1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
//! Collects X11 data into "packets" to be parsed by a display.

use core::convert::TryInto;
use core::fmt;
use core::mem::replace;

use alloc::{vec, vec::Vec};

/// Minimal length of an X11 packet.
const MINIMAL_PACKET_LENGTH: usize = 32;

/// A wrapper around a buffer used to read X11 packets.
pub struct PacketReader {
    /// A partially-read packet.
    pending_packet: Vec<u8>,

    /// The point at which the packet is already read.
    already_read: usize,
}

impl fmt::Debug for PacketReader {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("PacketReader")
            .field(&format_args!(
                "{}/{}",
                self.already_read,
                self.pending_packet.len()
            ))
            .finish()
    }
}

impl Default for PacketReader {
    fn default() -> Self {
        Self::new()
    }
}

impl PacketReader {
    /// Create a new, empty `PacketReader`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use x11rb_protocol::packet_reader::PacketReader;
    /// let reader = PacketReader::new();
    /// ```
    pub fn new() -> Self {
        Self {
            pending_packet: vec![0; MINIMAL_PACKET_LENGTH],
            already_read: 0,
        }
    }

    /// Get the buffer that the reader should fill with data.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use x11rb_protocol::packet_reader::PacketReader;
    /// # use x11rb_protocol::protocol::xproto::{GetInputFocusReply, InputFocus, Window};
    /// let mut reader = PacketReader::new();
    /// let buffer: [u8; 32] = read_in_buffer();
    ///
    /// reader.buffer().copy_from_slice(&buffer);
    ///
    /// # fn read_in_buffer() -> [u8; 32] { [0; 32] }
    /// ```
    pub fn buffer(&mut self) -> &mut [u8] {
        &mut self.pending_packet[self.already_read..]
    }

    /// The remaining capacity that needs to be filled.
    pub fn remaining_capacity(&self) -> usize {
        self.pending_packet.len() - self.already_read
    }

    /// Advance this buffer by the given amount.
    ///
    /// This will return the packet that was read, if enough bytes were read in order
    /// to form a complete packet.
    pub fn advance(&mut self, amount: usize) -> Option<Vec<u8>> {
        self.already_read += amount;
        debug_assert!(self.already_read <= self.pending_packet.len());

        if self.already_read == MINIMAL_PACKET_LENGTH {
            // we've read in the minimal packet, compute the amount of data we need to read
            // to form a complete packet
            let extra_length = extra_length(&self.pending_packet);

            // tell if we need to read more
            if extra_length > 0 {
                let total_length = MINIMAL_PACKET_LENGTH + extra_length;
                self.pending_packet.resize(total_length, 0);
                return None;
            }
        } else if self.already_read != self.pending_packet.len() {
            // we haven't read the full packet yet, return
            return None;
        }

        // we've read in the full packet, return it
        self.already_read = 0;
        Some(replace(
            &mut self.pending_packet,
            vec![0; MINIMAL_PACKET_LENGTH],
        ))
    }
}

/// Compute the length of the data we need to read, beyond the `MINIMAL_PACKET_LENGTH`.
fn extra_length(buffer: &[u8]) -> usize {
    use crate::protocol::xproto::GE_GENERIC_EVENT;
    const REPLY: u8 = 1;

    let response_type = buffer[0];

    if response_type == REPLY || response_type & 0x7f == GE_GENERIC_EVENT {
        let length_field = buffer[4..8].try_into().unwrap();
        let length_field = u32::from_ne_bytes(length_field) as usize;
        4 * length_field
    } else {
        // Fixed size packet: error or event that is not GE_GENERIC_EVENT
        0
    }
}

#[cfg(test)]
mod tests {
    use super::PacketReader;
    use alloc::{vec, vec::Vec};

    fn test_packets(packets: Vec<Vec<u8>>) {
        // Combine all packet data into one big chunk and test that the packet reader splits things
        let mut all_data = packets.iter().flatten().copied().collect::<Vec<u8>>();

        let mut reader = PacketReader::default();
        for (i, packet) in packets.into_iter().enumerate() {
            std::println!("Checking packet {i}");
            loop {
                let buffer = reader.buffer();
                let amount = std::cmp::min(buffer.len(), all_data.len());
                buffer.copy_from_slice(&all_data[..amount]);
                let _ = all_data.drain(..amount);

                if let Some(read_packet) = reader.advance(amount) {
                    assert_eq!(read_packet, packet);
                    break;
                }
            }
        }
    }

    fn make_reply_with_length(len: usize) -> Vec<u8> {
        let mut packet = vec![0; len];
        let len = (len - 32) / 4;

        // write "len" to bytes 4..8 in the packet
        let len_bytes = (len as u32).to_ne_bytes();
        packet[4..8].copy_from_slice(&len_bytes);
        packet[0] = 1;

        packet
    }

    #[test]
    fn fixed_size_packet() {
        // packet with a fixed size
        let packet = vec![0; 32];
        test_packets(vec![packet]);
    }

    #[test]
    fn variable_size_packet() {
        // packet with a variable size
        let packet = make_reply_with_length(1200);
        test_packets(vec![packet]);
    }

    #[test]
    fn test_many_fixed_size_packets() {
        let mut packets = vec![];
        for _ in 0..100 {
            packets.push(vec![0; 32]);
        }
        test_packets(packets);
    }

    #[test]
    fn test_many_variable_size_packets() {
        let mut packets = vec![];
        for i in 0..100 {
            // for maximum variation, increase packet size in a curved parabola
            // defined by -1/25 (x - 50)^2 + 100
            let variation = ((i - 50) * (i - 50)) as f32;
            let variation = -1.0 / 25.0 * variation + 100.0;
            let variation = variation as usize;
            // round to a multiple of 4
            let variation = variation / 4 * 4;

            let mut len = 1200 + variation;
            let mut packet = vec![0; len];
            assert_eq!(0, len % 4);
            len = (len - 32) / 4;

            // write "len" to bytes 4..8 in the packet
            let len_bytes = (len as u32).to_ne_bytes();
            packet[4..8].copy_from_slice(&len_bytes);
            packet[0] = 1;

            packets.push(packet);
        }
        test_packets(packets);
    }

    #[test]
    fn test_many_size_packets_mixed() {
        let mut packets = vec![];
        for i in 0..100 {
            // on odds, do a varsize packet
            let mut len = if i & 1 == 1 {
                // for maximum variation, increase packet size in a curved parabola
                // defined by -1/25 (x - 50)^2 + 100
                let variation = ((i - 50) * (i - 50)) as f32;
                let variation = -1.0 / 25.0 * variation + 100.0;
                let variation = variation as usize;
                // round to a multiple of 4
                let variation = variation / 4 * 4;

                1200 + variation
            } else {
                32
            };
            assert_eq!(0, len % 4);
            let mut packet = vec![0; len];
            len = (len - 32) / 4;

            // write "len" to bytes 4..8 in the packet
            let len_bytes = (len as u32).to_ne_bytes();
            packet[4..8].copy_from_slice(&len_bytes);
            packet[0] = 1;

            packets.push(packet);
        }
        test_packets(packets);
    }

    #[test]
    fn test_debug_fixed_size_packet() {
        // The debug output includes the length of the packet of the packet and how much was
        // already read
        let mut reader = PacketReader::new();
        assert_eq!(std::format!("{:?}", reader), "PacketReader(0/32)");

        let _ = reader.advance(15);
        assert_eq!(std::format!("{:?}", reader), "PacketReader(15/32)");

        let _ = reader.advance(15);
        assert_eq!(std::format!("{:?}", reader), "PacketReader(30/32)");

        let _ = reader.advance(2);
        assert_eq!(std::format!("{:?}", reader), "PacketReader(0/32)");
    }

    #[test]
    fn test_debug_variable_size_packet() {
        let packet = make_reply_with_length(1200);
        let mut reader = PacketReader::new();

        let first_len = 32;
        let second_len = 3;

        reader.buffer()[..first_len].copy_from_slice(&packet[..first_len]);
        let _ = reader.advance(first_len);

        reader.buffer()[..second_len].copy_from_slice(&packet[..second_len]);
        let _ = reader.advance(second_len);

        assert_eq!(std::format!("{:?}", reader), "PacketReader(35/1200)");
    }
}