with LTR text,
/// and the right edge when working with RTL text.
pub left: T,
/// This can represent either the x-coordinate of the ending edge,
/// or the amount of padding on the ending side.
///
/// The ending edge is the right edge when working with LTR text,
/// and the left edge when working with RTL text.
pub right: T,
/// This can represent either the y-coordinate of the top edge,
/// or the amount of padding on the top side.
pub top: T,
/// This can represent either the y-coordinate of the bottom edge,
/// or the amount of padding on the bottom side.
pub bottom: T,
}
impl<T: Default> Default for Rect<T> {
fn default() -> Self {
Rect {
left: Default::default(),
right: Default::default(),
top: Default::default(),
bottom: Default::default(),
}
}
}
impl<U, T: Add<U>> Add<Rect<U>> for Rect<T> {
type Output = Rect<T::Output>;
fn add(self, rhs: Rect<U>) -> Self::Output {
Rect {
left: self.left + rhs.left,
right: self.right + rhs.right,
top: self.top + rhs.top,
bottom: self.bottom + rhs.bottom,
}
}
}
impl<T> Rect<T> {
/// Applies the function `f` to all four sides of the rect
///
/// When applied to the left and right sides, the width is used
/// as the second parameter of `f`.
/// When applied to the top or bottom sides, the height is used instead.
pub(crate) fn zip_size<R, F, U>(self, size: Size<U>, f: F) -> Rect<R>
where
F: Fn(T, U) -> R,
U: Copy,
{
Rect {
left: f(self.left, size.width),
right: f(self.right, size.width),
top: f(self.top, size.height),
bottom: f(self.bottom, size.height),
}
}
/// Applies the function `f` to the left, right, top, and bottom properties
///
/// This is used to transform a `Rect<T>` into a `Rect<R>`.
pub fn map<R, F>(self, f: F) -> Rect<R>
where
F: Fn(T) -> R,
{
Rect { top: f(self.top), bottom: f(self.bottom), left: f(self.left), right: f(self.right) }
}
/// Returns a `Line<T>` representing the left and right properties of the Rect
pub fn horizontal_components(self) -> Line<T> {
Line { start: self.left, end: self.right }
}
/// Returns a `Line<T>` containing the top and bottom properties of the Rect
pub fn vertical_components(self) -> Line<T> {
Line { start: self.top, end: self.bottom }
}
}
impl<T, U> Rect<T>
where
T: Add<Output = U> + Copy + Clone,
{
/// The sum of [`Rect.start`](Rect) and [`Rect.end`](Rect)
///
/// This is typically used when computing total padding.
///
/// **NOTE:** this is *not* the width of the rectangle.
#[inline(always)]
pub(crate) fn horizontal_axis_sum(&self) -> U {
self.left + self.right
}
/// The sum of [`Rect.top`](Rect) and [`Rect.bottom`](Rect)
///
/// This is typically used when computing total padding.
///
/// **NOTE:** this is *not* the height of the rectangle.
#[inline(always)]
pub(crate) fn vertical_axis_sum(&self) -> U {
self.top + self.bottom
}
/// Both horizontal_axis_sum and vertical_axis_sum as a Size<T>
///
/// **NOTE:** this is *not* the width/height of the rectangle.
#[inline(always)]
#[allow(dead_code)] // Fixes spurious clippy warning: this function is used!
pub(crate) fn sum_axes(&self) -> Size<U> {
Size { width: self.horizontal_axis_sum(), height: self.vertical_axis_sum() }
}
/// The sum of the two fields of the [`Rect`] representing the main axis.
///
/// This is typically used when computing total padding.
///
/// If the [`FlexDirection`] is [`FlexDirection::Row`] or [`FlexDirection::RowReverse`], this is [`Rect::horizontal`].
/// Otherwise, this is [`Rect::vertical`].
pub(crate) fn main_axis_sum(&self, direction: FlexDirection) -> U {
if direction.is_row() {
self.horizontal_axis_sum()
} else {
self.vertical_axis_sum()
}
}
/// The sum of the two fields of the [`Rect`] representing the cross axis.
///
/// If the [`FlexDirection`] is [`FlexDirection::Row`] or [`FlexDirection::RowReverse`], this is [`Rect::vertical`].
/// Otherwise, this is [`Rect::horizontal`].
pub(crate) fn cross_axis_sum(&self, direction: FlexDirection) -> U {
if direction.is_row() {
self.vertical_axis_sum()
} else {
self.horizontal_axis_sum()
}
}
}
impl<T> Rect<T>
where
T: Copy + Clone,
{
/// The `start` or `top` value of the [`Rect`], from the perspective of the main layout axis
pub(crate) fn main_start(&self, direction: FlexDirection) -> T {
if direction.is_row() {
self.left
} else {
self.top
}
}
/// The `end` or `bottom` value of the [`Rect`], from the perspective of the main layout axis
pub(crate) fn main_end(&self, direction: FlexDirection) -> T {
if direction.is_row() {
self.right
} else {
self.bottom
}
}
/// The `start` or `top` value of the [`Rect`], from the perspective of the cross layout axis
pub(crate) fn cross_start(&self, direction: FlexDirection) -> T {
if direction.is_row() {
self.top
} else {
self.left
}
}
/// The `end` or `bottom` value of the [`Rect`], from the perspective of the main layout axis
pub(crate) fn cross_end(&self, direction: FlexDirection) -> T {
if direction.is_row() {
self.bottom
} else {
self.right
}
}
}
impl Rect<f32> {
/// Creates a new Rect with `0.0` as all parameters
pub const ZERO: Rect<f32> = Self { left: 0.0, right: 0.0, top: 0.0, bottom: 0.0 };
/// Creates a new Rect
#[must_use]
pub const fn new(start: f32, end: f32, top: f32, bottom: f32) -> Self {
Self { left: start, right: end, top, bottom }
}
}
/// An abstract "line". Represents any type that has a start and an end
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(default))]
pub struct Line<T> {
/// The start position of a line
pub start: T,
/// The end position of a line
pub end: T,
}
impl<T> Line<T> {
/// Applies the function `f` to both the width and height
///
/// This is used to transform a `Line<T>` into a `Line<R>`.
pub fn map<R, F>(self, f: F) -> Line<R>
where
F: Fn(T) -> R,
{
Line { start: f(self.start), end: f(self.end) }
}
}
impl<T: Add + Copy> Line<T> {
/// Adds the start and end values together and returns the result
pub fn sum(&self) -> <T as Add>::Output {
self.start + self.end
}
}
/// The width and height of a [`Rect`]
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Size<T> {
/// The x extent of the rectangle
pub width: T,
/// The y extent of the rectangle
pub height: T,
}
impl<T: Default> Default for Size<T> {
fn default() -> Self {
Size { width: Default::default(), height: Default::default() }
}
}
// Generic Add impl for Size<T> + Size<U> where T + U has an Add impl
impl<U, T: Add<U>> Add<Size<U>> for Size<T> {
type Output = Size<<T as Add<U>>::Output>;
fn add(self, rhs: Size<U>) -> Self::Output {
Size { width: self.width + rhs.width, height: self.height + rhs.height }
}
}
impl<T> Size<T> {
/// Applies the function `f` to both the width and height
///
/// This is used to transform a `Size<T>` into a `Size<R>`.
pub fn map<R, F>(self, f: F) -> Size<R>
where
F: Fn(T) -> R,
{
Size { width: f(self.width), height: f(self.height) }
}
/// Applies the function `f` to the width
pub fn map_width<F>(self, f: F) -> Size<T>
where
F: Fn(T) -> T,
{
Size { width: f(self.width), height: self.height }
}
/// Applies the function `f` to the height
pub fn map_height<F>(self, f: F) -> Size<T>
where
F: Fn(T) -> T,
{
Size { width: self.width, height: f(self.height) }
}
/// Applies the function `f` to both the width and height
/// of this value and another passed value
pub fn zip_map<Other, Ret, Func>(self, other: Size<Other>, f: Func) -> Size<Ret>
where
Func: Fn(T, Other) -> Ret,
{
Size { width: f(self.width, other.width), height: f(self.height, other.height) }
}
/// Sets the extent of the main layout axis
///
/// Whether this is the width or height depends on the `direction` provided
pub(crate) fn set_main(&mut self, direction: FlexDirection, value: T) {
if direction.is_row() {
self.width = value
} else {
self.height = value
}
}
/// Sets the extent of the cross layout axis
///
/// Whether this is the width or height depends on the `direction` provided
pub(crate) fn set_cross(&mut self, direction: FlexDirection, value: T) {
if direction.is_row() {
self.height = value
} else {
self.width = value
}
}
/// Creates a new value of type Self with the main axis set to value provided
///
/// Whether this is the width or height depends on the `direction` provided
#[allow(dead_code)]
pub(crate) fn with_main(self, direction: FlexDirection, value: T) -> Self {
let mut new = self;
if direction.is_row() {
new.width = value
} else {
new.height = value
}
new
}
/// Creates a new value of type Self with the cross axis set to value provided
///
/// Whether this is the width or height depends on the `direction` provided
pub(crate) fn with_cross(self, direction: FlexDirection, value: T) -> Self {
let mut new = self;
if direction.is_row() {
new.height = value
} else {
new.width = value
}
new
}
/// Gets the extent of the main layout axis
///
/// Whether this is the width or height depends on the `direction` provided
pub(crate) fn main(self, direction: FlexDirection) -> T {
if direction.is_row() {
self.width
} else {
self.height
}
}
/// Gets the extent of the cross layout axis
///
/// Whether this is the width or height depends on the `direction` provided
pub(crate) fn cross(self, direction: FlexDirection) -> T {
if direction.is_row() {
self.height
} else {
self.width
}
}
/// Gets the extent of the specified layout axis
/// Whether this is the width or height depends on the `GridAxis` provided
#[cfg(feature = "grid")]
pub(crate) fn get(self, axis: AbstractAxis) -> T {
match axis {
AbstractAxis::Inline => self.width,
AbstractAxis::Block => self.height,
}
}
/// Sets the extent of the specified layout axis
/// Whether this is the width or height depends on the `GridAxis` provided
#[cfg(feature = "grid")]
pub(crate) fn set(&mut self, axis: AbstractAxis, value: T) {
match axis {
AbstractAxis::Inline => self.width = value,
AbstractAxis::Block => self.height = value,
}
}
}
impl Size<f32> {
/// A [`Size`] with zero width and height
pub const ZERO: Size<f32> = Self { width: 0.0, height: 0.0 };
/// Applies f32_max to each component separately
pub fn f32_max(self, rhs: Size<f32>) -> Size<f32> {
Size { width: f32_max(self.width, rhs.width), height: f32_max(self.height, rhs.height) }
}
}
impl Size<Option<f32>> {
/// A [`Size`] with `None` width and height
pub const NONE: Size<Option<f32>> = Self { width: None, height: None };
/// A [`Size<Option<f32>>`] with `Some(width)` and `Some(height)` as parameters
#[must_use]
pub const fn new(width: f32, height: f32) -> Self {
Size { width: Some(width), height: Some(height) }
}
/// Applies aspect_ratio (if one is supplied) to the Size:
/// - If width is `Some` but height is `None`, then height is computed from width and aspect_ratio
/// - If height is `Some` but width is `None`, then width is computed from height and aspect_ratio
///
/// If aspect_ratio is `None` then this function simply returns self.
pub fn maybe_apply_aspect_ratio(self, aspect_ratio: Option<f32>) -> Size<Option<f32>> {
match aspect_ratio {
Some(ratio) => match (self.width, self.height) {
(Some(width), None) => Size { width: Some(width), height: Some(width / ratio) },
(None, Some(height)) => Size { width: Some(height * ratio), height: Some(height) },
_ => self,
},
None => self,
}
}
}
impl<T> Size<Option<T>> {
/// Performs Option::unwrap_or on each component separately
pub fn unwrap_or(self, alt: Size<T>) -> Size<T> {
Size { width: self.width.unwrap_or(alt.width), height: self.height.unwrap_or(alt.height) }
}
/// Performs Option::or on each component separately
pub fn or(self, alt: Size<Option<T>>) -> Size<Option<T>> {
Size { width: self.width.or(alt.width), height: self.height.or(alt.height) }
}
/// Return true if both components are Some, else false.
#[inline(always)]
pub fn both_axis_defined(&self) -> bool {
self.width.is_some() && self.height.is_some()
}
}
impl Size<Dimension> {
/// Generates a [`Size<Dimension>`] using [`Dimension::Points`] values
#[must_use]
pub const fn from_points(width: f32, height: f32) -> Self {
Size { width: Dimension::Points(width), height: Dimension::Points(height) }
}
/// Generates a [`Size<Dimension>`] using [`Dimension::Percent`] values
#[must_use]
pub const fn from_percent(width: f32, height: f32) -> Self {
Size { width: Dimension::Percent(width), height: Dimension::Percent(height) }
}
}
/// A 2-dimensional coordinate.
///
/// When used in association with a [`Rect`], represents the bottom-left corner.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Point<T> {
/// The x-coordinate
pub x: T,
/// The y-coordinate
pub y: T,
}
impl Point<f32> {
/// A [`Point`] with values (0,0), representing the origin
pub const ZERO: Self = Self { x: 0.0, y: 0.0 };
}
impl Point<Option<f32>> {
/// A [`Point`] with values (None, None)
pub const NONE: Self = Self { x: None, y: None };
}
/// Generic struct which holds a "min" value and a "max" value
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct MinMax<Min, Max> {
/// The value representing the minimum
pub min: Min,
/// The value representing the maximum
pub max: Max,
}