1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
//! Custom derives for `Yokeable` from the `yoke` crate.
use proc_macro::TokenStream;
use proc_macro2::{Span, TokenStream as TokenStream2};
use quote::quote;
use syn::spanned::Spanned;
use syn::{parse_macro_input, parse_quote, DeriveInput, Ident, Lifetime, Type, WherePredicate};
use synstructure::Structure;
mod visitor;
/// Custom derive for `yoke::Yokeable`,
///
/// If your struct contains `zerovec::ZeroMap`, then the compiler will not
/// be able to guarantee the lifetime covariance due to the generic types on
/// the `ZeroMap` itself. You must add the following attribute in order for
/// the custom derive to work with `ZeroMap`.
///
/// ```rust,ignore
/// #[derive(Yokeable)]
/// #[yoke(prove_covariance_manually)]
/// ```
///
/// Beyond this case, if the derive fails to compile due to lifetime issues, it
/// means that the lifetime is not covariant and `Yokeable` is not safe to implement.
#[proc_macro_derive(Yokeable, attributes(yoke))]
pub fn yokeable_derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as DeriveInput);
TokenStream::from(yokeable_derive_impl(&input))
}
fn yokeable_derive_impl(input: &DeriveInput) -> TokenStream2 {
let tybounds = input
.generics
.type_params()
.map(|ty| {
// Strip out param defaults, we don't need them in the impl
let mut ty = ty.clone();
ty.eq_token = None;
ty.default = None;
ty
})
.collect::<Vec<_>>();
let typarams = tybounds
.iter()
.map(|ty| ty.ident.clone())
.collect::<Vec<_>>();
// We require all type parameters be 'static, otherwise
// the Yokeable impl becomes really unweildy to generate safely
let static_bounds: Vec<WherePredicate> = typarams
.iter()
.map(|ty| parse_quote!(#ty: 'static))
.collect();
let lts = input.generics.lifetimes().count();
if lts == 0 {
let name = &input.ident;
quote! {
// This is safe because there are no lifetime parameters.
unsafe impl<'a, #(#tybounds),*> yoke::Yokeable<'a> for #name<#(#typarams),*> where #(#static_bounds),* {
type Output = Self;
#[inline]
fn transform(&self) -> &Self::Output {
self
}
#[inline]
fn transform_owned(self) -> Self::Output {
self
}
#[inline]
unsafe fn make(this: Self::Output) -> Self {
this
}
#[inline]
fn transform_mut<F>(&'a mut self, f: F)
where
F: 'static + for<'b> FnOnce(&'b mut Self::Output) {
f(self)
}
}
}
} else {
if lts != 1 {
return syn::Error::new(
input.generics.span(),
"derive(Yokeable) cannot have multiple lifetime parameters",
)
.to_compile_error();
}
let name = &input.ident;
let manual_covariance = input.attrs.iter().any(|a| {
if let Ok(i) = a.parse_args::<Ident>() {
if i == "prove_covariance_manually" {
return true;
}
}
false
});
if manual_covariance {
let mut structure = Structure::new(input);
let generics_env = typarams.iter().cloned().collect();
let static_bounds: Vec<WherePredicate> = typarams
.iter()
.map(|ty| parse_quote!(#ty: 'static))
.collect();
let mut yoke_bounds: Vec<WherePredicate> = vec![];
structure.bind_with(|_| synstructure::BindStyle::Move);
let owned_body = structure.each_variant(|vi| {
vi.construct(|f, i| {
let binding = format!("__binding_{i}");
let field = Ident::new(&binding, Span::call_site());
let fty_static = replace_lifetime(&f.ty, static_lt());
let (has_ty, has_lt) = visitor::check_type_for_parameters(&f.ty, &generics_env);
if has_ty {
// For types without type parameters, the compiler can figure out that the field implements
// Yokeable on its own. However, if there are type parameters, there may be complex preconditions
// to `FieldTy: Yokeable` that need to be satisfied. We get them to be satisfied by requiring
// `FieldTy<'static>: Yokeable<FieldTy<'a>>`
if has_lt {
let fty_a = replace_lifetime(&f.ty, custom_lt("'a"));
yoke_bounds.push(
parse_quote!(#fty_static: yoke::Yokeable<'a, Output = #fty_a>),
);
} else {
yoke_bounds.push(
parse_quote!(#fty_static: yoke::Yokeable<'a, Output = #fty_static>),
);
}
}
if has_ty || has_lt {
// By calling transform_owned on all fields, we manually prove
// that the lifetimes are covariant, since this requirement
// must already be true for the type that implements transform_owned().
quote! {
<#fty_static as yoke::Yokeable<'a>>::transform_owned(#field)
}
} else {
// No nested lifetimes, so nothing to be done
quote! { #field }
}
})
});
let borrowed_body = structure.each(|binding| {
let f = binding.ast();
let field = &binding.binding;
let (has_ty, has_lt) = visitor::check_type_for_parameters(&f.ty, &generics_env);
if has_ty || has_lt {
let fty_static = replace_lifetime(&f.ty, static_lt());
let fty_a = replace_lifetime(&f.ty, custom_lt("'a"));
// We also must assert that each individual field can `transform()` correctly
//
// Even though transform_owned() does such an assertion already, CoerceUnsized
// can cause type transformations that allow it to succeed where this would fail.
// We need to check both.
//
// https://github.com/unicode-org/icu4x/issues/2928
quote! {
let _: &#fty_a = &<#fty_static as yoke::Yokeable<'a>>::transform(#field);
}
} else {
// No nested lifetimes, so nothing to be done
quote! {}
}
});
return quote! {
unsafe impl<'a, #(#tybounds),*> yoke::Yokeable<'a> for #name<'static, #(#typarams),*>
where #(#static_bounds,)*
#(#yoke_bounds,)* {
type Output = #name<'a, #(#typarams),*>;
#[inline]
fn transform(&'a self) -> &'a Self::Output {
// These are just type asserts, we don't need them for anything
if false {
match self {
#borrowed_body
}
}
unsafe {
// safety: we have asserted covariance in
// transform_owned
::core::mem::transmute(self)
}
}
#[inline]
fn transform_owned(self) -> Self::Output {
match self { #owned_body }
}
#[inline]
unsafe fn make(this: Self::Output) -> Self {
use core::{mem, ptr};
// unfortunately Rust doesn't think `mem::transmute` is possible since it's not sure the sizes
// are the same
debug_assert!(mem::size_of::<Self::Output>() == mem::size_of::<Self>());
let ptr: *const Self = (&this as *const Self::Output).cast();
#[allow(forgetting_copy_types, clippy::forget_copy, clippy::forget_non_drop)] // This is a noop if the struct is copy, which Clippy doesn't like
mem::forget(this);
ptr::read(ptr)
}
#[inline]
fn transform_mut<F>(&'a mut self, f: F)
where
F: 'static + for<'b> FnOnce(&'b mut Self::Output) {
unsafe { f(core::mem::transmute::<&'a mut Self, &'a mut Self::Output>(self)) }
}
}
};
}
quote! {
// This is safe because as long as `transform()` compiles,
// we can be sure that `'a` is a covariant lifetime on `Self`
//
// This will not work for structs involving ZeroMap since
// the compiler does not know that ZeroMap is covariant.
//
// This custom derive can be improved to handle this case when
// necessary
unsafe impl<'a, #(#tybounds),*> yoke::Yokeable<'a> for #name<'static, #(#typarams),*> where #(#static_bounds),* {
type Output = #name<'a, #(#typarams),*>;
#[inline]
fn transform(&'a self) -> &'a Self::Output {
self
}
#[inline]
fn transform_owned(self) -> Self::Output {
self
}
#[inline]
unsafe fn make(this: Self::Output) -> Self {
use core::{mem, ptr};
// unfortunately Rust doesn't think `mem::transmute` is possible since it's not sure the sizes
// are the same
debug_assert!(mem::size_of::<Self::Output>() == mem::size_of::<Self>());
let ptr: *const Self = (&this as *const Self::Output).cast();
#[allow(forgetting_copy_types, clippy::forget_copy, clippy::forget_non_drop)] // This is a noop if the struct is copy, which Clippy doesn't like
mem::forget(this);
ptr::read(ptr)
}
#[inline]
fn transform_mut<F>(&'a mut self, f: F)
where
F: 'static + for<'b> FnOnce(&'b mut Self::Output) {
unsafe { f(core::mem::transmute::<&'a mut Self, &'a mut Self::Output>(self)) }
}
}
}
}
}
fn static_lt() -> Lifetime {
Lifetime::new("'static", Span::call_site())
}
fn custom_lt(s: &str) -> Lifetime {
Lifetime::new(s, Span::call_site())
}
fn replace_lifetime(x: &Type, lt: Lifetime) -> Type {
use syn::fold::Fold;
struct ReplaceLifetime(Lifetime);
impl Fold for ReplaceLifetime {
fn fold_lifetime(&mut self, _: Lifetime) -> Lifetime {
self.0.clone()
}
}
ReplaceLifetime(lt).fold_type(x.clone())
}