1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
use std::{
    convert::TryInto,
    fmt,
    fmt::{Debug, Formatter},
    mem::size_of,
};

#[derive(Debug, Clone, Eq, PartialEq)]
struct Toc {
    toctype: u32,
    subtype: u32,
    pos: u32,
}

/// A struct representing an image.
/// Pixels are in ARGB format, with each byte representing a single channel.
#[derive(Clone, Eq, PartialEq, Debug)]
pub struct Image {
    /// The nominal size of the image.
    pub size: u32,

    /// The actual width of the image. Doesn't need to match `size`.
    pub width: u32,

    /// The actual height of the image. Doesn't need to match `size`.
    pub height: u32,

    /// The X coordinate of the hotspot pixel (the pixel where the tip of the arrow is situated)
    pub xhot: u32,

    /// The Y coordinate of the hotspot pixel (the pixel where the tip of the arrow is situated)
    pub yhot: u32,

    /// The amount of time (in milliseconds) that this image should be shown for, before switching to the next.
    pub delay: u32,

    /// A slice containing the pixels' bytes, in RGBA format (or, in the order of the file).
    pub pixels_rgba: Vec<u8>,

    /// A slice containing the pixels' bytes, in ARGB format.
    pub pixels_argb: Vec<u8>,
}

impl std::fmt::Display for Image {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        f.debug_struct("Image")
            .field("size", &self.size)
            .field("width", &self.width)
            .field("height", &self.height)
            .field("xhot", &self.xhot)
            .field("yhot", &self.yhot)
            .field("delay", &self.delay)
            .field("pixels", &"/* omitted */")
            .finish()
    }
}

fn parse_header(mut i: Stream<'_>) -> Option<(Stream<'_>, u32)> {
    i.tag(b"Xcur")?;
    i.u32_le()?;
    i.u32_le()?;
    let ntoc = i.u32_le()?;

    Some((i, ntoc))
}

fn parse_toc(mut i: Stream<'_>) -> Option<(Stream<'_>, Toc)> {
    let toctype = i.u32_le()?; // Type
    let subtype = i.u32_le()?; // Subtype
    let pos = i.u32_le()?; // Position

    Some((
        i,
        Toc {
            toctype,
            subtype,
            pos,
        },
    ))
}

fn parse_img(mut i: Stream<'_>) -> Option<(Stream<'_>, Image)> {
    i.tag(&[0x24, 0x00, 0x00, 0x00])?; // Header size
    i.tag(&[0x02, 0x00, 0xfd, 0xff])?; // Type
    let size = i.u32_le()?;
    i.tag(&[0x01, 0x00, 0x00, 0x00])?; // Image version (1)
    let width = i.u32_le()?;
    let height = i.u32_le()?;
    let xhot = i.u32_le()?;
    let yhot = i.u32_le()?;
    let delay = i.u32_le()?;

    let img_length: usize = (4 * width * height) as usize;
    let pixels_slice = i.take_bytes(img_length)?;
    let pixels_argb = rgba_to_argb(pixels_slice);
    let pixels_rgba = Vec::from(pixels_slice);

    Some((
        i,
        Image {
            size,
            width,
            height,
            xhot,
            yhot,
            delay,
            pixels_argb,
            pixels_rgba,
        },
    ))
}

/// Converts a RGBA slice into an ARGB vec
///
/// Note that, if the input length is not
/// a multiple of 4, the extra elements are ignored.
fn rgba_to_argb(i: &[u8]) -> Vec<u8> {
    let mut res = Vec::with_capacity(i.len());

    for rgba in i.chunks(4) {
        if rgba.len() < 4 {
            break;
        }

        res.push(rgba[3]);
        res.push(rgba[0]);
        res.push(rgba[1]);
        res.push(rgba[2]);
    }

    res
}

/// Parse an XCursor file into its images.
pub fn parse_xcursor(content: &[u8]) -> Option<Vec<Image>> {
    let (mut i, ntoc) = parse_header(content)?;
    let mut imgs = Vec::with_capacity(ntoc as usize);

    for _ in 0..ntoc {
        let (j, toc) = parse_toc(i)?;
        i = j;

        if toc.toctype == 0xfffd_0002 {
            let index = toc.pos as usize..;
            let (_, img) = parse_img(&content[index])?;
            imgs.push(img);
        }
    }

    Some(imgs)
}

type Stream<'a> = &'a [u8];

trait StreamExt<'a>: 'a {
    /// Parse a series of bytes, returning `None` if it doesn't exist.
    fn tag(&mut self, tag: &[u8]) -> Option<()>;

    /// Take a slice of bytes.
    fn take_bytes(&mut self, len: usize) -> Option<&'a [u8]>;

    /// Parse a 32-bit little endian number.
    fn u32_le(&mut self) -> Option<u32>;
}

impl<'a> StreamExt<'a> for Stream<'a> {
    fn tag(&mut self, tag: &[u8]) -> Option<()> {
        if self.len() < tag.len() || self[..tag.len()] != *tag {
            None
        } else {
            *self = &self[tag.len()..];
            Some(())
        }
    }

    fn take_bytes(&mut self, len: usize) -> Option<&'a [u8]> {
        if self.len() < len {
            None
        } else {
            let (value, tail) = self.split_at(len);
            *self = tail;
            Some(value)
        }
    }

    fn u32_le(&mut self) -> Option<u32> {
        self.take_bytes(size_of::<u32>())
            .map(|bytes| u32::from_le_bytes(bytes.try_into().unwrap()))
    }
}

#[cfg(test)]
mod tests {
    use super::{parse_header, parse_toc, rgba_to_argb, Toc};

    // A sample (and simple) XCursor file generated with xcursorgen.
    // Contains a single 4x4 image.
    const FILE_CONTENTS: [u8; 128] = [
        0x58, 0x63, 0x75, 0x72, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00,
        0x00, 0x02, 0x00, 0xFD, 0xFF, 0x04, 0x00, 0x00, 0x00, 0x1C, 0x00, 0x00, 0x00, 0x24, 0x00,
        0x00, 0x00, 0x02, 0x00, 0xFD, 0xFF, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x04,
        0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
        0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00,
        0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00,
        0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00,
        0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80,
        0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80,
    ];

    #[test]
    fn test_parse_header() {
        assert_eq!(
            parse_header(&FILE_CONTENTS).unwrap(),
            (&FILE_CONTENTS[16..], 1)
        )
    }

    #[test]
    fn test_parse_toc() {
        let toc = Toc {
            toctype: 0xfffd0002,
            subtype: 4,
            pos: 0x1c,
        };
        assert_eq!(
            parse_toc(&FILE_CONTENTS[16..]).unwrap(),
            (&FILE_CONTENTS[28..], toc)
        )
    }

    #[test]
    fn test_rgba_to_argb() {
        let initial: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7];

        assert_eq!(rgba_to_argb(&initial), [3u8, 0, 1, 2, 7, 4, 5, 6])
    }

    #[test]
    fn test_rgba_to_argb_extra_items() {
        let initial: [u8; 9] = [0, 1, 2, 3, 4, 5, 6, 7, 8];

        assert_eq!(rgba_to_argb(&initial), &[3u8, 0, 1, 2, 7, 4, 5, 6]);
    }

    #[test]
    fn test_rgba_to_argb_no_items() {
        let initial: &[u8] = &[];

        assert_eq!(initial, &rgba_to_argb(initial)[..]);
    }
}