1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
// Copyright 2018 The Fuchsia Authors
//
// Licensed under the 2-Clause BSD License <LICENSE-BSD or
// https://opensource.org/license/bsd-2-clause>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.

// After updating the following doc comment, make sure to run the following
// command to update `README.md` based on its contents:
//
//   ./generate-readme.sh > README.md

//! *<span style="font-size: 100%; color:grey;">Want to help improve zerocopy?
//! Fill out our [user survey][user-survey]!</span>*
//!
//! ***<span style="font-size: 140%">Fast, safe, <span
//! style="color:red;">compile error</span>. Pick two.</span>***
//!
//! Zerocopy makes zero-cost memory manipulation effortless. We write `unsafe`
//! so you don't have to.
//!
//! # Overview
//!
//! Zerocopy provides four core marker traits, each of which can be derived
//! (e.g., `#[derive(FromZeroes)]`):
//! - [`FromZeroes`] indicates that a sequence of zero bytes represents a valid
//!   instance of a type
//! - [`FromBytes`] indicates that a type may safely be converted from an
//!   arbitrary byte sequence
//! - [`AsBytes`] indicates that a type may safely be converted *to* a byte
//!   sequence
//! - [`Unaligned`] indicates that a type's alignment requirement is 1
//!
//! Types which implement a subset of these traits can then be converted to/from
//! byte sequences with little to no runtime overhead.
//!
//! Zerocopy also provides byte-order aware integer types that support these
//! conversions; see the [`byteorder`] module. These types are especially useful
//! for network parsing.
//!
//! [user-survey]: https://docs.google.com/forms/d/e/1FAIpQLSdzBNTN9tzwsmtyZxRFNL02K36IWCdHWW2ZBckyQS2xiO3i8Q/viewform?usp=published_options
//!
//! # Cargo Features
//!
//! - **`alloc`**   
//!   By default, `zerocopy` is `no_std`. When the `alloc` feature is enabled,
//!   the `alloc` crate is added as a dependency, and some allocation-related
//!   functionality is added.
//!
//! - **`byteorder`** (enabled by default)   
//!   Adds the [`byteorder`] module and a dependency on the `byteorder` crate.
//!   The `byteorder` module provides byte order-aware equivalents of the
//!   multi-byte primitive numerical types. Unlike their primitive equivalents,
//!   the types in this module have no alignment requirement and support byte
//!   order conversions. This can be useful in handling file formats, network
//!   packet layouts, etc which don't provide alignment guarantees and which may
//!   use a byte order different from that of the execution platform.
//!
//! - **`derive`**   
//!   Provides derives for the core marker traits via the `zerocopy-derive`
//!   crate. These derives are re-exported from `zerocopy`, so it is not
//!   necessary to depend on `zerocopy-derive` directly.   
//!
//!   However, you may experience better compile times if you instead directly
//!   depend on both `zerocopy` and `zerocopy-derive` in your `Cargo.toml`,
//!   since doing so will allow Rust to compile these crates in parallel. To do
//!   so, do *not* enable the `derive` feature, and list both dependencies in
//!   your `Cargo.toml` with the same leading non-zero version number; e.g:
//!
//!   ```toml
//!   [dependencies]
//!   zerocopy = "0.X"
//!   zerocopy-derive = "0.X"
//!   ```
//!
//! - **`simd`**   
//!   When the `simd` feature is enabled, `FromZeroes`, `FromBytes`, and
//!   `AsBytes` impls are emitted for all stable SIMD types which exist on the
//!   target platform. Note that the layout of SIMD types is not yet stabilized,
//!   so these impls may be removed in the future if layout changes make them
//!   invalid. For more information, see the Unsafe Code Guidelines Reference
//!   page on the [layout of packed SIMD vectors][simd-layout].
//!
//! - **`simd-nightly`**   
//!   Enables the `simd` feature and adds support for SIMD types which are only
//!   available on nightly. Since these types are unstable, support for any type
//!   may be removed at any point in the future.
//!
//! [simd-layout]: https://rust-lang.github.io/unsafe-code-guidelines/layout/packed-simd-vectors.html
//!
//! # Security Ethos
//!
//! Zerocopy is expressly designed for use in security-critical contexts. We
//! strive to ensure that that zerocopy code is sound under Rust's current
//! memory model, and *any future memory model*. We ensure this by:
//! - **...not 'guessing' about Rust's semantics.**   
//!   We annotate `unsafe` code with a precise rationale for its soundness that
//!   cites a relevant section of Rust's official documentation. When Rust's
//!   documented semantics are unclear, we work with the Rust Operational
//!   Semantics Team to clarify Rust's documentation.
//! - **...rigorously testing our implementation.**   
//!   We run tests using [Miri], ensuring that zerocopy is sound across a wide
//!   array of supported target platforms of varying endianness and pointer
//!   width, and across both current and experimental memory models of Rust.
//! - **...formally proving the correctness of our implementation.**   
//!   We apply formal verification tools like [Kani][kani] to prove zerocopy's
//!   correctness.
//!
//! For more information, see our full [soundness policy].
//!
//! [Miri]: https://github.com/rust-lang/miri
//! [Kani]: https://github.com/model-checking/kani
//! [soundness policy]: https://github.com/google/zerocopy/blob/main/POLICIES.md#soundness
//!
//! # Relationship to Project Safe Transmute
//!
//! [Project Safe Transmute] is an official initiative of the Rust Project to
//! develop language-level support for safer transmutation. The Project consults
//! with crates like zerocopy to identify aspects of safer transmutation that
//! would benefit from compiler support, and has developed an [experimental,
//! compiler-supported analysis][mcp-transmutability] which determines whether,
//! for a given type, any value of that type may be soundly transmuted into
//! another type. Once this functionality is sufficiently mature, zerocopy
//! intends to replace its internal transmutability analysis (implemented by our
//! custom derives) with the compiler-supported one. This change will likely be
//! an implementation detail that is invisible to zerocopy's users.
//!
//! Project Safe Transmute will not replace the need for most of zerocopy's
//! higher-level abstractions. The experimental compiler analysis is a tool for
//! checking the soundness of `unsafe` code, not a tool to avoid writing
//! `unsafe` code altogether. For the foreseeable future, crates like zerocopy
//! will still be required in order to provide higher-level abstractions on top
//! of the building block provided by Project Safe Transmute.
//!
//! [Project Safe Transmute]: https://rust-lang.github.io/rfcs/2835-project-safe-transmute.html
//! [mcp-transmutability]: https://github.com/rust-lang/compiler-team/issues/411
//!
//! # MSRV
//!
//! See our [MSRV policy].
//!
//! [MSRV policy]: https://github.com/google/zerocopy/blob/main/POLICIES.md#msrv
//!
//! # Changelog
//!
//! Zerocopy uses [GitHub Releases].
//!
//! [GitHub Releases]: https://github.com/google/zerocopy/releases

// Sometimes we want to use lints which were added after our MSRV.
// `unknown_lints` is `warn` by default and we deny warnings in CI, so without
// this attribute, any unknown lint would cause a CI failure when testing with
// our MSRV.
#![allow(unknown_lints)]
#![deny(renamed_and_removed_lints)]
#![deny(
    anonymous_parameters,
    deprecated_in_future,
    illegal_floating_point_literal_pattern,
    late_bound_lifetime_arguments,
    missing_copy_implementations,
    missing_debug_implementations,
    missing_docs,
    path_statements,
    patterns_in_fns_without_body,
    rust_2018_idioms,
    trivial_numeric_casts,
    unreachable_pub,
    unsafe_op_in_unsafe_fn,
    unused_extern_crates,
    unused_qualifications,
    variant_size_differences
)]
#![cfg_attr(
    __INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS,
    deny(fuzzy_provenance_casts, lossy_provenance_casts)
)]
#![deny(
    clippy::all,
    clippy::alloc_instead_of_core,
    clippy::arithmetic_side_effects,
    clippy::as_underscore,
    clippy::assertions_on_result_states,
    clippy::as_conversions,
    clippy::correctness,
    clippy::dbg_macro,
    clippy::decimal_literal_representation,
    clippy::get_unwrap,
    clippy::indexing_slicing,
    clippy::missing_inline_in_public_items,
    clippy::missing_safety_doc,
    clippy::obfuscated_if_else,
    clippy::perf,
    clippy::print_stdout,
    clippy::std_instead_of_core,
    clippy::style,
    clippy::suspicious,
    clippy::todo,
    clippy::undocumented_unsafe_blocks,
    clippy::unimplemented,
    clippy::unnested_or_patterns,
    clippy::unwrap_used,
    clippy::use_debug
)]
#![deny(
    rustdoc::bare_urls,
    rustdoc::broken_intra_doc_links,
    rustdoc::invalid_codeblock_attributes,
    rustdoc::invalid_html_tags,
    rustdoc::invalid_rust_codeblocks,
    rustdoc::missing_crate_level_docs,
    rustdoc::private_intra_doc_links
)]
// In test code, it makes sense to weight more heavily towards concise, readable
// code over correct or debuggable code.
#![cfg_attr(any(test, kani), allow(
    // In tests, you get line numbers and have access to source code, so panic
    // messages are less important. You also often unwrap a lot, which would
    // make expect'ing instead very verbose.
    clippy::unwrap_used,
    // In tests, there's no harm to "panic risks" - the worst that can happen is
    // that your test will fail, and you'll fix it. By contrast, panic risks in
    // production code introduce the possibly of code panicking unexpectedly "in
    // the field".
    clippy::arithmetic_side_effects,
    clippy::indexing_slicing,
))]
#![cfg_attr(not(test), no_std)]
#![cfg_attr(feature = "simd-nightly", feature(stdsimd))]
#![cfg_attr(doc_cfg, feature(doc_cfg))]
#![cfg_attr(
    __INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS,
    feature(layout_for_ptr, strict_provenance)
)]

// This is a hack to allow zerocopy-derive derives to work in this crate. They
// assume that zerocopy is linked as an extern crate, so they access items from
// it as `zerocopy::Xxx`. This makes that still work.
#[cfg(any(feature = "derive", test))]
extern crate self as zerocopy;

#[macro_use]
mod macros;

#[cfg(feature = "byteorder")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "byteorder")))]
pub mod byteorder;
#[doc(hidden)]
pub mod macro_util;
mod post_monomorphization_compile_fail_tests;
mod util;
// TODO(#252): If we make this pub, come up with a better name.
mod wrappers;

#[cfg(feature = "byteorder")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "byteorder")))]
pub use crate::byteorder::*;
pub use crate::wrappers::*;

#[cfg(any(feature = "derive", test))]
#[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))]
pub use zerocopy_derive::Unaligned;

// `pub use` separately here so that we can mark it `#[doc(hidden)]`.
//
// TODO(#29): Remove this or add a doc comment.
#[cfg(any(feature = "derive", test))]
#[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))]
#[doc(hidden)]
pub use zerocopy_derive::KnownLayout;

use core::{
    cell::{self, RefMut},
    cmp::Ordering,
    fmt::{self, Debug, Display, Formatter},
    hash::Hasher,
    marker::PhantomData,
    mem::{self, ManuallyDrop, MaybeUninit},
    num::{
        NonZeroI128, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroIsize, NonZeroU128,
        NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize, Wrapping,
    },
    ops::{Deref, DerefMut},
    ptr::{self, NonNull},
    slice,
};

#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "alloc")]
use alloc::{boxed::Box, vec::Vec};

#[cfg(any(feature = "alloc", kani))]
use core::alloc::Layout;

// Used by `TryFromBytes::is_bit_valid`.
#[doc(hidden)]
pub use crate::util::ptr::Ptr;

// For each polyfill, as soon as the corresponding feature is stable, the
// polyfill import will be unused because method/function resolution will prefer
// the inherent method/function over a trait method/function. Thus, we suppress
// the `unused_imports` warning.
//
// See the documentation on `util::polyfills` for more information.
#[allow(unused_imports)]
use crate::util::polyfills::NonNullExt as _;

#[rustversion::nightly]
#[cfg(all(test, not(__INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS)))]
const _: () = {
    #[deprecated = "some tests may be skipped due to missing RUSTFLAGS=\"--cfg __INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS\""]
    const _WARNING: () = ();
    #[warn(deprecated)]
    _WARNING
};

/// The target pointer width, counted in bits.
const POINTER_WIDTH_BITS: usize = mem::size_of::<usize>() * 8;

/// The layout of a type which might be dynamically-sized.
///
/// `DstLayout` describes the layout of sized types, slice types, and "slice
/// DSTs" - ie, those that are known by the type system to have a trailing slice
/// (as distinguished from `dyn Trait` types - such types *might* have a
/// trailing slice type, but the type system isn't aware of it).
///
/// # Safety
///
/// Unlike [`core::alloc::Layout`], `DstLayout` is only used to describe full
/// Rust types - ie, those that satisfy the layout requirements outlined by
/// [the reference]. Callers may assume that an instance of `DstLayout`
/// satisfies any conditions imposed on Rust types by the reference.
///
/// If `layout: DstLayout` describes a type, `T`, then it is guaranteed that:
/// - `layout.align` is equal to `T`'s alignment
/// - If `layout.size_info` is `SizeInfo::Sized { size }`, then `T: Sized` and
///   `size_of::<T>() == size`
/// - If `layout.size_info` is `SizeInfo::SliceDst(slice_layout)`, then
///   - `T` is a slice DST
/// - The `size` of an instance of `T` with `elems` trailing slice elements is
///   equal to `slice_layout.offset + slice_layout.elem_size * elems` rounded up
///   to the nearest multiple of `layout.align`. Any bytes in the range
///   `[slice_layout.offset + slice_layout.elem_size * elems, size)` are padding
///   and must not be assumed to be initialized.
///
/// [the reference]: https://doc.rust-lang.org/reference/type-layout.html
#[doc(hidden)]
#[allow(missing_debug_implementations, missing_copy_implementations)]
#[cfg_attr(any(kani, test), derive(Copy, Clone, Debug, PartialEq, Eq))]
pub struct DstLayout {
    align: NonZeroUsize,
    size_info: SizeInfo,
}

#[cfg_attr(any(kani, test), derive(Copy, Clone, Debug, PartialEq, Eq))]
enum SizeInfo<E = usize> {
    Sized { _size: usize },
    SliceDst(TrailingSliceLayout<E>),
}

#[cfg_attr(any(kani, test), derive(Copy, Clone, Debug, PartialEq, Eq))]
struct TrailingSliceLayout<E = usize> {
    // The offset of the first byte of the trailing slice field. Note that this
    // is NOT the same as the minimum size of the type. For example, consider
    // the following type:
    //
    //   struct Foo {
    //       a: u16,
    //       b: u8,
    //       c: [u8],
    //   }
    //
    // In `Foo`, `c` is at byte offset 3. When `c.len() == 0`, `c` is followed
    // by a padding byte.
    _offset: usize,
    // The size of the element type of the trailing slice field.
    _elem_size: E,
}

impl SizeInfo {
    /// Attempts to create a `SizeInfo` from `Self` in which `elem_size` is a
    /// `NonZeroUsize`. If `elem_size` is 0, returns `None`.
    #[allow(unused)]
    const fn try_to_nonzero_elem_size(&self) -> Option<SizeInfo<NonZeroUsize>> {
        Some(match *self {
            SizeInfo::Sized { _size } => SizeInfo::Sized { _size },
            SizeInfo::SliceDst(TrailingSliceLayout { _offset, _elem_size }) => {
                if let Some(_elem_size) = NonZeroUsize::new(_elem_size) {
                    SizeInfo::SliceDst(TrailingSliceLayout { _offset, _elem_size })
                } else {
                    return None;
                }
            }
        })
    }
}

#[doc(hidden)]
#[derive(Copy, Clone)]
#[cfg_attr(test, derive(Debug))]
#[allow(missing_debug_implementations)]
pub enum _CastType {
    _Prefix,
    _Suffix,
}

impl DstLayout {
    /// The minimum possible alignment of a type.
    const MIN_ALIGN: NonZeroUsize = match NonZeroUsize::new(1) {
        Some(min_align) => min_align,
        None => unreachable!(),
    };

    /// The maximum theoretic possible alignment of a type.
    ///
    /// For compatibility with future Rust versions, this is defined as the
    /// maximum power-of-two that fits into a `usize`. See also
    /// [`DstLayout::CURRENT_MAX_ALIGN`].
    const THEORETICAL_MAX_ALIGN: NonZeroUsize =
        match NonZeroUsize::new(1 << (POINTER_WIDTH_BITS - 1)) {
            Some(max_align) => max_align,
            None => unreachable!(),
        };

    /// The current, documented max alignment of a type \[1\].
    ///
    /// \[1\] Per <https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers>:
    ///
    ///   The alignment value must be a power of two from 1 up to
    ///   2<sup>29</sup>.
    #[cfg(not(kani))]
    const CURRENT_MAX_ALIGN: NonZeroUsize = match NonZeroUsize::new(1 << 28) {
        Some(max_align) => max_align,
        None => unreachable!(),
    };

    /// Constructs a `DstLayout` for a zero-sized type with `repr_align`
    /// alignment (or 1). If `repr_align` is provided, then it must be a power
    /// of two.
    ///
    /// # Panics
    ///
    /// This function panics if the supplied `repr_align` is not a power of two.
    ///
    /// # Safety
    ///
    /// Unsafe code may assume that the contract of this function is satisfied.
    #[doc(hidden)]
    #[inline]
    pub const fn new_zst(repr_align: Option<NonZeroUsize>) -> DstLayout {
        let align = match repr_align {
            Some(align) => align,
            None => Self::MIN_ALIGN,
        };

        assert!(align.is_power_of_two());

        DstLayout { align, size_info: SizeInfo::Sized { _size: 0 } }
    }

    /// Constructs a `DstLayout` which describes `T`.
    ///
    /// # Safety
    ///
    /// Unsafe code may assume that `DstLayout` is the correct layout for `T`.
    #[doc(hidden)]
    #[inline]
    pub const fn for_type<T>() -> DstLayout {
        // SAFETY: `align` is correct by construction. `T: Sized`, and so it is
        // sound to initialize `size_info` to `SizeInfo::Sized { size }`; the
        // `size` field is also correct by construction.
        DstLayout {
            align: match NonZeroUsize::new(mem::align_of::<T>()) {
                Some(align) => align,
                None => unreachable!(),
            },
            size_info: SizeInfo::Sized { _size: mem::size_of::<T>() },
        }
    }

    /// Constructs a `DstLayout` which describes `[T]`.
    ///
    /// # Safety
    ///
    /// Unsafe code may assume that `DstLayout` is the correct layout for `[T]`.
    const fn for_slice<T>() -> DstLayout {
        // SAFETY: The alignment of a slice is equal to the alignment of its
        // element type, and so `align` is initialized correctly.
        //
        // Since this is just a slice type, there is no offset between the
        // beginning of the type and the beginning of the slice, so it is
        // correct to set `offset: 0`. The `elem_size` is correct by
        // construction. Since `[T]` is a (degenerate case of a) slice DST, it
        // is correct to initialize `size_info` to `SizeInfo::SliceDst`.
        DstLayout {
            align: match NonZeroUsize::new(mem::align_of::<T>()) {
                Some(align) => align,
                None => unreachable!(),
            },
            size_info: SizeInfo::SliceDst(TrailingSliceLayout {
                _offset: 0,
                _elem_size: mem::size_of::<T>(),
            }),
        }
    }

    /// Like `Layout::extend`, this creates a layout that describes a record
    /// whose layout consists of `self` followed by `next` that includes the
    /// necessary inter-field padding, but not any trailing padding.
    ///
    /// In order to match the layout of a `#[repr(C)]` struct, this method
    /// should be invoked for each field in declaration order. To add trailing
    /// padding, call `DstLayout::pad_to_align` after extending the layout for
    /// all fields. If `self` corresponds to a type marked with
    /// `repr(packed(N))`, then `repr_packed` should be set to `Some(N)`,
    /// otherwise `None`.
    ///
    /// This method cannot be used to match the layout of a record with the
    /// default representation, as that representation is mostly unspecified.
    ///
    /// # Safety
    ///
    /// If a (potentially hypothetical) valid `repr(C)` Rust type begins with
    /// fields whose layout are `self`, and those fields are immediately
    /// followed by a field whose layout is `field`, then unsafe code may rely
    /// on `self.extend(field, repr_packed)` producing a layout that correctly
    /// encompasses those two components.
    ///
    /// We make no guarantees to the behavior of this method if these fragments
    /// cannot appear in a valid Rust type (e.g., the concatenation of the
    /// layouts would lead to a size larger than `isize::MAX`).
    #[doc(hidden)]
    #[inline]
    pub const fn extend(self, field: DstLayout, repr_packed: Option<NonZeroUsize>) -> Self {
        use util::{core_layout::padding_needed_for, max, min};

        // If `repr_packed` is `None`, there are no alignment constraints, and
        // the value can be defaulted to `THEORETICAL_MAX_ALIGN`.
        let max_align = match repr_packed {
            Some(max_align) => max_align,
            None => Self::THEORETICAL_MAX_ALIGN,
        };

        assert!(max_align.is_power_of_two());

        // We use Kani to prove that this method is robust to future increases
        // in Rust's maximum allowed alignment. However, if such a change ever
        // actually occurs, we'd like to be notified via assertion failures.
        #[cfg(not(kani))]
        {
            debug_assert!(self.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get());
            debug_assert!(field.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get());
            if let Some(repr_packed) = repr_packed {
                debug_assert!(repr_packed.get() <= DstLayout::CURRENT_MAX_ALIGN.get());
            }
        }

        // The field's alignment is clamped by `repr_packed` (i.e., the
        // `repr(packed(N))` attribute, if any) [1].
        //
        // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers:
        //
        //   The alignments of each field, for the purpose of positioning
        //   fields, is the smaller of the specified alignment and the alignment
        //   of the field's type.
        let field_align = min(field.align, max_align);

        // The struct's alignment is the maximum of its previous alignment and
        // `field_align`.
        let align = max(self.align, field_align);

        let size_info = match self.size_info {
            // If the layout is already a DST, we panic; DSTs cannot be extended
            // with additional fields.
            SizeInfo::SliceDst(..) => panic!("Cannot extend a DST with additional fields."),

            SizeInfo::Sized { _size: preceding_size } => {
                // Compute the minimum amount of inter-field padding needed to
                // satisfy the field's alignment, and offset of the trailing
                // field. [1]
                //
                // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers:
                //
                //   Inter-field padding is guaranteed to be the minimum
                //   required in order to satisfy each field's (possibly
                //   altered) alignment.
                let padding = padding_needed_for(preceding_size, field_align);

                // This will not panic (and is proven to not panic, with Kani)
                // if the layout components can correspond to a leading layout
                // fragment of a valid Rust type, but may panic otherwise (e.g.,
                // combining or aligning the components would create a size
                // exceeding `isize::MAX`).
                let offset = match preceding_size.checked_add(padding) {
                    Some(offset) => offset,
                    None => panic!("Adding padding to `self`'s size overflows `usize`."),
                };

                match field.size_info {
                    SizeInfo::Sized { _size: field_size } => {
                        // If the trailing field is sized, the resulting layout
                        // will be sized. Its size will be the sum of the
                        // preceeding layout, the size of the new field, and the
                        // size of inter-field padding between the two.
                        //
                        // This will not panic (and is proven with Kani to not
                        // panic) if the layout components can correspond to a
                        // leading layout fragment of a valid Rust type, but may
                        // panic otherwise (e.g., combining or aligning the
                        // components would create a size exceeding
                        // `usize::MAX`).
                        let size = match offset.checked_add(field_size) {
                            Some(size) => size,
                            None => panic!("`field` cannot be appended without the total size overflowing `usize`"),
                        };
                        SizeInfo::Sized { _size: size }
                    }
                    SizeInfo::SliceDst(TrailingSliceLayout {
                        _offset: trailing_offset,
                        _elem_size,
                    }) => {
                        // If the trailing field is dynamically sized, so too
                        // will the resulting layout. The offset of the trailing
                        // slice component is the sum of the offset of the
                        // trailing field and the trailing slice offset within
                        // that field.
                        //
                        // This will not panic (and is proven with Kani to not
                        // panic) if the layout components can correspond to a
                        // leading layout fragment of a valid Rust type, but may
                        // panic otherwise (e.g., combining or aligning the
                        // components would create a size exceeding
                        // `usize::MAX`).
                        let offset = match offset.checked_add(trailing_offset) {
                            Some(offset) => offset,
                            None => panic!("`field` cannot be appended without the total size overflowing `usize`"),
                        };
                        SizeInfo::SliceDst(TrailingSliceLayout { _offset: offset, _elem_size })
                    }
                }
            }
        };

        DstLayout { align, size_info }
    }

    /// Like `Layout::pad_to_align`, this routine rounds the size of this layout
    /// up to the nearest multiple of this type's alignment or `repr_packed`
    /// (whichever is less). This method leaves DST layouts unchanged, since the
    /// trailing padding of DSTs is computed at runtime.
    ///
    /// In order to match the layout of a `#[repr(C)]` struct, this method
    /// should be invoked after the invocations of [`DstLayout::extend`]. If
    /// `self` corresponds to a type marked with `repr(packed(N))`, then
    /// `repr_packed` should be set to `Some(N)`, otherwise `None`.
    ///
    /// This method cannot be used to match the layout of a record with the
    /// default representation, as that representation is mostly unspecified.
    ///
    /// # Safety
    ///
    /// If a (potentially hypothetical) valid `repr(C)` type begins with fields
    /// whose layout are `self` followed only by zero or more bytes of trailing
    /// padding (not included in `self`), then unsafe code may rely on
    /// `self.pad_to_align(repr_packed)` producing a layout that correctly
    /// encapsulates the layout of that type.
    ///
    /// We make no guarantees to the behavior of this method if `self` cannot
    /// appear in a valid Rust type (e.g., because the addition of trailing
    /// padding would lead to a size larger than `isize::MAX`).
    #[doc(hidden)]
    #[inline]
    pub const fn pad_to_align(self) -> Self {
        use util::core_layout::padding_needed_for;

        let size_info = match self.size_info {
            // For sized layouts, we add the minimum amount of trailing padding
            // needed to satisfy alignment.
            SizeInfo::Sized { _size: unpadded_size } => {
                let padding = padding_needed_for(unpadded_size, self.align);
                let size = match unpadded_size.checked_add(padding) {
                    Some(size) => size,
                    None => panic!("Adding padding caused size to overflow `usize`."),
                };
                SizeInfo::Sized { _size: size }
            }
            // For DST layouts, trailing padding depends on the length of the
            // trailing DST and is computed at runtime. This does not alter the
            // offset or element size of the layout, so we leave `size_info`
            // unchanged.
            size_info @ SizeInfo::SliceDst(_) => size_info,
        };

        DstLayout { align: self.align, size_info }
    }

    /// Validates that a cast is sound from a layout perspective.
    ///
    /// Validates that the size and alignment requirements of a type with the
    /// layout described in `self` would not be violated by performing a
    /// `cast_type` cast from a pointer with address `addr` which refers to a
    /// memory region of size `bytes_len`.
    ///
    /// If the cast is valid, `validate_cast_and_convert_metadata` returns
    /// `(elems, split_at)`. If `self` describes a dynamically-sized type, then
    /// `elems` is the maximum number of trailing slice elements for which a
    /// cast would be valid (for sized types, `elem` is meaningless and should
    /// be ignored). `split_at` is the index at which to split the memory region
    /// in order for the prefix (suffix) to contain the result of the cast, and
    /// in order for the remaining suffix (prefix) to contain the leftover
    /// bytes.
    ///
    /// There are three conditions under which a cast can fail:
    /// - The smallest possible value for the type is larger than the provided
    ///   memory region
    /// - A prefix cast is requested, and `addr` does not satisfy `self`'s
    ///   alignment requirement
    /// - A suffix cast is requested, and `addr + bytes_len` does not satisfy
    ///   `self`'s alignment requirement (as a consequence, since all instances
    ///   of the type are a multiple of its alignment, no size for the type will
    ///   result in a starting address which is properly aligned)
    ///
    /// # Safety
    ///
    /// The caller may assume that this implementation is correct, and may rely
    /// on that assumption for the soundness of their code. In particular, the
    /// caller may assume that, if `validate_cast_and_convert_metadata` returns
    /// `Some((elems, split_at))`, then:
    /// - A pointer to the type (for dynamically sized types, this includes
    ///   `elems` as its pointer metadata) describes an object of size `size <=
    ///   bytes_len`
    /// - If this is a prefix cast:
    ///   - `addr` satisfies `self`'s alignment
    ///   - `size == split_at`
    /// - If this is a suffix cast:
    ///   - `split_at == bytes_len - size`
    ///   - `addr + split_at` satisfies `self`'s alignment
    ///
    /// Note that this method does *not* ensure that a pointer constructed from
    /// its return values will be a valid pointer. In particular, this method
    /// does not reason about `isize` overflow, which is a requirement of many
    /// Rust pointer APIs, and may at some point be determined to be a validity
    /// invariant of pointer types themselves. This should never be a problem so
    /// long as the arguments to this method are derived from a known-valid
    /// pointer (e.g., one derived from a safe Rust reference), but it is
    /// nonetheless the caller's responsibility to justify that pointer
    /// arithmetic will not overflow based on a safety argument *other than* the
    /// mere fact that this method returned successfully.
    ///
    /// # Panics
    ///
    /// `validate_cast_and_convert_metadata` will panic if `self` describes a
    /// DST whose trailing slice element is zero-sized.
    ///
    /// If `addr + bytes_len` overflows `usize`,
    /// `validate_cast_and_convert_metadata` may panic, or it may return
    /// incorrect results. No guarantees are made about when
    /// `validate_cast_and_convert_metadata` will panic. The caller should not
    /// rely on `validate_cast_and_convert_metadata` panicking in any particular
    /// condition, even if `debug_assertions` are enabled.
    #[allow(unused)]
    const fn validate_cast_and_convert_metadata(
        &self,
        addr: usize,
        bytes_len: usize,
        cast_type: _CastType,
    ) -> Option<(usize, usize)> {
        // `debug_assert!`, but with `#[allow(clippy::arithmetic_side_effects)]`.
        macro_rules! __debug_assert {
            ($e:expr $(, $msg:expr)?) => {
                debug_assert!({
                    #[allow(clippy::arithmetic_side_effects)]
                    let e = $e;
                    e
                } $(, $msg)?);
            };
        }

        // Note that, in practice, `self` is always a compile-time constant. We
        // do this check earlier than needed to ensure that we always panic as a
        // result of bugs in the program (such as calling this function on an
        // invalid type) instead of allowing this panic to be hidden if the cast
        // would have failed anyway for runtime reasons (such as a too-small
        // memory region).
        //
        // TODO(#67): Once our MSRV is 1.65, use let-else:
        // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements
        let size_info = match self.size_info.try_to_nonzero_elem_size() {
            Some(size_info) => size_info,
            None => panic!("attempted to cast to slice type with zero-sized element"),
        };

        // Precondition
        __debug_assert!(addr.checked_add(bytes_len).is_some(), "`addr` + `bytes_len` > usize::MAX");

        // Alignment checks go in their own block to avoid introducing variables
        // into the top-level scope.
        {
            // We check alignment for `addr` (for prefix casts) or `addr +
            // bytes_len` (for suffix casts). For a prefix cast, the correctness
            // of this check is trivial - `addr` is the address the object will
            // live at.
            //
            // For a suffix cast, we know that all valid sizes for the type are
            // a multiple of the alignment (and by safety precondition, we know
            // `DstLayout` may only describe valid Rust types). Thus, a
            // validly-sized instance which lives at a validly-aligned address
            // must also end at a validly-aligned address. Thus, if the end
            // address for a suffix cast (`addr + bytes_len`) is not aligned,
            // then no valid start address will be aligned either.
            let offset = match cast_type {
                _CastType::_Prefix => 0,
                _CastType::_Suffix => bytes_len,
            };

            // Addition is guaranteed not to overflow because `offset <=
            // bytes_len`, and `addr + bytes_len <= usize::MAX` is a
            // precondition of this method. Modulus is guaranteed not to divide
            // by 0 because `align` is non-zero.
            #[allow(clippy::arithmetic_side_effects)]
            if (addr + offset) % self.align.get() != 0 {
                return None;
            }
        }

        let (elems, self_bytes) = match size_info {
            SizeInfo::Sized { _size: size } => {
                if size > bytes_len {
                    return None;
                }
                (0, size)
            }
            SizeInfo::SliceDst(TrailingSliceLayout { _offset: offset, _elem_size: elem_size }) => {
                // Calculate the maximum number of bytes that could be consumed
                // - any number of bytes larger than this will either not be a
                // multiple of the alignment, or will be larger than
                // `bytes_len`.
                let max_total_bytes =
                    util::round_down_to_next_multiple_of_alignment(bytes_len, self.align);
                // Calculate the maximum number of bytes that could be consumed
                // by the trailing slice.
                //
                // TODO(#67): Once our MSRV is 1.65, use let-else:
                // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements
                let max_slice_and_padding_bytes = match max_total_bytes.checked_sub(offset) {
                    Some(max) => max,
                    // `bytes_len` too small even for 0 trailing slice elements.
                    None => return None,
                };

                // Calculate the number of elements that fit in
                // `max_slice_and_padding_bytes`; any remaining bytes will be
                // considered padding.
                //
                // Guaranteed not to divide by zero: `elem_size` is non-zero.
                #[allow(clippy::arithmetic_side_effects)]
                let elems = max_slice_and_padding_bytes / elem_size.get();
                // Guaranteed not to overflow on multiplication: `usize::MAX >=
                // max_slice_and_padding_bytes >= (max_slice_and_padding_bytes /
                // elem_size) * elem_size`.
                //
                // Guaranteed not to overflow on addition:
                // - max_slice_and_padding_bytes == max_total_bytes - offset
                // - elems * elem_size <= max_slice_and_padding_bytes == max_total_bytes - offset
                // - elems * elem_size + offset <= max_total_bytes <= usize::MAX
                #[allow(clippy::arithmetic_side_effects)]
                let without_padding = offset + elems * elem_size.get();
                // `self_bytes` is equal to the offset bytes plus the bytes
                // consumed by the trailing slice plus any padding bytes
                // required to satisfy the alignment. Note that we have computed
                // the maximum number of trailing slice elements that could fit
                // in `self_bytes`, so any padding is guaranteed to be less than
                // the size of an extra element.
                //
                // Guaranteed not to overflow:
                // - By previous comment: without_padding == elems * elem_size +
                //   offset <= max_total_bytes
                // - By construction, `max_total_bytes` is a multiple of
                //   `self.align`.
                // - At most, adding padding needed to round `without_padding`
                //   up to the next multiple of the alignment will bring
                //   `self_bytes` up to `max_total_bytes`.
                #[allow(clippy::arithmetic_side_effects)]
                let self_bytes = without_padding
                    + util::core_layout::padding_needed_for(without_padding, self.align);
                (elems, self_bytes)
            }
        };

        __debug_assert!(self_bytes <= bytes_len);

        let split_at = match cast_type {
            _CastType::_Prefix => self_bytes,
            // Guaranteed not to underflow:
            // - In the `Sized` branch, only returns `size` if `size <=
            //   bytes_len`.
            // - In the `SliceDst` branch, calculates `self_bytes <=
            //   max_toatl_bytes`, which is upper-bounded by `bytes_len`.
            #[allow(clippy::arithmetic_side_effects)]
            _CastType::_Suffix => bytes_len - self_bytes,
        };

        Some((elems, split_at))
    }
}

/// A trait which carries information about a type's layout that is used by the
/// internals of this crate.
///
/// This trait is not meant for consumption by code outside of this crate. While
/// the normal semver stability guarantees apply with respect to which types
/// implement this trait and which trait implementations are implied by this
/// trait, no semver stability guarantees are made regarding its internals; they
/// may change at any time, and code which makes use of them may break.
///
/// # Safety
///
/// This trait does not convey any safety guarantees to code outside this crate.
#[doc(hidden)] // TODO: Remove this once KnownLayout is used by other APIs
pub unsafe trait KnownLayout {
    // The `Self: Sized` bound makes it so that `KnownLayout` can still be
    // object safe. It's not currently object safe thanks to `const LAYOUT`, and
    // it likely won't be in the future, but there's no reason not to be
    // forwards-compatible with object safety.
    #[doc(hidden)]
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized;

    #[doc(hidden)]
    const LAYOUT: DstLayout;

    /// SAFETY: The returned pointer has the same address and provenance as
    /// `bytes`. If `Self` is a DST, the returned pointer's referent has `elems`
    /// elements in its trailing slice. If `Self` is sized, `elems` is ignored.
    #[doc(hidden)]
    fn raw_from_ptr_len(bytes: NonNull<u8>, elems: usize) -> NonNull<Self>;
}

// SAFETY: Delegates safety to `DstLayout::for_slice`.
unsafe impl<T: KnownLayout> KnownLayout for [T] {
    #[allow(clippy::missing_inline_in_public_items)]
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized,
    {
    }
    const LAYOUT: DstLayout = DstLayout::for_slice::<T>();

    // SAFETY: `.cast` preserves address and provenance. The returned pointer
    // refers to an object with `elems` elements by construction.
    #[inline(always)]
    fn raw_from_ptr_len(data: NonNull<u8>, elems: usize) -> NonNull<Self> {
        // TODO(#67): Remove this allow. See NonNullExt for more details.
        #[allow(unstable_name_collisions)]
        NonNull::slice_from_raw_parts(data.cast::<T>(), elems)
    }
}

#[rustfmt::skip]
impl_known_layout!(
    (),
    u8, i8, u16, i16, u32, i32, u64, i64, u128, i128, usize, isize, f32, f64,
    bool, char,
    NonZeroU8, NonZeroI8, NonZeroU16, NonZeroI16, NonZeroU32, NonZeroI32,
    NonZeroU64, NonZeroI64, NonZeroU128, NonZeroI128, NonZeroUsize, NonZeroIsize
);
#[rustfmt::skip]
impl_known_layout!(
    T         => Option<T>,
    T: ?Sized => PhantomData<T>,
    T         => Wrapping<T>,
    T         => MaybeUninit<T>,
    T: ?Sized => *const T,
    T: ?Sized => *mut T,
);
impl_known_layout!(const N: usize, T => [T; N]);

safety_comment! {
    /// SAFETY:
    /// `str` and `ManuallyDrop<[T]>` [1] have the same representations as
    /// `[u8]` and `[T]` repsectively. `str` has different bit validity than
    /// `[u8]`, but that doesn't affect the soundness of this impl.
    ///
    /// [1] Per https://doc.rust-lang.org/nightly/core/mem/struct.ManuallyDrop.html:
    ///
    ///   `ManuallyDrop<T>` is guaranteed to have the same layout and bit
    ///   validity as `T`
    ///
    /// TODO(#429):
    /// -  Add quotes from docs.
    /// -  Once [1] (added in
    /// https://github.com/rust-lang/rust/pull/115522) is available on stable,
    /// quote the stable docs instead of the nightly docs.
    unsafe_impl_known_layout!(#[repr([u8])] str);
    unsafe_impl_known_layout!(T: ?Sized + KnownLayout => #[repr(T)] ManuallyDrop<T>);
}

/// Analyzes whether a type is [`FromZeroes`].
///
/// This derive analyzes, at compile time, whether the annotated type satisfies
/// the [safety conditions] of `FromZeroes` and implements `FromZeroes` if it is
/// sound to do so. This derive can be applied to structs, enums, and unions;
/// e.g.:
///
/// ```
/// # use zerocopy_derive::FromZeroes;
/// #[derive(FromZeroes)]
/// struct MyStruct {
/// # /*
///     ...
/// # */
/// }
///
/// #[derive(FromZeroes)]
/// #[repr(u8)]
/// enum MyEnum {
/// #   Variant0,
/// # /*
///     ...
/// # */
/// }
///
/// #[derive(FromZeroes)]
/// union MyUnion {
/// #   variant: u8,
/// # /*
///     ...
/// # */
/// }
/// ```
///
/// [safety conditions]: trait@FromZeroes#safety
///
/// # Analysis
///
/// *This section describes, roughly, the analysis performed by this derive to
/// determine whether it is sound to implement `FromZeroes` for a given type.
/// Unless you are modifying the implementation of this derive, or attempting to
/// manually implement `FromZeroes` for a type yourself, you don't need to read
/// this section.*
///
/// If a type has the following properties, then this derive can implement
/// `FromZeroes` for that type:
///
/// - If the type is a struct, all of its fields must be `FromZeroes`.
/// - If the type is an enum, it must be C-like (meaning that all variants have
///   no fields) and it must have a variant with a discriminant of `0`. See [the
///   reference] for a description of how discriminant values are chosen.
/// - The type must not contain any [`UnsafeCell`]s (this is required in order
///   for it to be sound to construct a `&[u8]` and a `&T` to the same region of
///   memory). The type may contain references or pointers to `UnsafeCell`s so
///   long as those values can themselves be initialized from zeroes
///   (`FromZeroes` is not currently implemented for, e.g.,
///   `Option<&UnsafeCell<_>>`, but it could be one day).
///
/// This analysis is subject to change. Unsafe code may *only* rely on the
/// documented [safety conditions] of `FromZeroes`, and must *not* rely on the
/// implementation details of this derive.
///
/// [the reference]: https://doc.rust-lang.org/reference/items/enumerations.html#custom-discriminant-values-for-fieldless-enumerations
/// [`UnsafeCell`]: core::cell::UnsafeCell
///
/// ## Why isn't an explicit representation required for structs?
///
/// Neither this derive, nor the [safety conditions] of `FromZeroes`, requires
/// that structs are marked with `#[repr(C)]`.
///
/// Per the [Rust reference](reference),
///
/// > The representation of a type can change the padding between fields, but
/// does not change the layout of the fields themselves.
///
/// [reference]: https://doc.rust-lang.org/reference/type-layout.html#representations
///
/// Since the layout of structs only consists of padding bytes and field bytes,
/// a struct is soundly `FromZeroes` if:
/// 1. its padding is soundly `FromZeroes`, and
/// 2. its fields are soundly `FromZeroes`.
///
/// The answer to the first question is always yes: padding bytes do not have
/// any validity constraints. A [discussion] of this question in the Unsafe Code
/// Guidelines Working Group concluded that it would be virtually unimaginable
/// for future versions of rustc to add validity constraints to padding bytes.
///
/// [discussion]: https://github.com/rust-lang/unsafe-code-guidelines/issues/174
///
/// Whether a struct is soundly `FromZeroes` therefore solely depends on whether
/// its fields are `FromZeroes`.
// TODO(#146): Document why we don't require an enum to have an explicit `repr`
// attribute.
#[cfg(any(feature = "derive", test))]
#[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))]
pub use zerocopy_derive::FromZeroes;

/// Types whose validity can be checked at runtime, allowing them to be
/// conditionally converted from byte slices.
///
/// WARNING: Do not implement this trait yourself! Instead, use
/// `#[derive(TryFromBytes)]`.
///
/// `TryFromBytes` types can safely be deserialized from an untrusted sequence
/// of bytes by performing a runtime check that the byte sequence contains a
/// valid instance of `Self`.
///
/// `TryFromBytes` is ignorant of byte order. For byte order-aware types, see
/// the [`byteorder`] module.
///
/// # What is a "valid instance"?
///
/// In Rust, each type has *bit validity*, which refers to the set of bit
/// patterns which may appear in an instance of that type. It is impossible for
/// safe Rust code to produce values which violate bit validity (ie, values
/// outside of the "valid" set of bit patterns). If `unsafe` code produces an
/// invalid value, this is considered [undefined behavior].
///
/// Rust's bit validity rules are currently being decided, which means that some
/// types have three classes of bit patterns: those which are definitely valid,
/// and whose validity is documented in the language; those which may or may not
/// be considered valid at some point in the future; and those which are
/// definitely invalid.
///
/// Zerocopy takes a conservative approach, and only considers a bit pattern to
/// be valid if its validity is a documenteed guarantee provided by the
/// language.
///
/// For most use cases, Rust's current guarantees align with programmers'
/// intuitions about what ought to be valid. As a result, zerocopy's
/// conservatism should not affect most users. One notable exception is unions,
/// whose bit validity is very up in the air; zerocopy does not permit
/// implementing `TryFromBytes` for any union type.
///
/// If you are negatively affected by lack of support for a particular type,
/// we encourage you to let us know by [filing an issue][github-repo].
///
/// # Safety
///
/// On its own, `T: TryFromBytes` does not make any guarantees about the layout
/// or representation of `T`. It merely provides the ability to perform a
/// validity check at runtime via methods like [`try_from_ref`].
///
/// Currently, it is not possible to stably implement `TryFromBytes` other than
/// by using `#[derive(TryFromBytes)]`. While there are `#[doc(hidden)]` items
/// on this trait that provide well-defined safety invariants, no stability
/// guarantees are made with respect to these items. In particular, future
/// releases of zerocopy may make backwards-breaking changes to these items,
/// including changes that only affect soundness, which may cause code which
/// uses those items to silently become unsound.
///
/// [undefined behavior]: https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html
/// [github-repo]: https://github.com/google/zerocopy
/// [`try_from_ref`]: TryFromBytes::try_from_ref
// TODO(#5): Update `try_from_ref` doc link once it exists
#[doc(hidden)]
pub unsafe trait TryFromBytes {
    /// Does a given memory range contain a valid instance of `Self`?
    ///
    /// # Safety
    ///
    /// ## Preconditions
    ///
    /// The memory referenced by `candidate` may only be accessed via reads for
    /// the duration of this method call. This prohibits writes through mutable
    /// references and through [`UnsafeCell`]s. There may exist immutable
    /// references to the same memory which contain `UnsafeCell`s so long as:
    /// - Those `UnsafeCell`s exist at the same byte ranges as `UnsafeCell`s in
    ///   `Self`. This is a bidirectional property: `Self` may not contain
    ///   `UnsafeCell`s where other references to the same memory do not, and
    ///   vice-versa.
    /// - Those `UnsafeCell`s are never used to perform mutation for the
    ///   duration of this method call.
    ///
    /// The memory referenced by `candidate` may not be referenced by any
    /// mutable references even if these references are not used to perform
    /// mutation.
    ///
    /// `candidate` is not required to refer to a valid `Self`. However, it must
    /// satisfy the requirement that uninitialized bytes may only be present
    /// where it is possible for them to be present in `Self`. This is a dynamic
    /// property: if, at a particular byte offset, a valid enum discriminant is
    /// set, the subsequent bytes may only have uninitialized bytes as
    /// specificed by the corresponding enum.
    ///
    /// Formally, given `len = size_of_val_raw(candidate)`, at every byte
    /// offset, `b`, in the range `[0, len)`:
    /// - If, in all instances `s: Self` of length `len`, the byte at offset `b`
    ///   in `s` is initialized, then the byte at offset `b` within `*candidate`
    ///   must be initialized.
    /// - Let `c` be the contents of the byte range `[0, b)` in `*candidate`.
    ///   Let `S` be the subset of valid instances of `Self` of length `len`
    ///   which contain `c` in the offset range `[0, b)`. If, for all instances
    ///   of `s: Self` in `S`, the byte at offset `b` in `s` is initialized,
    ///   then the byte at offset `b` in `*candidate` must be initialized.
    ///
    ///   Pragmatically, this means that if `*candidate` is guaranteed to
    ///   contain an enum type at a particular offset, and the enum discriminant
    ///   stored in `*candidate` corresponds to a valid variant of that enum
    ///   type, then it is guaranteed that the appropriate bytes of `*candidate`
    ///   are initialized as defined by that variant's bit validity (although
    ///   note that the variant may contain another enum type, in which case the
    ///   same rules apply depending on the state of its discriminant, and so on
    ///   recursively).
    ///
    /// ## Postconditions
    ///
    /// Unsafe code may assume that, if `is_bit_valid(candidate)` returns true,
    /// `*candidate` contains a valid `Self`.
    ///
    /// # Panics
    ///
    /// `is_bit_valid` may panic. Callers are responsible for ensuring that any
    /// `unsafe` code remains sound even in the face of `is_bit_valid`
    /// panicking. (We support user-defined validation routines; so long as
    /// these routines are not required to be `unsafe`, there is no way to
    /// ensure that these do not generate panics.)
    ///
    /// [`UnsafeCell`]: core::cell::UnsafeCell
    #[doc(hidden)]
    unsafe fn is_bit_valid(candidate: Ptr<'_, Self>) -> bool;

    /// Attempts to interpret a byte slice as a `Self`.
    ///
    /// `try_from_ref` validates that `bytes` contains a valid `Self`, and that
    /// it satisfies `Self`'s alignment requirement. If it does, then `bytes` is
    /// reinterpreted as a `Self`.
    ///
    /// Note that Rust's bit validity rules are still being decided. As such,
    /// there exist types whose bit validity is ambiguous. See the
    /// `TryFromBytes` docs for a discussion of how these cases are handled.
    // TODO(#251): In a future in which we distinguish between `FromBytes` and
    // `RefFromBytes`, this requires `where Self: RefFromBytes` to disallow
    // interior mutability.
    #[inline]
    #[doc(hidden)] // TODO(#5): Finalize name before remove this attribute.
    fn try_from_ref(bytes: &[u8]) -> Option<&Self>
    where
        Self: KnownLayout,
    {
        let maybe_self = Ptr::from(bytes).try_cast_into_no_leftover::<Self>()?;

        // SAFETY:
        // - Since `bytes` is an immutable reference, we know that no mutable
        //   references exist to this memory region.
        // - Since `[u8]` contains no `UnsafeCell`s, we know there are no
        //   `&UnsafeCell` references to this memory region.
        // - Since we don't permit implementing `TryFromBytes` for types which
        //   contain `UnsafeCell`s, there are no `UnsafeCell`s in `Self`, and so
        //   the requirement that all references contain `UnsafeCell`s at the
        //   same offsets is trivially satisfied.
        // - All bytes of `bytes` are initialized.
        //
        // This call may panic. If that happens, it doesn't cause any soundness
        // issues, as we have not generated any invalid state which we need to
        // fix before returning.
        if unsafe { !Self::is_bit_valid(maybe_self) } {
            return None;
        }

        // SAFETY:
        // - Preconditions for `as_ref`:
        //   - `is_bit_valid` guarantees that `*maybe_self` contains a valid
        //     `Self`. Since `&[u8]` does not permit interior mutation, this
        //     cannot be invalidated after this method returns.
        //   - Since the argument and return types are immutable references,
        //     Rust will prevent the caller from producing any mutable
        //     references to the same memory region.
        //   - Since `Self` is not allowed to contain any `UnsafeCell`s and the
        //     same is true of `[u8]`, interior mutation is not possible. Thus,
        //     no mutation is possible. For the same reason, there is no
        //     mismatch between the two types in terms of which byte ranges are
        //     referenced as `UnsafeCell`s.
        // - Since interior mutation isn't possible within `Self`, there's no
        //   way for the returned reference to be used to modify the byte range,
        //   and thus there's no way for the returned reference to be used to
        //   write an invalid `[u8]` which would be observable via the original
        //   `&[u8]`.
        Some(unsafe { maybe_self.as_ref() })
    }
}

/// Types for which a sequence of bytes all set to zero represents a valid
/// instance of the type.
///
/// Any memory region of the appropriate length which is guaranteed to contain
/// only zero bytes can be viewed as any `FromZeroes` type with no runtime
/// overhead. This is useful whenever memory is known to be in a zeroed state,
/// such memory returned from some allocation routines.
///
/// # Implementation
///
/// **Do not implement this trait yourself!** Instead, use
/// [`#[derive(FromZeroes)]`][derive] (requires the `derive` Cargo feature);
/// e.g.:
///
/// ```
/// # use zerocopy_derive::FromZeroes;
/// #[derive(FromZeroes)]
/// struct MyStruct {
/// # /*
///     ...
/// # */
/// }
///
/// #[derive(FromZeroes)]
/// #[repr(u8)]
/// enum MyEnum {
/// #   Variant0,
/// # /*
///     ...
/// # */
/// }
///
/// #[derive(FromZeroes)]
/// union MyUnion {
/// #   variant: u8,
/// # /*
///     ...
/// # */
/// }
/// ```
///
/// This derive performs a sophisticated, compile-time safety analysis to
/// determine whether a type is `FromZeroes`.
///
/// # Safety
///
/// *This section describes what is required in order for `T: FromZeroes`, and
/// what unsafe code may assume of such types. If you don't plan on implementing
/// `FromZeroes` manually, and you don't plan on writing unsafe code that
/// operates on `FromZeroes` types, then you don't need to read this section.*
///
/// If `T: FromZeroes`, then unsafe code may assume that:
/// - It is sound to treat any initialized sequence of zero bytes of length
///   `size_of::<T>()` as a `T`.
/// - Given `b: &[u8]` where `b.len() == size_of::<T>()`, `b` is aligned to
///   `align_of::<T>()`, and `b` contains only zero bytes, it is sound to
///   construct a `t: &T` at the same address as `b`, and it is sound for both
///   `b` and `t` to be live at the same time.
///
/// If a type is marked as `FromZeroes` which violates this contract, it may
/// cause undefined behavior.
///
/// `#[derive(FromZeroes)]` only permits [types which satisfy these
/// requirements][derive-analysis].
///
#[cfg_attr(
    feature = "derive",
    doc = "[derive]: zerocopy_derive::FromZeroes",
    doc = "[derive-analysis]: zerocopy_derive::FromZeroes#analysis"
)]
#[cfg_attr(
    not(feature = "derive"),
    doc = concat!("[derive]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.FromZeroes.html"),
    doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.FromZeroes.html#analysis"),
)]
pub unsafe trait FromZeroes {
    // The `Self: Sized` bound makes it so that `FromZeroes` is still object
    // safe.
    #[doc(hidden)]
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized;

    /// Overwrites `self` with zeroes.
    ///
    /// Sets every byte in `self` to 0. While this is similar to doing `*self =
    /// Self::new_zeroed()`, it differs in that `zero` does not semantically
    /// drop the current value and replace it with a new one - it simply
    /// modifies the bytes of the existing value.
    ///
    /// # Examples
    ///
    /// ```
    /// # use zerocopy::FromZeroes;
    /// # use zerocopy_derive::*;
    /// #
    /// #[derive(FromZeroes)]
    /// #[repr(C)]
    /// struct PacketHeader {
    ///     src_port: [u8; 2],
    ///     dst_port: [u8; 2],
    ///     length: [u8; 2],
    ///     checksum: [u8; 2],
    /// }
    ///
    /// let mut header = PacketHeader {
    ///     src_port: 100u16.to_be_bytes(),
    ///     dst_port: 200u16.to_be_bytes(),
    ///     length: 300u16.to_be_bytes(),
    ///     checksum: 400u16.to_be_bytes(),
    /// };
    ///
    /// header.zero();
    ///
    /// assert_eq!(header.src_port, [0, 0]);
    /// assert_eq!(header.dst_port, [0, 0]);
    /// assert_eq!(header.length, [0, 0]);
    /// assert_eq!(header.checksum, [0, 0]);
    /// ```
    #[inline(always)]
    fn zero(&mut self) {
        let slf: *mut Self = self;
        let len = mem::size_of_val(self);
        // SAFETY:
        // - `self` is guaranteed by the type system to be valid for writes of
        //   size `size_of_val(self)`.
        // - `u8`'s alignment is 1, and thus `self` is guaranteed to be aligned
        //   as required by `u8`.
        // - Since `Self: FromZeroes`, the all-zeroes instance is a valid
        //   instance of `Self.`
        //
        // TODO(#429): Add references to docs and quotes.
        unsafe { ptr::write_bytes(slf.cast::<u8>(), 0, len) };
    }

    /// Creates an instance of `Self` from zeroed bytes.
    ///
    /// # Examples
    ///
    /// ```
    /// # use zerocopy::FromZeroes;
    /// # use zerocopy_derive::*;
    /// #
    /// #[derive(FromZeroes)]
    /// #[repr(C)]
    /// struct PacketHeader {
    ///     src_port: [u8; 2],
    ///     dst_port: [u8; 2],
    ///     length: [u8; 2],
    ///     checksum: [u8; 2],
    /// }
    ///
    /// let header: PacketHeader = FromZeroes::new_zeroed();
    ///
    /// assert_eq!(header.src_port, [0, 0]);
    /// assert_eq!(header.dst_port, [0, 0]);
    /// assert_eq!(header.length, [0, 0]);
    /// assert_eq!(header.checksum, [0, 0]);
    /// ```
    #[inline(always)]
    fn new_zeroed() -> Self
    where
        Self: Sized,
    {
        // SAFETY: `FromZeroes` says that the all-zeroes bit pattern is legal.
        unsafe { mem::zeroed() }
    }

    /// Creates a `Box<Self>` from zeroed bytes.
    ///
    /// This function is useful for allocating large values on the heap and
    /// zero-initializing them, without ever creating a temporary instance of
    /// `Self` on the stack. For example, `<[u8; 1048576]>::new_box_zeroed()`
    /// will allocate `[u8; 1048576]` directly on the heap; it does not require
    /// storing `[u8; 1048576]` in a temporary variable on the stack.
    ///
    /// On systems that use a heap implementation that supports allocating from
    /// pre-zeroed memory, using `new_box_zeroed` (or related functions) may
    /// have performance benefits.
    ///
    /// Note that `Box<Self>` can be converted to `Arc<Self>` and other
    /// container types without reallocation.
    ///
    /// # Panics
    ///
    /// Panics if allocation of `size_of::<Self>()` bytes fails.
    #[cfg(feature = "alloc")]
    #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
    #[inline]
    fn new_box_zeroed() -> Box<Self>
    where
        Self: Sized,
    {
        // If `T` is a ZST, then return a proper boxed instance of it. There is
        // no allocation, but `Box` does require a correct dangling pointer.
        let layout = Layout::new::<Self>();
        if layout.size() == 0 {
            return Box::new(Self::new_zeroed());
        }

        // TODO(#429): Add a "SAFETY" comment and remove this `allow`.
        #[allow(clippy::undocumented_unsafe_blocks)]
        let ptr = unsafe { alloc::alloc::alloc_zeroed(layout).cast::<Self>() };
        if ptr.is_null() {
            alloc::alloc::handle_alloc_error(layout);
        }
        // TODO(#429): Add a "SAFETY" comment and remove this `allow`.
        #[allow(clippy::undocumented_unsafe_blocks)]
        unsafe {
            Box::from_raw(ptr)
        }
    }

    /// Creates a `Box<[Self]>` (a boxed slice) from zeroed bytes.
    ///
    /// This function is useful for allocating large values of `[Self]` on the
    /// heap and zero-initializing them, without ever creating a temporary
    /// instance of `[Self; _]` on the stack. For example,
    /// `u8::new_box_slice_zeroed(1048576)` will allocate the slice directly on
    /// the heap; it does not require storing the slice on the stack.
    ///
    /// On systems that use a heap implementation that supports allocating from
    /// pre-zeroed memory, using `new_box_slice_zeroed` may have performance
    /// benefits.
    ///
    /// If `Self` is a zero-sized type, then this function will return a
    /// `Box<[Self]>` that has the correct `len`. Such a box cannot contain any
    /// actual information, but its `len()` property will report the correct
    /// value.
    ///
    /// # Panics
    ///
    /// * Panics if `size_of::<Self>() * len` overflows.
    /// * Panics if allocation of `size_of::<Self>() * len` bytes fails.
    #[cfg(feature = "alloc")]
    #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
    #[inline]
    fn new_box_slice_zeroed(len: usize) -> Box<[Self]>
    where
        Self: Sized,
    {
        let size = mem::size_of::<Self>()
            .checked_mul(len)
            .expect("mem::size_of::<Self>() * len overflows `usize`");
        let align = mem::align_of::<Self>();
        // On stable Rust versions <= 1.64.0, `Layout::from_size_align` has a
        // bug in which sufficiently-large allocations (those which, when
        // rounded up to the alignment, overflow `isize`) are not rejected,
        // which can cause undefined behavior. See #64 for details.
        //
        // TODO(#67): Once our MSRV is > 1.64.0, remove this assertion.
        #[allow(clippy::as_conversions)]
        let max_alloc = (isize::MAX as usize).saturating_sub(align);
        assert!(size <= max_alloc);
        // TODO(https://github.com/rust-lang/rust/issues/55724): Use
        // `Layout::repeat` once it's stabilized.
        let layout =
            Layout::from_size_align(size, align).expect("total allocation size overflows `isize`");

        let ptr = if layout.size() != 0 {
            // TODO(#429): Add a "SAFETY" comment and remove this `allow`.
            #[allow(clippy::undocumented_unsafe_blocks)]
            let ptr = unsafe { alloc::alloc::alloc_zeroed(layout).cast::<Self>() };
            if ptr.is_null() {
                alloc::alloc::handle_alloc_error(layout);
            }
            ptr
        } else {
            // `Box<[T]>` does not allocate when `T` is zero-sized or when `len`
            // is zero, but it does require a non-null dangling pointer for its
            // allocation.
            NonNull::<Self>::dangling().as_ptr()
        };

        // TODO(#429): Add a "SAFETY" comment and remove this `allow`.
        #[allow(clippy::undocumented_unsafe_blocks)]
        unsafe {
            Box::from_raw(slice::from_raw_parts_mut(ptr, len))
        }
    }

    /// Creates a `Vec<Self>` from zeroed bytes.
    ///
    /// This function is useful for allocating large values of `Vec`s and
    /// zero-initializing them, without ever creating a temporary instance of
    /// `[Self; _]` (or many temporary instances of `Self`) on the stack. For
    /// example, `u8::new_vec_zeroed(1048576)` will allocate directly on the
    /// heap; it does not require storing intermediate values on the stack.
    ///
    /// On systems that use a heap implementation that supports allocating from
    /// pre-zeroed memory, using `new_vec_zeroed` may have performance benefits.
    ///
    /// If `Self` is a zero-sized type, then this function will return a
    /// `Vec<Self>` that has the correct `len`. Such a `Vec` cannot contain any
    /// actual information, but its `len()` property will report the correct
    /// value.
    ///
    /// # Panics
    ///
    /// * Panics if `size_of::<Self>() * len` overflows.
    /// * Panics if allocation of `size_of::<Self>() * len` bytes fails.
    #[cfg(feature = "alloc")]
    #[cfg_attr(doc_cfg, doc(cfg(feature = "new_vec_zeroed")))]
    #[inline(always)]
    fn new_vec_zeroed(len: usize) -> Vec<Self>
    where
        Self: Sized,
    {
        Self::new_box_slice_zeroed(len).into()
    }
}

/// Analyzes whether a type is [`FromBytes`].
///
/// This derive analyzes, at compile time, whether the annotated type satisfies
/// the [safety conditions] of `FromBytes` and implements `FromBytes` if it is
/// sound to do so. This derive can be applied to structs, enums, and unions;
/// e.g.:
///
/// ```
/// # use zerocopy_derive::{FromBytes, FromZeroes};
/// #[derive(FromZeroes, FromBytes)]
/// struct MyStruct {
/// # /*
///     ...
/// # */
/// }
///
/// #[derive(FromZeroes, FromBytes)]
/// #[repr(u8)]
/// enum MyEnum {
/// #   V00, V01, V02, V03, V04, V05, V06, V07, V08, V09, V0A, V0B, V0C, V0D, V0E,
/// #   V0F, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V1A, V1B, V1C, V1D,
/// #   V1E, V1F, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29, V2A, V2B, V2C,
/// #   V2D, V2E, V2F, V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V3A, V3B,
/// #   V3C, V3D, V3E, V3F, V40, V41, V42, V43, V44, V45, V46, V47, V48, V49, V4A,
/// #   V4B, V4C, V4D, V4E, V4F, V50, V51, V52, V53, V54, V55, V56, V57, V58, V59,
/// #   V5A, V5B, V5C, V5D, V5E, V5F, V60, V61, V62, V63, V64, V65, V66, V67, V68,
/// #   V69, V6A, V6B, V6C, V6D, V6E, V6F, V70, V71, V72, V73, V74, V75, V76, V77,
/// #   V78, V79, V7A, V7B, V7C, V7D, V7E, V7F, V80, V81, V82, V83, V84, V85, V86,
/// #   V87, V88, V89, V8A, V8B, V8C, V8D, V8E, V8F, V90, V91, V92, V93, V94, V95,
/// #   V96, V97, V98, V99, V9A, V9B, V9C, V9D, V9E, V9F, VA0, VA1, VA2, VA3, VA4,
/// #   VA5, VA6, VA7, VA8, VA9, VAA, VAB, VAC, VAD, VAE, VAF, VB0, VB1, VB2, VB3,
/// #   VB4, VB5, VB6, VB7, VB8, VB9, VBA, VBB, VBC, VBD, VBE, VBF, VC0, VC1, VC2,
/// #   VC3, VC4, VC5, VC6, VC7, VC8, VC9, VCA, VCB, VCC, VCD, VCE, VCF, VD0, VD1,
/// #   VD2, VD3, VD4, VD5, VD6, VD7, VD8, VD9, VDA, VDB, VDC, VDD, VDE, VDF, VE0,
/// #   VE1, VE2, VE3, VE4, VE5, VE6, VE7, VE8, VE9, VEA, VEB, VEC, VED, VEE, VEF,
/// #   VF0, VF1, VF2, VF3, VF4, VF5, VF6, VF7, VF8, VF9, VFA, VFB, VFC, VFD, VFE,
/// #   VFF,
/// # /*
///     ...
/// # */
/// }
///
/// #[derive(FromZeroes, FromBytes)]
/// union MyUnion {
/// #   variant: u8,
/// # /*
///     ...
/// # */
/// }
/// ```
///
/// [safety conditions]: trait@FromBytes#safety
///
/// # Analysis
///
/// *This section describes, roughly, the analysis performed by this derive to
/// determine whether it is sound to implement `FromBytes` for a given type.
/// Unless you are modifying the implementation of this derive, or attempting to
/// manually implement `FromBytes` for a type yourself, you don't need to read
/// this section.*
///
/// If a type has the following properties, then this derive can implement
/// `FromBytes` for that type:
///
/// - If the type is a struct, all of its fields must be `FromBytes`.
/// - If the type is an enum:
///   - It must be a C-like enum (meaning that all variants have no fields).
///   - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`,
///     `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`).
///   - The maximum number of discriminants must be used (so that every possible
///     bit pattern is a valid one). Be very careful when using the `C`,
///     `usize`, or `isize` representations, as their size is
///     platform-dependent.
/// - The type must not contain any [`UnsafeCell`]s (this is required in order
///   for it to be sound to construct a `&[u8]` and a `&T` to the same region of
///   memory). The type may contain references or pointers to `UnsafeCell`s so
///   long as those values can themselves be initialized from zeroes
///   (`FromBytes` is not currently implemented for, e.g., `Option<*const
///   UnsafeCell<_>>`, but it could be one day).
///
/// [`UnsafeCell`]: core::cell::UnsafeCell
///
/// This analysis is subject to change. Unsafe code may *only* rely on the
/// documented [safety conditions] of `FromBytes`, and must *not* rely on the
/// implementation details of this derive.
///
/// ## Why isn't an explicit representation required for structs?
///
/// Neither this derive, nor the [safety conditions] of `FromBytes`, requires
/// that structs are marked with `#[repr(C)]`.
///
/// Per the [Rust reference](reference),
///
/// > The representation of a type can change the padding between fields, but
/// does not change the layout of the fields themselves.
///
/// [reference]: https://doc.rust-lang.org/reference/type-layout.html#representations
///
/// Since the layout of structs only consists of padding bytes and field bytes,
/// a struct is soundly `FromBytes` if:
/// 1. its padding is soundly `FromBytes`, and
/// 2. its fields are soundly `FromBytes`.
///
/// The answer to the first question is always yes: padding bytes do not have
/// any validity constraints. A [discussion] of this question in the Unsafe Code
/// Guidelines Working Group concluded that it would be virtually unimaginable
/// for future versions of rustc to add validity constraints to padding bytes.
///
/// [discussion]: https://github.com/rust-lang/unsafe-code-guidelines/issues/174
///
/// Whether a struct is soundly `FromBytes` therefore solely depends on whether
/// its fields are `FromBytes`.
// TODO(#146): Document why we don't require an enum to have an explicit `repr`
// attribute.
#[cfg(any(feature = "derive", test))]
#[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))]
pub use zerocopy_derive::FromBytes;

/// Types for which any bit pattern is valid.
///
/// Any memory region of the appropriate length which contains initialized bytes
/// can be viewed as any `FromBytes` type with no runtime overhead. This is
/// useful for efficiently parsing bytes as structured data.
///
/// # Implementation
///
/// **Do not implement this trait yourself!** Instead, use
/// [`#[derive(FromBytes)]`][derive] (requires the `derive` Cargo feature);
/// e.g.:
///
/// ```
/// # use zerocopy_derive::{FromBytes, FromZeroes};
/// #[derive(FromZeroes, FromBytes)]
/// struct MyStruct {
/// # /*
///     ...
/// # */
/// }
///
/// #[derive(FromZeroes, FromBytes)]
/// #[repr(u8)]
/// enum MyEnum {
/// #   V00, V01, V02, V03, V04, V05, V06, V07, V08, V09, V0A, V0B, V0C, V0D, V0E,
/// #   V0F, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V1A, V1B, V1C, V1D,
/// #   V1E, V1F, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29, V2A, V2B, V2C,
/// #   V2D, V2E, V2F, V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V3A, V3B,
/// #   V3C, V3D, V3E, V3F, V40, V41, V42, V43, V44, V45, V46, V47, V48, V49, V4A,
/// #   V4B, V4C, V4D, V4E, V4F, V50, V51, V52, V53, V54, V55, V56, V57, V58, V59,
/// #   V5A, V5B, V5C, V5D, V5E, V5F, V60, V61, V62, V63, V64, V65, V66, V67, V68,
/// #   V69, V6A, V6B, V6C, V6D, V6E, V6F, V70, V71, V72, V73, V74, V75, V76, V77,
/// #   V78, V79, V7A, V7B, V7C, V7D, V7E, V7F, V80, V81, V82, V83, V84, V85, V86,
/// #   V87, V88, V89, V8A, V8B, V8C, V8D, V8E, V8F, V90, V91, V92, V93, V94, V95,
/// #   V96, V97, V98, V99, V9A, V9B, V9C, V9D, V9E, V9F, VA0, VA1, VA2, VA3, VA4,
/// #   VA5, VA6, VA7, VA8, VA9, VAA, VAB, VAC, VAD, VAE, VAF, VB0, VB1, VB2, VB3,
/// #   VB4, VB5, VB6, VB7, VB8, VB9, VBA, VBB, VBC, VBD, VBE, VBF, VC0, VC1, VC2,
/// #   VC3, VC4, VC5, VC6, VC7, VC8, VC9, VCA, VCB, VCC, VCD, VCE, VCF, VD0, VD1,
/// #   VD2, VD3, VD4, VD5, VD6, VD7, VD8, VD9, VDA, VDB, VDC, VDD, VDE, VDF, VE0,
/// #   VE1, VE2, VE3, VE4, VE5, VE6, VE7, VE8, VE9, VEA, VEB, VEC, VED, VEE, VEF,
/// #   VF0, VF1, VF2, VF3, VF4, VF5, VF6, VF7, VF8, VF9, VFA, VFB, VFC, VFD, VFE,
/// #   VFF,
/// # /*
///     ...
/// # */
/// }
///
/// #[derive(FromZeroes, FromBytes)]
/// union MyUnion {
/// #   variant: u8,
/// # /*
///     ...
/// # */
/// }
/// ```
///
/// This derive performs a sophisticated, compile-time safety analysis to
/// determine whether a type is `FromBytes`.
///
/// # Safety
///
/// *This section describes what is required in order for `T: FromBytes`, and
/// what unsafe code may assume of such types. If you don't plan on implementing
/// `FromBytes` manually, and you don't plan on writing unsafe code that
/// operates on `FromBytes` types, then you don't need to read this section.*
///
/// If `T: FromBytes`, then unsafe code may assume that:
/// - It is sound to treat any initialized sequence of bytes of length
///   `size_of::<T>()` as a `T`.
/// - Given `b: &[u8]` where `b.len() == size_of::<T>()`, `b` is aligned to
///   `align_of::<T>()` it is sound to construct a `t: &T` at the same address
///   as `b`, and it is sound for both `b` and `t` to be live at the same time.
///
/// If a type is marked as `FromBytes` which violates this contract, it may
/// cause undefined behavior.
///
/// `#[derive(FromBytes)]` only permits [types which satisfy these
/// requirements][derive-analysis].
///
#[cfg_attr(
    feature = "derive",
    doc = "[derive]: zerocopy_derive::FromBytes",
    doc = "[derive-analysis]: zerocopy_derive::FromBytes#analysis"
)]
#[cfg_attr(
    not(feature = "derive"),
    doc = concat!("[derive]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.FromBytes.html"),
    doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.FromBytes.html#analysis"),
)]
pub unsafe trait FromBytes: FromZeroes {
    // The `Self: Sized` bound makes it so that `FromBytes` is still object
    // safe.
    #[doc(hidden)]
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized;

    /// Interprets the given `bytes` as a `&Self` without copying.
    ///
    /// If `bytes.len() != size_of::<Self>()` or `bytes` is not aligned to
    /// `align_of::<Self>()`, this returns `None`.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::FromBytes;
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(FromZeroes, FromBytes)]
    /// #[repr(C)]
    /// struct PacketHeader {
    ///     src_port: [u8; 2],
    ///     dst_port: [u8; 2],
    ///     length: [u8; 2],
    ///     checksum: [u8; 2],
    /// }
    ///
    /// // These bytes encode a `PacketHeader`.
    /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7].as_slice();
    ///
    /// let header = PacketHeader::ref_from(bytes).unwrap();
    ///
    /// assert_eq!(header.src_port, [0, 1]);
    /// assert_eq!(header.dst_port, [2, 3]);
    /// assert_eq!(header.length, [4, 5]);
    /// assert_eq!(header.checksum, [6, 7]);
    /// ```
    #[inline]
    fn ref_from(bytes: &[u8]) -> Option<&Self>
    where
        Self: Sized,
    {
        Ref::<&[u8], Self>::new(bytes).map(Ref::into_ref)
    }

    /// Interprets the prefix of the given `bytes` as a `&Self` without copying.
    ///
    /// `ref_from_prefix` returns a reference to the first `size_of::<Self>()`
    /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()` or `bytes` is not
    /// aligned to `align_of::<Self>()`, this returns `None`.
    ///
    /// To also access the prefix bytes, use [`Ref::new_from_prefix`]. Then, use
    /// [`Ref::into_ref`] to get a `&Self` with the same lifetime.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::FromBytes;
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(FromZeroes, FromBytes)]
    /// #[repr(C)]
    /// struct PacketHeader {
    ///     src_port: [u8; 2],
    ///     dst_port: [u8; 2],
    ///     length: [u8; 2],
    ///     checksum: [u8; 2],
    /// }
    ///
    /// // These are more bytes than are needed to encode a `PacketHeader`.
    /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice();
    ///
    /// let header = PacketHeader::ref_from_prefix(bytes).unwrap();
    ///
    /// assert_eq!(header.src_port, [0, 1]);
    /// assert_eq!(header.dst_port, [2, 3]);
    /// assert_eq!(header.length, [4, 5]);
    /// assert_eq!(header.checksum, [6, 7]);
    /// ```
    #[inline]
    fn ref_from_prefix(bytes: &[u8]) -> Option<&Self>
    where
        Self: Sized,
    {
        Ref::<&[u8], Self>::new_from_prefix(bytes).map(|(r, _)| r.into_ref())
    }

    /// Interprets the suffix of the given `bytes` as a `&Self` without copying.
    ///
    /// `ref_from_suffix` returns a reference to the last `size_of::<Self>()`
    /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()` or the suffix of
    /// `bytes` is not aligned to `align_of::<Self>()`, this returns `None`.
    ///
    /// To also access the suffix bytes, use [`Ref::new_from_suffix`]. Then, use
    /// [`Ref::into_ref`] to get a `&Self` with the same lifetime.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::FromBytes;
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(FromZeroes, FromBytes)]
    /// #[repr(C)]
    /// struct PacketTrailer {
    ///     frame_check_sequence: [u8; 4],
    /// }
    ///
    /// // These are more bytes than are needed to encode a `PacketTrailer`.
    /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice();
    ///
    /// let trailer = PacketTrailer::ref_from_suffix(bytes).unwrap();
    ///
    /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]);
    /// ```
    #[inline]
    fn ref_from_suffix(bytes: &[u8]) -> Option<&Self>
    where
        Self: Sized,
    {
        Ref::<&[u8], Self>::new_from_suffix(bytes).map(|(_, r)| r.into_ref())
    }

    /// Interprets the given `bytes` as a `&mut Self` without copying.
    ///
    /// If `bytes.len() != size_of::<Self>()` or `bytes` is not aligned to
    /// `align_of::<Self>()`, this returns `None`.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::FromBytes;
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(AsBytes, FromZeroes, FromBytes)]
    /// #[repr(C)]
    /// struct PacketHeader {
    ///     src_port: [u8; 2],
    ///     dst_port: [u8; 2],
    ///     length: [u8; 2],
    ///     checksum: [u8; 2],
    /// }
    ///
    /// // These bytes encode a `PacketHeader`.
    /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7][..];
    ///
    /// let header = PacketHeader::mut_from(bytes).unwrap();
    ///
    /// assert_eq!(header.src_port, [0, 1]);
    /// assert_eq!(header.dst_port, [2, 3]);
    /// assert_eq!(header.length, [4, 5]);
    /// assert_eq!(header.checksum, [6, 7]);
    ///
    /// header.checksum = [0, 0];
    ///
    /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0]);
    /// ```
    #[inline]
    fn mut_from(bytes: &mut [u8]) -> Option<&mut Self>
    where
        Self: Sized + AsBytes,
    {
        Ref::<&mut [u8], Self>::new(bytes).map(Ref::into_mut)
    }

    /// Interprets the prefix of the given `bytes` as a `&mut Self` without
    /// copying.
    ///
    /// `mut_from_prefix` returns a reference to the first `size_of::<Self>()`
    /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()` or `bytes` is not
    /// aligned to `align_of::<Self>()`, this returns `None`.
    ///
    /// To also access the prefix bytes, use [`Ref::new_from_prefix`]. Then, use
    /// [`Ref::into_mut`] to get a `&mut Self` with the same lifetime.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::FromBytes;
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(AsBytes, FromZeroes, FromBytes)]
    /// #[repr(C)]
    /// struct PacketHeader {
    ///     src_port: [u8; 2],
    ///     dst_port: [u8; 2],
    ///     length: [u8; 2],
    ///     checksum: [u8; 2],
    /// }
    ///
    /// // These are more bytes than are needed to encode a `PacketHeader`.
    /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
    ///
    /// let header = PacketHeader::mut_from_prefix(bytes).unwrap();
    ///
    /// assert_eq!(header.src_port, [0, 1]);
    /// assert_eq!(header.dst_port, [2, 3]);
    /// assert_eq!(header.length, [4, 5]);
    /// assert_eq!(header.checksum, [6, 7]);
    ///
    /// header.checksum = [0, 0];
    ///
    /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0, 8, 9]);
    /// ```
    #[inline]
    fn mut_from_prefix(bytes: &mut [u8]) -> Option<&mut Self>
    where
        Self: Sized + AsBytes,
    {
        Ref::<&mut [u8], Self>::new_from_prefix(bytes).map(|(r, _)| r.into_mut())
    }

    /// Interprets the suffix of the given `bytes` as a `&mut Self` without copying.
    ///
    /// `mut_from_suffix` returns a reference to the last `size_of::<Self>()`
    /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()` or the suffix of
    /// `bytes` is not aligned to `align_of::<Self>()`, this returns `None`.
    ///
    /// To also access the suffix bytes, use [`Ref::new_from_suffix`]. Then,
    /// use [`Ref::into_mut`] to get a `&mut Self` with the same lifetime.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::FromBytes;
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(AsBytes, FromZeroes, FromBytes)]
    /// #[repr(C)]
    /// struct PacketTrailer {
    ///     frame_check_sequence: [u8; 4],
    /// }
    ///
    /// // These are more bytes than are needed to encode a `PacketTrailer`.
    /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
    ///
    /// let trailer = PacketTrailer::mut_from_suffix(bytes).unwrap();
    ///
    /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]);
    ///
    /// trailer.frame_check_sequence = [0, 0, 0, 0];
    ///
    /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0, 0, 0]);
    /// ```
    #[inline]
    fn mut_from_suffix(bytes: &mut [u8]) -> Option<&mut Self>
    where
        Self: Sized + AsBytes,
    {
        Ref::<&mut [u8], Self>::new_from_suffix(bytes).map(|(_, r)| r.into_mut())
    }

    /// Interprets the given `bytes` as a `&[Self]` without copying.
    ///
    /// If `bytes.len() % size_of::<Self>() != 0` or `bytes` is not aligned to
    /// `align_of::<Self>()`, this returns `None`.
    ///
    /// If you need to convert a specific number of slice elements, see
    /// [`slice_from_prefix`](FromBytes::slice_from_prefix) or
    /// [`slice_from_suffix`](FromBytes::slice_from_suffix).
    ///
    /// # Panics
    ///
    /// If `Self` is a zero-sized type.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::FromBytes;
    /// # use zerocopy_derive::*;
    ///
    /// # #[derive(Debug, PartialEq, Eq)]
    /// #[derive(FromZeroes, FromBytes)]
    /// #[repr(C)]
    /// struct Pixel {
    ///     r: u8,
    ///     g: u8,
    ///     b: u8,
    ///     a: u8,
    /// }
    ///
    /// // These bytes encode two `Pixel`s.
    /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7].as_slice();
    ///
    /// let pixels = Pixel::slice_from(bytes).unwrap();
    ///
    /// assert_eq!(pixels, &[
    ///     Pixel { r: 0, g: 1, b: 2, a: 3 },
    ///     Pixel { r: 4, g: 5, b: 6, a: 7 },
    /// ]);
    /// ```
    #[inline]
    fn slice_from(bytes: &[u8]) -> Option<&[Self]>
    where
        Self: Sized,
    {
        Ref::<_, [Self]>::new_slice(bytes).map(|r| r.into_slice())
    }

    /// Interprets the prefix of the given `bytes` as a `&[Self]` with length
    /// equal to `count` without copying.
    ///
    /// This method verifies that `bytes.len() >= size_of::<T>() * count`
    /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the
    /// first `size_of::<T>() * count` bytes from `bytes` to construct a
    /// `&[Self]`, and returns the remaining bytes to the caller. It also
    /// ensures that `sizeof::<T>() * count` does not overflow a `usize`.
    /// If any of the length, alignment, or overflow checks fail, it returns
    /// `None`.
    ///
    /// # Panics
    ///
    /// If `T` is a zero-sized type.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::FromBytes;
    /// # use zerocopy_derive::*;
    ///
    /// # #[derive(Debug, PartialEq, Eq)]
    /// #[derive(FromZeroes, FromBytes)]
    /// #[repr(C)]
    /// struct Pixel {
    ///     r: u8,
    ///     g: u8,
    ///     b: u8,
    ///     a: u8,
    /// }
    ///
    /// // These are more bytes than are needed to encode two `Pixel`s.
    /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice();
    ///
    /// let (pixels, rest) = Pixel::slice_from_prefix(bytes, 2).unwrap();
    ///
    /// assert_eq!(pixels, &[
    ///     Pixel { r: 0, g: 1, b: 2, a: 3 },
    ///     Pixel { r: 4, g: 5, b: 6, a: 7 },
    /// ]);
    ///
    /// assert_eq!(rest, &[8, 9]);
    /// ```
    #[inline]
    fn slice_from_prefix(bytes: &[u8], count: usize) -> Option<(&[Self], &[u8])>
    where
        Self: Sized,
    {
        Ref::<_, [Self]>::new_slice_from_prefix(bytes, count).map(|(r, b)| (r.into_slice(), b))
    }

    /// Interprets the suffix of the given `bytes` as a `&[Self]` with length
    /// equal to `count` without copying.
    ///
    /// This method verifies that `bytes.len() >= size_of::<T>() * count`
    /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the
    /// last `size_of::<T>() * count` bytes from `bytes` to construct a
    /// `&[Self]`, and returns the preceding bytes to the caller. It also
    /// ensures that `sizeof::<T>() * count` does not overflow a `usize`.
    /// If any of the length, alignment, or overflow checks fail, it returns
    /// `None`.
    ///
    /// # Panics
    ///
    /// If `T` is a zero-sized type.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::FromBytes;
    /// # use zerocopy_derive::*;
    ///
    /// # #[derive(Debug, PartialEq, Eq)]
    /// #[derive(FromZeroes, FromBytes)]
    /// #[repr(C)]
    /// struct Pixel {
    ///     r: u8,
    ///     g: u8,
    ///     b: u8,
    ///     a: u8,
    /// }
    ///
    /// // These are more bytes than are needed to encode two `Pixel`s.
    /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice();
    ///
    /// let (rest, pixels) = Pixel::slice_from_suffix(bytes, 2).unwrap();
    ///
    /// assert_eq!(rest, &[0, 1]);
    ///
    /// assert_eq!(pixels, &[
    ///     Pixel { r: 2, g: 3, b: 4, a: 5 },
    ///     Pixel { r: 6, g: 7, b: 8, a: 9 },
    /// ]);
    /// ```
    #[inline]
    fn slice_from_suffix(bytes: &[u8], count: usize) -> Option<(&[u8], &[Self])>
    where
        Self: Sized,
    {
        Ref::<_, [Self]>::new_slice_from_suffix(bytes, count).map(|(b, r)| (b, r.into_slice()))
    }

    /// Interprets the given `bytes` as a `&mut [Self]` without copying.
    ///
    /// If `bytes.len() % size_of::<T>() != 0` or `bytes` is not aligned to
    /// `align_of::<T>()`, this returns `None`.
    ///
    /// If you need to convert a specific number of slice elements, see
    /// [`mut_slice_from_prefix`](FromBytes::mut_slice_from_prefix) or
    /// [`mut_slice_from_suffix`](FromBytes::mut_slice_from_suffix).
    ///
    /// # Panics
    ///
    /// If `T` is a zero-sized type.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::FromBytes;
    /// # use zerocopy_derive::*;
    ///
    /// # #[derive(Debug, PartialEq, Eq)]
    /// #[derive(AsBytes, FromZeroes, FromBytes)]
    /// #[repr(C)]
    /// struct Pixel {
    ///     r: u8,
    ///     g: u8,
    ///     b: u8,
    ///     a: u8,
    /// }
    ///
    /// // These bytes encode two `Pixel`s.
    /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7][..];
    ///
    /// let pixels = Pixel::mut_slice_from(bytes).unwrap();
    ///
    /// assert_eq!(pixels, &[
    ///     Pixel { r: 0, g: 1, b: 2, a: 3 },
    ///     Pixel { r: 4, g: 5, b: 6, a: 7 },
    /// ]);
    ///
    /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 };
    ///
    /// assert_eq!(bytes, [0, 1, 2, 3, 0, 0, 0, 0]);
    /// ```
    #[inline]
    fn mut_slice_from(bytes: &mut [u8]) -> Option<&mut [Self]>
    where
        Self: Sized + AsBytes,
    {
        Ref::<_, [Self]>::new_slice(bytes).map(|r| r.into_mut_slice())
    }

    /// Interprets the prefix of the given `bytes` as a `&mut [Self]` with length
    /// equal to `count` without copying.
    ///
    /// This method verifies that `bytes.len() >= size_of::<T>() * count`
    /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the
    /// first `size_of::<T>() * count` bytes from `bytes` to construct a
    /// `&[Self]`, and returns the remaining bytes to the caller. It also
    /// ensures that `sizeof::<T>() * count` does not overflow a `usize`.
    /// If any of the length, alignment, or overflow checks fail, it returns
    /// `None`.
    ///
    /// # Panics
    ///
    /// If `T` is a zero-sized type.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::FromBytes;
    /// # use zerocopy_derive::*;
    ///
    /// # #[derive(Debug, PartialEq, Eq)]
    /// #[derive(AsBytes, FromZeroes, FromBytes)]
    /// #[repr(C)]
    /// struct Pixel {
    ///     r: u8,
    ///     g: u8,
    ///     b: u8,
    ///     a: u8,
    /// }
    ///
    /// // These are more bytes than are needed to encode two `Pixel`s.
    /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
    ///
    /// let (pixels, rest) = Pixel::mut_slice_from_prefix(bytes, 2).unwrap();
    ///
    /// assert_eq!(pixels, &[
    ///     Pixel { r: 0, g: 1, b: 2, a: 3 },
    ///     Pixel { r: 4, g: 5, b: 6, a: 7 },
    /// ]);
    ///
    /// assert_eq!(rest, &[8, 9]);
    ///
    /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 };
    ///
    /// assert_eq!(bytes, [0, 1, 2, 3, 0, 0, 0, 0, 8, 9]);
    /// ```
    #[inline]
    fn mut_slice_from_prefix(bytes: &mut [u8], count: usize) -> Option<(&mut [Self], &mut [u8])>
    where
        Self: Sized + AsBytes,
    {
        Ref::<_, [Self]>::new_slice_from_prefix(bytes, count).map(|(r, b)| (r.into_mut_slice(), b))
    }

    /// Interprets the suffix of the given `bytes` as a `&mut [Self]` with length
    /// equal to `count` without copying.
    ///
    /// This method verifies that `bytes.len() >= size_of::<T>() * count`
    /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the
    /// last `size_of::<T>() * count` bytes from `bytes` to construct a
    /// `&[Self]`, and returns the preceding bytes to the caller. It also
    /// ensures that `sizeof::<T>() * count` does not overflow a `usize`.
    /// If any of the length, alignment, or overflow checks fail, it returns
    /// `None`.
    ///
    /// # Panics
    ///
    /// If `T` is a zero-sized type.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::FromBytes;
    /// # use zerocopy_derive::*;
    ///
    /// # #[derive(Debug, PartialEq, Eq)]
    /// #[derive(AsBytes, FromZeroes, FromBytes)]
    /// #[repr(C)]
    /// struct Pixel {
    ///     r: u8,
    ///     g: u8,
    ///     b: u8,
    ///     a: u8,
    /// }
    ///
    /// // These are more bytes than are needed to encode two `Pixel`s.
    /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
    ///
    /// let (rest, pixels) = Pixel::mut_slice_from_suffix(bytes, 2).unwrap();
    ///
    /// assert_eq!(rest, &[0, 1]);
    ///
    /// assert_eq!(pixels, &[
    ///     Pixel { r: 2, g: 3, b: 4, a: 5 },
    ///     Pixel { r: 6, g: 7, b: 8, a: 9 },
    /// ]);
    ///
    /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 };
    ///
    /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0, 0, 0]);
    /// ```
    #[inline]
    fn mut_slice_from_suffix(bytes: &mut [u8], count: usize) -> Option<(&mut [u8], &mut [Self])>
    where
        Self: Sized + AsBytes,
    {
        Ref::<_, [Self]>::new_slice_from_suffix(bytes, count).map(|(b, r)| (b, r.into_mut_slice()))
    }

    /// Reads a copy of `Self` from `bytes`.
    ///
    /// If `bytes.len() != size_of::<Self>()`, `read_from` returns `None`.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::FromBytes;
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(FromZeroes, FromBytes)]
    /// #[repr(C)]
    /// struct PacketHeader {
    ///     src_port: [u8; 2],
    ///     dst_port: [u8; 2],
    ///     length: [u8; 2],
    ///     checksum: [u8; 2],
    /// }
    ///
    /// // These bytes encode a `PacketHeader`.
    /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7].as_slice();
    ///
    /// let header = PacketHeader::read_from(bytes).unwrap();
    ///
    /// assert_eq!(header.src_port, [0, 1]);
    /// assert_eq!(header.dst_port, [2, 3]);
    /// assert_eq!(header.length, [4, 5]);
    /// assert_eq!(header.checksum, [6, 7]);
    /// ```
    #[inline]
    fn read_from(bytes: &[u8]) -> Option<Self>
    where
        Self: Sized,
    {
        Ref::<_, Unalign<Self>>::new_unaligned(bytes).map(|r| r.read().into_inner())
    }

    /// Reads a copy of `Self` from the prefix of `bytes`.
    ///
    /// `read_from_prefix` reads a `Self` from the first `size_of::<Self>()`
    /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()`, it returns
    /// `None`.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::FromBytes;
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(FromZeroes, FromBytes)]
    /// #[repr(C)]
    /// struct PacketHeader {
    ///     src_port: [u8; 2],
    ///     dst_port: [u8; 2],
    ///     length: [u8; 2],
    ///     checksum: [u8; 2],
    /// }
    ///
    /// // These are more bytes than are needed to encode a `PacketHeader`.
    /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice();
    ///
    /// let header = PacketHeader::read_from_prefix(bytes).unwrap();
    ///
    /// assert_eq!(header.src_port, [0, 1]);
    /// assert_eq!(header.dst_port, [2, 3]);
    /// assert_eq!(header.length, [4, 5]);
    /// assert_eq!(header.checksum, [6, 7]);
    /// ```
    #[inline]
    fn read_from_prefix(bytes: &[u8]) -> Option<Self>
    where
        Self: Sized,
    {
        Ref::<_, Unalign<Self>>::new_unaligned_from_prefix(bytes)
            .map(|(r, _)| r.read().into_inner())
    }

    /// Reads a copy of `Self` from the suffix of `bytes`.
    ///
    /// `read_from_suffix` reads a `Self` from the last `size_of::<Self>()`
    /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()`, it returns
    /// `None`.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::FromBytes;
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(FromZeroes, FromBytes)]
    /// #[repr(C)]
    /// struct PacketTrailer {
    ///     frame_check_sequence: [u8; 4],
    /// }
    ///
    /// // These are more bytes than are needed to encode a `PacketTrailer`.
    /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice();
    ///
    /// let trailer = PacketTrailer::read_from_suffix(bytes).unwrap();
    ///
    /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]);
    /// ```
    #[inline]
    fn read_from_suffix(bytes: &[u8]) -> Option<Self>
    where
        Self: Sized,
    {
        Ref::<_, Unalign<Self>>::new_unaligned_from_suffix(bytes)
            .map(|(_, r)| r.read().into_inner())
    }
}

/// Analyzes whether a type is [`AsBytes`].
///
/// This derive analyzes, at compile time, whether the annotated type satisfies
/// the [safety conditions] of `AsBytes` and implements `AsBytes` if it is
/// sound to do so. This derive can be applied to structs, enums, and unions;
/// e.g.:
///
/// ```
/// # use zerocopy_derive::{AsBytes};
/// #[derive(AsBytes)]
/// #[repr(C)]
/// struct MyStruct {
/// # /*
///     ...
/// # */
/// }
///
/// #[derive(AsBytes)]
/// #[repr(u8)]
/// enum MyEnum {
/// #   Variant,
/// # /*
///     ...
/// # */
/// }
///
/// #[derive(AsBytes)]
/// #[repr(C)]
/// union MyUnion {
/// #   variant: u8,
/// # /*
///     ...
/// # */
/// }
/// ```
///
/// [safety conditions]: trait@AsBytes#safety
///
/// # Error Messages
///
/// Due to the way that the custom derive for `AsBytes` is implemented, you may
/// get an error like this:
///
/// ```text
/// error[E0277]: the trait bound `HasPadding<Foo, true>: ShouldBe<false>` is not satisfied
///   --> lib.rs:23:10
///    |
///  1 | #[derive(AsBytes)]
///    |          ^^^^^^^ the trait `ShouldBe<false>` is not implemented for `HasPadding<Foo, true>`
///    |
///    = help: the trait `ShouldBe<VALUE>` is implemented for `HasPadding<T, VALUE>`
/// ```
///
/// This error indicates that the type being annotated has padding bytes, which
/// is illegal for `AsBytes` types. Consider reducing the alignment of some
/// fields by using types in the [`byteorder`] module, adding explicit struct
/// fields where those padding bytes would be, or using `#[repr(packed)]`. See
/// the Rust Reference's page on [type layout] for more information
/// about type layout and padding.
///
/// [type layout]: https://doc.rust-lang.org/reference/type-layout.html
///
/// # Analysis
///
/// *This section describes, roughly, the analysis performed by this derive to
/// determine whether it is sound to implement `AsBytes` for a given type.
/// Unless you are modifying the implementation of this derive, or attempting to
/// manually implement `AsBytes` for a type yourself, you don't need to read
/// this section.*
///
/// If a type has the following properties, then this derive can implement
/// `AsBytes` for that type:
///
/// - If the type is a struct:
///   - It must have a defined representation (`repr(C)`, `repr(transparent)`,
///     or `repr(packed)`).
///   - All of its fields must be `AsBytes`.
///   - Its layout must have no padding. This is always true for
///     `repr(transparent)` and `repr(packed)`. For `repr(C)`, see the layout
///     algorithm described in the [Rust Reference].
/// - If the type is an enum:
///   - It must be a C-like enum (meaning that all variants have no fields).
///   - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`,
///     `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`).
/// - The type must not contain any [`UnsafeCell`]s (this is required in order
///   for it to be sound to construct a `&[u8]` and a `&T` to the same region of
///   memory). The type may contain references or pointers to `UnsafeCell`s so
///   long as those values can themselves be initialized from zeroes (`AsBytes`
///   is not currently implemented for, e.g., `Option<&UnsafeCell<_>>`, but it
///   could be one day).
///
/// [`UnsafeCell`]: core::cell::UnsafeCell
///
/// This analysis is subject to change. Unsafe code may *only* rely on the
/// documented [safety conditions] of `FromBytes`, and must *not* rely on the
/// implementation details of this derive.
///
/// [Rust Reference]: https://doc.rust-lang.org/reference/type-layout.html
#[cfg(any(feature = "derive", test))]
#[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))]
pub use zerocopy_derive::AsBytes;

/// Types that can be viewed as an immutable slice of initialized bytes.
///
/// Any `AsBytes` type can be viewed as a slice of initialized bytes of the same
/// size. This is useful for efficiently serializing structured data as raw
/// bytes.
///
/// # Implementation
///
/// **Do not implement this trait yourself!** Instead, use
/// [`#[derive(AsBytes)]`][derive] (requires the `derive` Cargo feature); e.g.:
///
/// ```
/// # use zerocopy_derive::AsBytes;
/// #[derive(AsBytes)]
/// #[repr(C)]
/// struct MyStruct {
/// # /*
///     ...
/// # */
/// }
///
/// #[derive(AsBytes)]
/// #[repr(u8)]
/// enum MyEnum {
/// #   Variant0,
/// # /*
///     ...
/// # */
/// }
///
/// #[derive(AsBytes)]
/// #[repr(C)]
/// union MyUnion {
/// #   variant: u8,
/// # /*
///     ...
/// # */
/// }
/// ```
///
/// This derive performs a sophisticated, compile-time safety analysis to
/// determine whether a type is `AsBytes`. See the [derive
/// documentation][derive] for guidance on how to interpret error messages
/// produced by the derive's analysis.
///
/// # Safety
///
/// *This section describes what is required in order for `T: AsBytes`, and
/// what unsafe code may assume of such types. If you don't plan on implementing
/// `AsBytes` manually, and you don't plan on writing unsafe code that
/// operates on `AsBytes` types, then you don't need to read this section.*
///
/// If `T: AsBytes`, then unsafe code may assume that:
/// - It is sound to treat any `t: T` as an immutable `[u8]` of length
///   `size_of_val(t)`.
/// - Given `t: &T`, it is sound to construct a `b: &[u8]` where `b.len() ==
///   size_of_val(t)` at the same address as `t`, and it is sound for both `b`
///   and `t` to be live at the same time.
///
/// If a type is marked as `AsBytes` which violates this contract, it may cause
/// undefined behavior.
///
/// `#[derive(AsBytes)]` only permits [types which satisfy these
/// requirements][derive-analysis].
///
#[cfg_attr(
    feature = "derive",
    doc = "[derive]: zerocopy_derive::AsBytes",
    doc = "[derive-analysis]: zerocopy_derive::AsBytes#analysis"
)]
#[cfg_attr(
    not(feature = "derive"),
    doc = concat!("[derive]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.AsBytes.html"),
    doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.AsBytes.html#analysis"),
)]
pub unsafe trait AsBytes {
    // The `Self: Sized` bound makes it so that this function doesn't prevent
    // `AsBytes` from being object safe. Note that other `AsBytes` methods
    // prevent object safety, but those provide a benefit in exchange for object
    // safety. If at some point we remove those methods, change their type
    // signatures, or move them out of this trait so that `AsBytes` is object
    // safe again, it's important that this function not prevent object safety.
    #[doc(hidden)]
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized;

    /// Gets the bytes of this value.
    ///
    /// `as_bytes` provides access to the bytes of this value as an immutable
    /// byte slice.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::AsBytes;
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(AsBytes)]
    /// #[repr(C)]
    /// struct PacketHeader {
    ///     src_port: [u8; 2],
    ///     dst_port: [u8; 2],
    ///     length: [u8; 2],
    ///     checksum: [u8; 2],
    /// }
    ///
    /// let header = PacketHeader {
    ///     src_port: [0, 1],
    ///     dst_port: [2, 3],
    ///     length: [4, 5],
    ///     checksum: [6, 7],
    /// };
    ///
    /// let bytes = header.as_bytes();
    ///
    /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]);
    /// ```
    #[inline(always)]
    fn as_bytes(&self) -> &[u8] {
        // Note that this method does not have a `Self: Sized` bound;
        // `size_of_val` works for unsized values too.
        let len = mem::size_of_val(self);
        let slf: *const Self = self;

        // SAFETY:
        // - `slf.cast::<u8>()` is valid for reads for `len *
        //   mem::size_of::<u8>()` many bytes because...
        //   - `slf` is the same pointer as `self`, and `self` is a reference
        //     which points to an object whose size is `len`. Thus...
        //     - The entire region of `len` bytes starting at `slf` is contained
        //       within a single allocation.
        //     - `slf` is non-null.
        //   - `slf` is trivially aligned to `align_of::<u8>() == 1`.
        // - `Self: AsBytes` ensures that all of the bytes of `slf` are
        //   initialized.
        // - Since `slf` is derived from `self`, and `self` is an immutable
        //   reference, the only other references to this memory region that
        //   could exist are other immutable references, and those don't allow
        //   mutation. `AsBytes` prohibits types which contain `UnsafeCell`s,
        //   which are the only types for which this rule wouldn't be sufficient.
        // - The total size of the resulting slice is no larger than
        //   `isize::MAX` because no allocation produced by safe code can be
        //   larger than `isize::MAX`.
        //
        // TODO(#429): Add references to docs and quotes.
        unsafe { slice::from_raw_parts(slf.cast::<u8>(), len) }
    }

    /// Gets the bytes of this value mutably.
    ///
    /// `as_bytes_mut` provides access to the bytes of this value as a mutable
    /// byte slice.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::AsBytes;
    /// # use zerocopy_derive::*;
    ///
    /// # #[derive(Eq, PartialEq, Debug)]
    /// #[derive(AsBytes, FromZeroes, FromBytes)]
    /// #[repr(C)]
    /// struct PacketHeader {
    ///     src_port: [u8; 2],
    ///     dst_port: [u8; 2],
    ///     length: [u8; 2],
    ///     checksum: [u8; 2],
    /// }
    ///
    /// let mut header = PacketHeader {
    ///     src_port: [0, 1],
    ///     dst_port: [2, 3],
    ///     length: [4, 5],
    ///     checksum: [6, 7],
    /// };
    ///
    /// let bytes = header.as_bytes_mut();
    ///
    /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]);
    ///
    /// bytes.reverse();
    ///
    /// assert_eq!(header, PacketHeader {
    ///     src_port: [7, 6],
    ///     dst_port: [5, 4],
    ///     length: [3, 2],
    ///     checksum: [1, 0],
    /// });
    /// ```
    #[inline(always)]
    fn as_bytes_mut(&mut self) -> &mut [u8]
    where
        Self: FromBytes,
    {
        // Note that this method does not have a `Self: Sized` bound;
        // `size_of_val` works for unsized values too.
        let len = mem::size_of_val(self);
        let slf: *mut Self = self;

        // SAFETY:
        // - `slf.cast::<u8>()` is valid for reads and writes for `len *
        //   mem::size_of::<u8>()` many bytes because...
        //   - `slf` is the same pointer as `self`, and `self` is a reference
        //     which points to an object whose size is `len`. Thus...
        //     - The entire region of `len` bytes starting at `slf` is contained
        //       within a single allocation.
        //     - `slf` is non-null.
        //   - `slf` is trivially aligned to `align_of::<u8>() == 1`.
        // - `Self: AsBytes` ensures that all of the bytes of `slf` are
        //   initialized.
        // - `Self: FromBytes` ensures that no write to this memory region
        //   could result in it containing an invalid `Self`.
        // - Since `slf` is derived from `self`, and `self` is a mutable
        //   reference, no other references to this memory region can exist.
        // - The total size of the resulting slice is no larger than
        //   `isize::MAX` because no allocation produced by safe code can be
        //   larger than `isize::MAX`.
        //
        // TODO(#429): Add references to docs and quotes.
        unsafe { slice::from_raw_parts_mut(slf.cast::<u8>(), len) }
    }

    /// Writes a copy of `self` to `bytes`.
    ///
    /// If `bytes.len() != size_of_val(self)`, `write_to` returns `None`.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::AsBytes;
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(AsBytes)]
    /// #[repr(C)]
    /// struct PacketHeader {
    ///     src_port: [u8; 2],
    ///     dst_port: [u8; 2],
    ///     length: [u8; 2],
    ///     checksum: [u8; 2],
    /// }
    ///
    /// let header = PacketHeader {
    ///     src_port: [0, 1],
    ///     dst_port: [2, 3],
    ///     length: [4, 5],
    ///     checksum: [6, 7],
    /// };
    ///
    /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0];
    ///
    /// header.write_to(&mut bytes[..]);
    ///
    /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]);
    /// ```
    ///
    /// If too many or too few target bytes are provided, `write_to` returns
    /// `None` and leaves the target bytes unmodified:
    ///
    /// ```
    /// # use zerocopy::AsBytes;
    /// # let header = u128::MAX;
    /// let mut excessive_bytes = &mut [0u8; 128][..];
    ///
    /// let write_result = header.write_to(excessive_bytes);
    ///
    /// assert!(write_result.is_none());
    /// assert_eq!(excessive_bytes, [0u8; 128]);
    /// ```
    #[inline]
    fn write_to(&self, bytes: &mut [u8]) -> Option<()> {
        if bytes.len() != mem::size_of_val(self) {
            return None;
        }

        bytes.copy_from_slice(self.as_bytes());
        Some(())
    }

    /// Writes a copy of `self` to the prefix of `bytes`.
    ///
    /// `write_to_prefix` writes `self` to the first `size_of_val(self)` bytes
    /// of `bytes`. If `bytes.len() < size_of_val(self)`, it returns `None`.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::AsBytes;
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(AsBytes)]
    /// #[repr(C)]
    /// struct PacketHeader {
    ///     src_port: [u8; 2],
    ///     dst_port: [u8; 2],
    ///     length: [u8; 2],
    ///     checksum: [u8; 2],
    /// }
    ///
    /// let header = PacketHeader {
    ///     src_port: [0, 1],
    ///     dst_port: [2, 3],
    ///     length: [4, 5],
    ///     checksum: [6, 7],
    /// };
    ///
    /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
    ///
    /// header.write_to_prefix(&mut bytes[..]);
    ///
    /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7, 0, 0]);
    /// ```
    ///
    /// If insufficient target bytes are provided, `write_to_prefix` returns
    /// `None` and leaves the target bytes unmodified:
    ///
    /// ```
    /// # use zerocopy::AsBytes;
    /// # let header = u128::MAX;
    /// let mut insufficent_bytes = &mut [0, 0][..];
    ///
    /// let write_result = header.write_to_suffix(insufficent_bytes);
    ///
    /// assert!(write_result.is_none());
    /// assert_eq!(insufficent_bytes, [0, 0]);
    /// ```
    #[inline]
    fn write_to_prefix(&self, bytes: &mut [u8]) -> Option<()> {
        let size = mem::size_of_val(self);
        bytes.get_mut(..size)?.copy_from_slice(self.as_bytes());
        Some(())
    }

    /// Writes a copy of `self` to the suffix of `bytes`.
    ///
    /// `write_to_suffix` writes `self` to the last `size_of_val(self)` bytes of
    /// `bytes`. If `bytes.len() < size_of_val(self)`, it returns `None`.
    ///
    /// # Examples
    ///
    /// ```
    /// use zerocopy::AsBytes;
    /// # use zerocopy_derive::*;
    ///
    /// #[derive(AsBytes)]
    /// #[repr(C)]
    /// struct PacketHeader {
    ///     src_port: [u8; 2],
    ///     dst_port: [u8; 2],
    ///     length: [u8; 2],
    ///     checksum: [u8; 2],
    /// }
    ///
    /// let header = PacketHeader {
    ///     src_port: [0, 1],
    ///     dst_port: [2, 3],
    ///     length: [4, 5],
    ///     checksum: [6, 7],
    /// };
    ///
    /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
    ///
    /// header.write_to_suffix(&mut bytes[..]);
    ///
    /// assert_eq!(bytes, [0, 0, 0, 1, 2, 3, 4, 5, 6, 7]);
    ///
    /// let mut insufficent_bytes = &mut [0, 0][..];
    ///
    /// let write_result = header.write_to_suffix(insufficent_bytes);
    ///
    /// assert!(write_result.is_none());
    /// assert_eq!(insufficent_bytes, [0, 0]);
    /// ```
    ///
    /// If insufficient target bytes are provided, `write_to_suffix` returns
    /// `None` and leaves the target bytes unmodified:
    ///
    /// ```
    /// # use zerocopy::AsBytes;
    /// # let header = u128::MAX;
    /// let mut insufficent_bytes = &mut [0, 0][..];
    ///
    /// let write_result = header.write_to_suffix(insufficent_bytes);
    ///
    /// assert!(write_result.is_none());
    /// assert_eq!(insufficent_bytes, [0, 0]);
    /// ```
    #[inline]
    fn write_to_suffix(&self, bytes: &mut [u8]) -> Option<()> {
        let start = bytes.len().checked_sub(mem::size_of_val(self))?;
        bytes
            .get_mut(start..)
            .expect("`start` should be in-bounds of `bytes`")
            .copy_from_slice(self.as_bytes());
        Some(())
    }
}

/// Types with no alignment requirement.
///
/// WARNING: Do not implement this trait yourself! Instead, use
/// `#[derive(Unaligned)]` (requires the `derive` Cargo feature).
///
/// If `T: Unaligned`, then `align_of::<T>() == 1`.
///
/// # Safety
///
/// *This section describes what is required in order for `T: Unaligned`, and
/// what unsafe code may assume of such types. `#[derive(Unaligned)]` only
/// permits types which satisfy these requirements. If you don't plan on
/// implementing `Unaligned` manually, and you don't plan on writing unsafe code
/// that operates on `Unaligned` types, then you don't need to read this
/// section.*
///
/// If `T: Unaligned`, then unsafe code may assume that it is sound to produce a
/// reference to `T` at any memory location regardless of alignment. If a type
/// is marked as `Unaligned` which violates this contract, it may cause
/// undefined behavior.
pub unsafe trait Unaligned {
    // The `Self: Sized` bound makes it so that `Unaligned` is still object
    // safe.
    #[doc(hidden)]
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized;
}

safety_comment! {
    /// SAFETY:
    /// Per the reference [1], "the unit tuple (`()`) ... is guaranteed as a
    /// zero-sized type to have a size of 0 and an alignment of 1."
    /// - `TryFromBytes` (with no validator), `FromZeroes`, `FromBytes`: There
    ///   is only one possible sequence of 0 bytes, and `()` is inhabited.
    /// - `AsBytes`: Since `()` has size 0, it contains no padding bytes.
    /// - `Unaligned`: `()` has alignment 1.
    ///
    /// [1] https://doc.rust-lang.org/reference/type-layout.html#tuple-layout
    unsafe_impl!((): TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned);
    assert_unaligned!(());
}

safety_comment! {
    /// SAFETY:
    /// - `TryFromBytes` (with no validator), `FromZeroes`, `FromBytes`: all bit
    ///   patterns are valid for numeric types [1]
    /// - `AsBytes`: numeric types have no padding bytes [1]
    /// - `Unaligned` (`u8` and `i8` only): The reference [2] specifies the size
    ///   of `u8` and `i8` as 1 byte. We also know that:
    ///   - Alignment is >= 1 [3]
    ///   - Size is an integer multiple of alignment [4]
    ///   - The only value >= 1 for which 1 is an integer multiple is 1
    ///   Therefore, the only possible alignment for `u8` and `i8` is 1.
    ///
    /// [1] Per https://doc.rust-lang.org/beta/reference/types/numeric.html#bit-validity:
    ///
    ///     For every numeric type, `T`, the bit validity of `T` is equivalent to
    ///     the bit validity of `[u8; size_of::<T>()]`. An uninitialized byte is
    ///     not a valid `u8`.
    ///
    /// TODO(https://github.com/rust-lang/reference/pull/1392): Once this text
    /// is available on the Stable docs, cite those instead.
    ///
    /// [2] https://doc.rust-lang.org/reference/type-layout.html#primitive-data-layout
    ///
    /// [3] Per https://doc.rust-lang.org/reference/type-layout.html#size-and-alignment:
    ///
    ///     Alignment is measured in bytes, and must be at least 1.
    ///
    /// [4] Per https://doc.rust-lang.org/reference/type-layout.html#size-and-alignment:
    ///
    ///     The size of a value is always a multiple of its alignment.
    ///
    /// TODO(#278): Once we've updated the trait docs to refer to `u8`s rather
    /// than bits or bytes, update this comment, especially the reference to
    /// [1].
    unsafe_impl!(u8: TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned);
    unsafe_impl!(i8: TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned);
    assert_unaligned!(u8, i8);
    unsafe_impl!(u16: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(i16: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(u32: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(i32: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(u64: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(i64: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(u128: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(i128: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(usize: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(isize: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(f32: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(f64: TryFromBytes, FromZeroes, FromBytes, AsBytes);
}

safety_comment! {
    /// SAFETY:
    /// - `FromZeroes`: Valid since "[t]he value false has the bit pattern
    ///   0x00" [1].
    /// - `AsBytes`: Since "the boolean type has a size and alignment of 1 each"
    ///   and "The value false has the bit pattern 0x00 and the value true has
    ///   the bit pattern 0x01" [1]. Thus, the only byte of the bool is always
    ///   initialized.
    /// - `Unaligned`: Per the reference [1], "[a]n object with the boolean type
    ///   has a size and alignment of 1 each."
    ///
    /// [1] https://doc.rust-lang.org/reference/types/boolean.html
    unsafe_impl!(bool: FromZeroes, AsBytes, Unaligned);
    assert_unaligned!(bool);
    /// SAFETY:
    /// - The safety requirements for `unsafe_impl!` with an `is_bit_valid`
    ///   closure:
    ///   - Given `t: *mut bool` and `let r = *mut u8`, `r` refers to an object
    ///     of the same size as that referred to by `t`. This is true because
    ///     `bool` and `u8` have the same size (1 byte) [1].
    ///   - Since the closure takes a `&u8` argument, given a `Ptr<'a, bool>`
    ///     which satisfies the preconditions of
    ///     `TryFromBytes::<bool>::is_bit_valid`, it must be guaranteed that the
    ///     memory referenced by that `Ptr` always contains a valid `u8`. Since
    ///     `bool`'s single byte is always initialized, `is_bit_valid`'s
    ///     precondition requires that the same is true of its argument. Since
    ///     `u8`'s only bit validity invariant is that its single byte must be
    ///     initialized, this memory is guaranteed to contain a valid `u8`.
    ///   - The alignment of `bool` is equal to the alignment of `u8`. [1] [2]
    ///   - The impl must only return `true` for its argument if the original
    ///     `Ptr<bool>` refers to a valid `bool`. We only return true if the
    ///     `u8` value is 0 or 1, and both of these are valid values for `bool`.
    ///     [3]
    ///
    /// [1] Per https://doc.rust-lang.org/reference/type-layout.html#primitive-data-layout:
    ///
    ///   The size of most primitives is given in this table.
    ///
    ///   | Type      | `size_of::<Type>() ` |
    ///   |-----------|----------------------|
    ///   | `bool`    | 1                    |
    ///   | `u8`/`i8` | 1                    |
    ///
    /// [2] Per https://doc.rust-lang.org/reference/type-layout.html#size-and-alignment:
    ///
    ///   The size of a value is always a multiple of its alignment.
    ///
    /// [3] Per https://doc.rust-lang.org/reference/types/boolean.html:
    ///
    ///   The value false has the bit pattern 0x00 and the value true has the
    ///   bit pattern 0x01.
    unsafe_impl!(bool: TryFromBytes; |byte: &u8| *byte < 2);
}
safety_comment! {
    /// SAFETY:
    /// - `FromZeroes`: Per reference [1], "[a] value of type char is a Unicode
    ///   scalar value (i.e. a code point that is not a surrogate), represented
    ///   as a 32-bit unsigned word in the 0x0000 to 0xD7FF or 0xE000 to
    ///   0x10FFFF range" which contains 0x0000.
    /// - `AsBytes`: `char` is per reference [1] "represented as a 32-bit
    ///   unsigned word" (`u32`) which is `AsBytes`. Note that unlike `u32`, not
    ///   all bit patterns are valid for `char`.
    ///
    /// [1] https://doc.rust-lang.org/reference/types/textual.html
    unsafe_impl!(char: FromZeroes, AsBytes);
    /// SAFETY:
    /// - The safety requirements for `unsafe_impl!` with an `is_bit_valid`
    ///   closure:
    ///   - Given `t: *mut char` and `let r = *mut u32`, `r` refers to an object
    ///     of the same size as that referred to by `t`. This is true because
    ///     `char` and `u32` have the same size [1].
    ///   - Since the closure takes a `&u32` argument, given a `Ptr<'a, char>`
    ///     which satisfies the preconditions of
    ///     `TryFromBytes::<char>::is_bit_valid`, it must be guaranteed that the
    ///     memory referenced by that `Ptr` always contains a valid `u32`. Since
    ///     `char`'s bytes are always initialized [2], `is_bit_valid`'s
    ///     precondition requires that the same is true of its argument. Since
    ///     `u32`'s only bit validity invariant is that its bytes must be
    ///     initialized, this memory is guaranteed to contain a valid `u32`.
    ///   - The alignment of `char` is equal to the alignment of `u32`. [1]
    ///   - The impl must only return `true` for its argument if the original
    ///     `Ptr<char>` refers to a valid `char`. `char::from_u32` guarantees
    ///     that it returns `None` if its input is not a valid `char`. [3]
    ///
    /// [1] Per https://doc.rust-lang.org/nightly/reference/types/textual.html#layout-and-bit-validity:
    ///
    ///   `char` is guaranteed to have the same size and alignment as `u32` on
    ///   all platforms.
    ///
    /// [2] Per https://doc.rust-lang.org/core/primitive.char.html#method.from_u32:
    ///
    ///   Every byte of a `char` is guaranteed to be initialized.
    ///
    /// [3] Per https://doc.rust-lang.org/core/primitive.char.html#method.from_u32:
    ///
    ///   `from_u32()` will return `None` if the input is not a valid value for
    ///   a `char`.
    unsafe_impl!(char: TryFromBytes; |candidate: &u32| char::from_u32(*candidate).is_some());
}
safety_comment! {
    /// SAFETY:
    /// - `FromZeroes`, `AsBytes`, `Unaligned`: Per the reference [1], `str`
    ///   has the same layout as `[u8]`, and `[u8]` is `FromZeroes`, `AsBytes`,
    ///   and `Unaligned`.
    ///
    /// Note that we don't `assert_unaligned!(str)` because `assert_unaligned!`
    /// uses `align_of`, which only works for `Sized` types.
    ///
    /// TODO(#429): Add quotes from documentation.
    ///
    /// [1] https://doc.rust-lang.org/reference/type-layout.html#str-layout
    unsafe_impl!(str: FromZeroes, AsBytes, Unaligned);
    /// SAFETY:
    /// - The safety requirements for `unsafe_impl!` with an `is_bit_valid`
    ///   closure:
    ///   - Given `t: *mut str` and `let r = *mut [u8]`, `r` refers to an object
    ///     of the same size as that referred to by `t`. This is true because
    ///     `str` and `[u8]` have the same representation. [1]
    ///   - Since the closure takes a `&[u8]` argument, given a `Ptr<'a, str>`
    ///     which satisfies the preconditions of
    ///     `TryFromBytes::<str>::is_bit_valid`, it must be guaranteed that the
    ///     memory referenced by that `Ptr` always contains a valid `[u8]`.
    ///     Since `str`'s bytes are always initialized [1], `is_bit_valid`'s
    ///     precondition requires that the same is true of its argument. Since
    ///     `[u8]`'s only bit validity invariant is that its bytes must be
    ///     initialized, this memory is guaranteed to contain a valid `[u8]`.
    ///   - The alignment of `str` is equal to the alignment of `[u8]`. [1]
    ///   - The impl must only return `true` for its argument if the original
    ///     `Ptr<str>` refers to a valid `str`. `str::from_utf8` guarantees that
    ///     it returns `Err` if its input is not a valid `str`. [2]
    ///
    /// [1] Per https://doc.rust-lang.org/reference/types/textual.html:
    ///
    ///   A value of type `str` is represented the same was as `[u8]`.
    ///
    /// [2] Per https://doc.rust-lang.org/core/str/fn.from_utf8.html#errors:
    ///
    ///   Returns `Err` if the slice is not UTF-8.
    unsafe_impl!(str: TryFromBytes; |candidate: &[u8]| core::str::from_utf8(candidate).is_ok());
}

safety_comment! {
    // `NonZeroXxx` is `AsBytes`, but not `FromZeroes` or `FromBytes`.
    //
    /// SAFETY:
    /// - `AsBytes`: `NonZeroXxx` has the same layout as its associated
    ///    primitive. Since it is the same size, this guarantees it has no
    ///    padding - integers have no padding, and there's no room for padding
    ///    if it can represent all of the same values except 0.
    /// - `Unaligned`: `NonZeroU8` and `NonZeroI8` document that
    ///   `Option<NonZeroU8>` and `Option<NonZeroI8>` both have size 1. [1] [2]
    ///   This is worded in a way that makes it unclear whether it's meant as a
    ///   guarantee, but given the purpose of those types, it's virtually
    ///   unthinkable that that would ever change. `Option` cannot be smaller
    ///   than its contained type, which implies that, and `NonZeroX8` are of
    ///   size 1 or 0. `NonZeroX8` can represent multiple states, so they cannot
    ///   be 0 bytes, which means that they must be 1 byte. The only valid
    ///   alignment for a 1-byte type is 1.
    ///
    /// TODO(#429): Add quotes from documentation.
    ///
    /// [1] https://doc.rust-lang.org/stable/std/num/struct.NonZeroU8.html
    /// [2] https://doc.rust-lang.org/stable/std/num/struct.NonZeroI8.html
    /// TODO(https://github.com/rust-lang/rust/pull/104082): Cite documentation
    /// that layout is the same as primitive layout.
    unsafe_impl!(NonZeroU8: AsBytes, Unaligned);
    unsafe_impl!(NonZeroI8: AsBytes, Unaligned);
    assert_unaligned!(NonZeroU8, NonZeroI8);
    unsafe_impl!(NonZeroU16: AsBytes);
    unsafe_impl!(NonZeroI16: AsBytes);
    unsafe_impl!(NonZeroU32: AsBytes);
    unsafe_impl!(NonZeroI32: AsBytes);
    unsafe_impl!(NonZeroU64: AsBytes);
    unsafe_impl!(NonZeroI64: AsBytes);
    unsafe_impl!(NonZeroU128: AsBytes);
    unsafe_impl!(NonZeroI128: AsBytes);
    unsafe_impl!(NonZeroUsize: AsBytes);
    unsafe_impl!(NonZeroIsize: AsBytes);
    /// SAFETY:
    /// - The safety requirements for `unsafe_impl!` with an `is_bit_valid`
    ///   closure:
    ///   - Given `t: *mut NonZeroXxx` and `let r = *mut xxx`, `r` refers to an
    ///     object of the same size as that referred to by `t`. This is true
    ///     because `NonZeroXxx` and `xxx` have the same size. [1]
    ///   - Since the closure takes a `&xxx` argument, given a `Ptr<'a,
    ///     NonZeroXxx>` which satisfies the preconditions of
    ///     `TryFromBytes::<NonZeroXxx>::is_bit_valid`, it must be guaranteed
    ///     that the memory referenced by that `Ptr` always contains a valid
    ///     `xxx`. Since `NonZeroXxx`'s bytes are always initialized [1],
    ///     `is_bit_valid`'s precondition requires that the same is true of its
    ///     argument. Since `xxx`'s only bit validity invariant is that its
    ///     bytes must be initialized, this memory is guaranteed to contain a
    ///     valid `xxx`.
    ///   - The alignment of `NonZeroXxx` is equal to the alignment of `xxx`.
    ///     [1]
    ///   - The impl must only return `true` for its argument if the original
    ///     `Ptr<NonZeroXxx>` refers to a valid `NonZeroXxx`. The only `xxx`
    ///     which is not also a valid `NonZeroXxx` is 0. [1]
    ///
    /// [1] Per https://doc.rust-lang.org/core/num/struct.NonZeroU16.html:
    ///
    ///   `NonZeroU16` is guaranteed to have the same layout and bit validity as
    ///   `u16` with the exception that `0` is not a valid instance.
    unsafe_impl!(NonZeroU8: TryFromBytes; |n: &u8| *n != 0);
    unsafe_impl!(NonZeroI8: TryFromBytes; |n: &i8| *n != 0);
    unsafe_impl!(NonZeroU16: TryFromBytes; |n: &u16| *n != 0);
    unsafe_impl!(NonZeroI16: TryFromBytes; |n: &i16| *n != 0);
    unsafe_impl!(NonZeroU32: TryFromBytes; |n: &u32| *n != 0);
    unsafe_impl!(NonZeroI32: TryFromBytes; |n: &i32| *n != 0);
    unsafe_impl!(NonZeroU64: TryFromBytes; |n: &u64| *n != 0);
    unsafe_impl!(NonZeroI64: TryFromBytes; |n: &i64| *n != 0);
    unsafe_impl!(NonZeroU128: TryFromBytes; |n: &u128| *n != 0);
    unsafe_impl!(NonZeroI128: TryFromBytes; |n: &i128| *n != 0);
    unsafe_impl!(NonZeroUsize: TryFromBytes; |n: &usize| *n != 0);
    unsafe_impl!(NonZeroIsize: TryFromBytes; |n: &isize| *n != 0);
}
safety_comment! {
    /// SAFETY:
    /// - `TryFromBytes` (with no validator), `FromZeroes`, `FromBytes`,
    ///   `AsBytes`: The Rust compiler reuses `0` value to represent `None`, so
    ///   `size_of::<Option<NonZeroXxx>>() == size_of::<xxx>()`; see
    ///   `NonZeroXxx` documentation.
    /// - `Unaligned`: `NonZeroU8` and `NonZeroI8` document that
    ///   `Option<NonZeroU8>` and `Option<NonZeroI8>` both have size 1. [1] [2]
    ///   This is worded in a way that makes it unclear whether it's meant as a
    ///   guarantee, but given the purpose of those types, it's virtually
    ///   unthinkable that that would ever change. The only valid alignment for
    ///   a 1-byte type is 1.
    ///
    /// TODO(#429): Add quotes from documentation.
    ///
    /// [1] https://doc.rust-lang.org/stable/std/num/struct.NonZeroU8.html
    /// [2] https://doc.rust-lang.org/stable/std/num/struct.NonZeroI8.html
    ///
    /// TODO(https://github.com/rust-lang/rust/pull/104082): Cite documentation
    /// for layout guarantees.
    unsafe_impl!(Option<NonZeroU8>: TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned);
    unsafe_impl!(Option<NonZeroI8>: TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned);
    assert_unaligned!(Option<NonZeroU8>, Option<NonZeroI8>);
    unsafe_impl!(Option<NonZeroU16>: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroI16>: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroU32>: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroI32>: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroU64>: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroI64>: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroU128>: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroI128>: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroUsize>: TryFromBytes, FromZeroes, FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroIsize>: TryFromBytes, FromZeroes, FromBytes, AsBytes);
}

safety_comment! {
    /// SAFETY:
    /// The following types can be transmuted from `[0u8; size_of::<T>()]`. [1]
    /// None of them contain `UnsafeCell`s, and so they all soundly implement
    /// `FromZeroes`.
    ///
    /// [1] Per
    /// https://doc.rust-lang.org/nightly/core/option/index.html#representation:
    ///
    ///   Rust guarantees to optimize the following types `T` such that
    ///   [`Option<T>`] has the same size and alignment as `T`. In some of these
    ///   cases, Rust further guarantees that `transmute::<_, Option<T>>([0u8;
    ///   size_of::<T>()])` is sound and produces `Option::<T>::None`. These
    ///   cases are identified by the second column:
    ///
    ///   | `T`                   | `transmute::<_, Option<T>>([0u8; size_of::<T>()])` sound? |
    ///   |-----------------------|-----------------------------------------------------------|
    ///   | [`Box<U>`]            | when `U: Sized`                                           |
    ///   | `&U`                  | when `U: Sized`                                           |
    ///   | `&mut U`              | when `U: Sized`                                           |
    ///   | [`ptr::NonNull<U>`]   | when `U: Sized`                                           |
    ///   | `fn`, `extern "C" fn` | always                                                    |
    ///
    /// TODO(#429), TODO(https://github.com/rust-lang/rust/pull/115333): Cite
    /// the Stable docs once they're available.
    #[cfg(feature = "alloc")]
    unsafe_impl!(
        #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
        T => FromZeroes for Option<Box<T>>
    );
    unsafe_impl!(T => FromZeroes for Option<&'_ T>);
    unsafe_impl!(T => FromZeroes for Option<&'_ mut T>);
    unsafe_impl!(T => FromZeroes for Option<NonNull<T>>);
    unsafe_impl_for_power_set!(A, B, C, D, E, F, G, H, I, J, K, L -> M => FromZeroes for opt_fn!(...));
    unsafe_impl_for_power_set!(A, B, C, D, E, F, G, H, I, J, K, L -> M => FromZeroes for opt_extern_c_fn!(...));
}

safety_comment! {
    /// SAFETY:
    /// Per reference [1]:
    /// "For all T, the following are guaranteed:
    /// size_of::<PhantomData<T>>() == 0
    /// align_of::<PhantomData<T>>() == 1".
    /// This gives:
    /// - `TryFromBytes` (with no validator), `FromZeroes`, `FromBytes`: There
    ///   is only one possible sequence of 0 bytes, and `PhantomData` is
    ///   inhabited.
    /// - `AsBytes`: Since `PhantomData` has size 0, it contains no padding
    ///   bytes.
    /// - `Unaligned`: Per the preceding reference, `PhantomData` has alignment
    ///   1.
    ///
    /// [1] https://doc.rust-lang.org/std/marker/struct.PhantomData.html#layout-1
    unsafe_impl!(T: ?Sized => TryFromBytes for PhantomData<T>);
    unsafe_impl!(T: ?Sized => FromZeroes for PhantomData<T>);
    unsafe_impl!(T: ?Sized => FromBytes for PhantomData<T>);
    unsafe_impl!(T: ?Sized => AsBytes for PhantomData<T>);
    unsafe_impl!(T: ?Sized => Unaligned for PhantomData<T>);
    assert_unaligned!(PhantomData<()>, PhantomData<u8>, PhantomData<u64>);
}
safety_comment! {
    /// SAFETY:
    /// `Wrapping<T>` is guaranteed by its docs [1] to have the same layout and
    /// bit validity as `T`. Also, `Wrapping<T>` is `#[repr(transparent)]`, and
    /// has a single field, which is `pub`. Per the reference [2], this means
    /// that the `#[repr(transparent)]` attribute is "considered part of the
    /// public ABI".
    ///
    /// - `TryFromBytes`: The safety requirements for `unsafe_impl!` with an
    ///   `is_bit_valid` closure:
    ///   - Given `t: *mut Wrapping<T>` and `let r = *mut T`, `r` refers to an
    ///     object of the same size as that referred to by `t`. This is true
    ///     because `Wrapping<T>` and `T` have the same layout
    ///   - The alignment of `Wrapping<T>` is equal to the alignment of `T`.
    ///   - The impl must only return `true` for its argument if the original
    ///     `Ptr<Wrapping<T>>` refers to a valid `Wrapping<T>`. Since
    ///     `Wrapping<T>` has the same bit validity as `T`, and since our impl
    ///     just calls `T::is_bit_valid`, our impl returns `true` exactly when
    ///     its argument contains a valid `Wrapping<T>`.
    /// - `FromBytes`: Since `Wrapping<T>` has the same bit validity as `T`, if
    ///   `T: FromBytes`, then all initialized byte sequences are valid
    ///   instances of `Wrapping<T>`. Similarly, if `T: FromBytes`, then
    ///   `Wrapping<T>` doesn't contain any `UnsafeCell`s. Thus, `impl FromBytes
    ///   for Wrapping<T> where T: FromBytes` is a sound impl.
    /// - `AsBytes`: Since `Wrapping<T>` has the same bit validity as `T`, if
    ///   `T: AsBytes`, then all valid instances of `Wrapping<T>` have all of
    ///   their bytes initialized. Similarly, if `T: AsBytes`, then
    ///   `Wrapping<T>` doesn't contain any `UnsafeCell`s. Thus, `impl AsBytes
    ///   for Wrapping<T> where T: AsBytes` is a valid impl.
    /// - `Unaligned`: Since `Wrapping<T>` has the same layout as `T`,
    ///   `Wrapping<T>` has alignment 1 exactly when `T` does.
    ///
    /// [1] Per https://doc.rust-lang.org/core/num/struct.NonZeroU16.html:
    ///
    ///   `NonZeroU16` is guaranteed to have the same layout and bit validity as
    ///   `u16` with the exception that `0` is not a valid instance.
    ///
    /// TODO(#429): Add quotes from documentation.
    ///
    /// [1] TODO(https://doc.rust-lang.org/nightly/core/num/struct.Wrapping.html#layout-1):
    /// Reference this documentation once it's available on stable.
    ///
    /// [2] https://doc.rust-lang.org/nomicon/other-reprs.html#reprtransparent
    unsafe_impl!(T: TryFromBytes => TryFromBytes for Wrapping<T>; |candidate: Ptr<T>| {
        // SAFETY:
        // - Since `T` and `Wrapping<T>` have the same layout and bit validity
        //   and contain the same fields, `T` contains `UnsafeCell`s exactly
        //   where `Wrapping<T>` does. Thus, all memory and `UnsafeCell`
        //   preconditions of `T::is_bit_valid` hold exactly when the same
        //   preconditions for `Wrapping<T>::is_bit_valid` hold.
        // - By the same token, since `candidate` is guaranteed to have its
        //   bytes initialized where there are always initialized bytes in
        //   `Wrapping<T>`, the same is true for `T`.
        unsafe { T::is_bit_valid(candidate) }
    });
    unsafe_impl!(T: FromZeroes => FromZeroes for Wrapping<T>);
    unsafe_impl!(T: FromBytes => FromBytes for Wrapping<T>);
    unsafe_impl!(T: AsBytes => AsBytes for Wrapping<T>);
    unsafe_impl!(T: Unaligned => Unaligned for Wrapping<T>);
    assert_unaligned!(Wrapping<()>, Wrapping<u8>);
}
safety_comment! {
    // `MaybeUninit<T>` is `FromZeroes` and `FromBytes`, but never `AsBytes`
    // since it may contain uninitialized bytes.
    //
    /// SAFETY:
    /// - `TryFromBytes` (with no validator), `FromZeroes`, `FromBytes`:
    ///   `MaybeUninit<T>` has no restrictions on its contents. Unfortunately,
    ///   in addition to bit validity, `TryFromBytes`, `FromZeroes` and
    ///   `FromBytes` also require that implementers contain no `UnsafeCell`s.
    ///   Thus, we require `T: Trait` in order to ensure that `T` - and thus
    ///   `MaybeUninit<T>` - contains to `UnsafeCell`s. Thus, requiring that `T`
    ///   implement each of these traits is sufficient.
    /// - `Unaligned`: "MaybeUninit<T> is guaranteed to have the same size,
    ///    alignment, and ABI as T" [1]
    ///
    /// [1] https://doc.rust-lang.org/stable/core/mem/union.MaybeUninit.html#layout-1
    ///
    /// TODO(https://github.com/google/zerocopy/issues/251): If we split
    /// `FromBytes` and `RefFromBytes`, or if we introduce a separate
    /// `NoCell`/`Freeze` trait, we can relax the trait bounds for `FromZeroes`
    /// and `FromBytes`.
    unsafe_impl!(T: TryFromBytes => TryFromBytes for MaybeUninit<T>);
    unsafe_impl!(T: FromZeroes => FromZeroes for MaybeUninit<T>);
    unsafe_impl!(T: FromBytes => FromBytes for MaybeUninit<T>);
    unsafe_impl!(T: Unaligned => Unaligned for MaybeUninit<T>);
    assert_unaligned!(MaybeUninit<()>, MaybeUninit<u8>);
}
safety_comment! {
    /// SAFETY:
    /// `ManuallyDrop` has the same layout and bit validity as `T` [1], and
    /// accessing the inner value is safe (meaning that it's unsound to leave
    /// the inner value uninitialized while exposing the `ManuallyDrop` to safe
    /// code).
    /// - `FromZeroes`, `FromBytes`: Since it has the same layout as `T`, any
    ///   valid `T` is a valid `ManuallyDrop<T>`. If `T: FromZeroes`, a sequence
    ///   of zero bytes is a valid `T`, and thus a valid `ManuallyDrop<T>`. If
    ///   `T: FromBytes`, any sequence of bytes is a valid `T`, and thus a valid
    ///   `ManuallyDrop<T>`.
    /// - `AsBytes`: Since it has the same layout as `T`, and since it's unsound
    ///   to let safe code access a `ManuallyDrop` whose inner value is
    ///   uninitialized, safe code can only ever access a `ManuallyDrop` whose
    ///   contents are a valid `T`. Since `T: AsBytes`, this means that safe
    ///   code can only ever access a `ManuallyDrop` with all initialized bytes.
    /// - `Unaligned`: `ManuallyDrop` has the same layout (and thus alignment)
    ///   as `T`, and `T: Unaligned` guarantees that that alignment is 1.
    ///
    ///   `ManuallyDrop<T>` is guaranteed to have the same layout and bit
    ///   validity as `T`
    ///
    /// [1] Per https://doc.rust-lang.org/nightly/core/mem/struct.ManuallyDrop.html:
    ///
    /// TODO(#429):
    /// - Add quotes from docs.
    /// - Once [1] (added in
    /// https://github.com/rust-lang/rust/pull/115522) is available on stable,
    /// quote the stable docs instead of the nightly docs.
    unsafe_impl!(T: ?Sized + FromZeroes => FromZeroes for ManuallyDrop<T>);
    unsafe_impl!(T: ?Sized + FromBytes => FromBytes for ManuallyDrop<T>);
    unsafe_impl!(T: ?Sized + AsBytes => AsBytes for ManuallyDrop<T>);
    unsafe_impl!(T: ?Sized + Unaligned => Unaligned for ManuallyDrop<T>);
    assert_unaligned!(ManuallyDrop<()>, ManuallyDrop<u8>);
}
safety_comment! {
    /// SAFETY:
    /// Per the reference [1]:
    ///
    ///   An array of `[T; N]` has a size of `size_of::<T>() * N` and the same
    ///   alignment of `T`. Arrays are laid out so that the zero-based `nth`
    ///   element of the array is offset from the start of the array by `n *
    ///   size_of::<T>()` bytes.
    ///
    ///   ...
    ///
    ///   Slices have the same layout as the section of the array they slice.
    ///
    /// In other words, the layout of a `[T]` or `[T; N]` is a sequence of `T`s
    /// laid out back-to-back with no bytes in between. Therefore, `[T]` or `[T;
    /// N]` are `TryFromBytes`, `FromZeroes`, `FromBytes`, and `AsBytes` if `T`
    /// is (respectively). Furthermore, since an array/slice has "the same
    /// alignment of `T`", `[T]` and `[T; N]` are `Unaligned` if `T` is.
    ///
    /// Note that we don't `assert_unaligned!` for slice types because
    /// `assert_unaligned!` uses `align_of`, which only works for `Sized` types.
    ///
    /// [1] https://doc.rust-lang.org/reference/type-layout.html#array-layout
    unsafe_impl!(const N: usize, T: FromZeroes => FromZeroes for [T; N]);
    unsafe_impl!(const N: usize, T: FromBytes => FromBytes for [T; N]);
    unsafe_impl!(const N: usize, T: AsBytes => AsBytes for [T; N]);
    unsafe_impl!(const N: usize, T: Unaligned => Unaligned for [T; N]);
    assert_unaligned!([(); 0], [(); 1], [u8; 0], [u8; 1]);
    unsafe_impl!(T: TryFromBytes => TryFromBytes for [T]; |c: Ptr<[T]>| {
        // SAFETY: Assuming the preconditions of `is_bit_valid` are satisfied,
        // so too will the postcondition: that, if `is_bit_valid(candidate)`
        // returns true, `*candidate` contains a valid `Self`. Per the reference
        // [1]:
        //
        //   An array of `[T; N]` has a size of `size_of::<T>() * N` and the
        //   same alignment of `T`. Arrays are laid out so that the zero-based
        //   `nth` element of the array is offset from the start of the array by
        //   `n * size_of::<T>()` bytes.
        //
        //   ...
        //
        //   Slices have the same layout as the section of the array they slice.
        //
        // In other words, the layout of a `[T] is a sequence of `T`s laid out
        // back-to-back with no bytes in between. If all elements in `candidate`
        // are `is_bit_valid`, so too is `candidate`.
        //
        // Note that any of the below calls may panic, but it would still be
        // sound even if it did. `is_bit_valid` does not promise that it will
        // not panic (in fact, it explicitly warns that it's a possibility), and
        // we have not violated any safety invariants that we must fix before
        // returning.
        c.iter().all(|elem|
            // SAFETY: We uphold the safety contract of `is_bit_valid(elem)`, by
            // precondition on the surrounding call to `is_bit_valid`. The
            // memory referenced by `elem` is contained entirely within `c`, and
            // satisfies the preconditions satisfied by `c`. By axiom, we assume
            // that `Iterator:all` does not invalidate these preconditions
            // (e.g., by writing to `elem`.) Since `elem` is derived from `c`,
            // it is only possible for uninitialized bytes to occur in `elem` at
            // the same bytes they occur within `c`.
            unsafe { <T as TryFromBytes>::is_bit_valid(elem) }
        )
    });
    unsafe_impl!(T: FromZeroes => FromZeroes for [T]);
    unsafe_impl!(T: FromBytes => FromBytes for [T]);
    unsafe_impl!(T: AsBytes => AsBytes for [T]);
    unsafe_impl!(T: Unaligned => Unaligned for [T]);
}
safety_comment! {
    /// SAFETY:
    /// - `FromZeroes`: For thin pointers (note that `T: Sized`), the zero
    ///   pointer is considered "null". [1] No operations which require
    ///   provenance are legal on null pointers, so this is not a footgun.
    ///
    /// NOTE(#170): Implementing `FromBytes` and `AsBytes` for raw pointers
    /// would be sound, but carries provenance footguns. We want to support
    /// `FromBytes` and `AsBytes` for raw pointers eventually, but we are
    /// holding off until we can figure out how to address those footguns.
    ///
    /// [1] TODO(https://github.com/rust-lang/rust/pull/116988): Cite the
    /// documentation once this PR lands.
    unsafe_impl!(T => FromZeroes for *const T);
    unsafe_impl!(T => FromZeroes for *mut T);
}

// SIMD support
//
// Per the Unsafe Code Guidelines Reference [1]:
//
//   Packed SIMD vector types are `repr(simd)` homogeneous tuple-structs
//   containing `N` elements of type `T` where `N` is a power-of-two and the
//   size and alignment requirements of `T` are equal:
//
//   ```rust
//   #[repr(simd)]
//   struct Vector<T, N>(T_0, ..., T_(N - 1));
//   ```
//
//   ...
//
//   The size of `Vector` is `N * size_of::<T>()` and its alignment is an
//   implementation-defined function of `T` and `N` greater than or equal to
//   `align_of::<T>()`.
//
//   ...
//
//   Vector elements are laid out in source field order, enabling random access
//   to vector elements by reinterpreting the vector as an array:
//
//   ```rust
//   union U {
//      vec: Vector<T, N>,
//      arr: [T; N]
//   }
//
//   assert_eq!(size_of::<Vector<T, N>>(), size_of::<[T; N]>());
//   assert!(align_of::<Vector<T, N>>() >= align_of::<[T; N]>());
//
//   unsafe {
//     let u = U { vec: Vector<T, N>(t_0, ..., t_(N - 1)) };
//
//     assert_eq!(u.vec.0, u.arr[0]);
//     // ...
//     assert_eq!(u.vec.(N - 1), u.arr[N - 1]);
//   }
//   ```
//
// Given this background, we can observe that:
// - The size and bit pattern requirements of a SIMD type are equivalent to the
//   equivalent array type. Thus, for any SIMD type whose primitive `T` is
//   `TryFromBytes`, `FromZeroes`, `FromBytes`, or `AsBytes`, that SIMD type is
//   also `TryFromBytes`, `FromZeroes`, `FromBytes`, or `AsBytes` respectively.
// - Since no upper bound is placed on the alignment, no SIMD type can be
//   guaranteed to be `Unaligned`.
//
// Also per [1]:
//
//   This chapter represents the consensus from issue #38. The statements in
//   here are not (yet) "guaranteed" not to change until an RFC ratifies them.
//
// See issue #38 [2]. While this behavior is not technically guaranteed, the
// likelihood that the behavior will change such that SIMD types are no longer
// `TryFromBytes`, `FromZeroes`, `FromBytes`, or `AsBytes` is next to zero, as
// that would defeat the entire purpose of SIMD types. Nonetheless, we put this
// behavior behind the `simd` Cargo feature, which requires consumers to opt
// into this stability hazard.
//
// [1] https://rust-lang.github.io/unsafe-code-guidelines/layout/packed-simd-vectors.html
// [2] https://github.com/rust-lang/unsafe-code-guidelines/issues/38
#[cfg(feature = "simd")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "simd")))]
mod simd {
    /// Defines a module which implements `TryFromBytes`, `FromZeroes`,
    /// `FromBytes`, and `AsBytes` for a set of types from a module in
    /// `core::arch`.
    ///
    /// `$arch` is both the name of the defined module and the name of the
    /// module in `core::arch`, and `$typ` is the list of items from that module
    /// to implement `FromZeroes`, `FromBytes`, and `AsBytes` for.
    #[allow(unused_macros)] // `allow(unused_macros)` is needed because some
                            // target/feature combinations don't emit any impls
                            // and thus don't use this macro.
    macro_rules! simd_arch_mod {
        (#[cfg $cfg:tt] $arch:ident, $mod:ident, $($typ:ident),*) => {
            #[cfg $cfg]
            #[cfg_attr(doc_cfg, doc(cfg $cfg))]
            mod $mod {
                use core::arch::$arch::{$($typ),*};

                use crate::*;
                impl_known_layout!($($typ),*);
                safety_comment! {
                    /// SAFETY:
                    /// See comment on module definition for justification.
                    $( unsafe_impl!($typ: TryFromBytes, FromZeroes, FromBytes, AsBytes); )*
                }
            }
        };
    }

    #[rustfmt::skip]
    const _: () = {
        simd_arch_mod!(
            #[cfg(target_arch = "x86")]
            x86, x86, __m128, __m128d, __m128i, __m256, __m256d, __m256i
        );
        simd_arch_mod!(
            #[cfg(all(feature = "simd-nightly", target_arch = "x86"))]
            x86, x86_nightly, __m512bh, __m512, __m512d, __m512i
        );
        simd_arch_mod!(
            #[cfg(target_arch = "x86_64")]
            x86_64, x86_64, __m128, __m128d, __m128i, __m256, __m256d, __m256i
        );
        simd_arch_mod!(
            #[cfg(all(feature = "simd-nightly", target_arch = "x86_64"))]
            x86_64, x86_64_nightly, __m512bh, __m512, __m512d, __m512i
        );
        simd_arch_mod!(
            #[cfg(target_arch = "wasm32")]
            wasm32, wasm32, v128
        );
        simd_arch_mod!(
            #[cfg(all(feature = "simd-nightly", target_arch = "powerpc"))]
            powerpc, powerpc, vector_bool_long, vector_double, vector_signed_long, vector_unsigned_long
        );
        simd_arch_mod!(
            #[cfg(all(feature = "simd-nightly", target_arch = "powerpc64"))]
            powerpc64, powerpc64, vector_bool_long, vector_double, vector_signed_long, vector_unsigned_long
        );
        simd_arch_mod!(
            #[cfg(target_arch = "aarch64")]
            aarch64, aarch64, float32x2_t, float32x4_t, float64x1_t, float64x2_t, int8x8_t, int8x8x2_t,
            int8x8x3_t, int8x8x4_t, int8x16_t, int8x16x2_t, int8x16x3_t, int8x16x4_t, int16x4_t,
            int16x8_t, int32x2_t, int32x4_t, int64x1_t, int64x2_t, poly8x8_t, poly8x8x2_t, poly8x8x3_t,
            poly8x8x4_t, poly8x16_t, poly8x16x2_t, poly8x16x3_t, poly8x16x4_t, poly16x4_t, poly16x8_t,
            poly64x1_t, poly64x2_t, uint8x8_t, uint8x8x2_t, uint8x8x3_t, uint8x8x4_t, uint8x16_t,
            uint8x16x2_t, uint8x16x3_t, uint8x16x4_t, uint16x4_t, uint16x8_t, uint32x2_t, uint32x4_t,
            uint64x1_t, uint64x2_t
        );
        simd_arch_mod!(
            #[cfg(all(feature = "simd-nightly", target_arch = "arm"))]
            arm, arm, int8x4_t, uint8x4_t
        );
    };
}

/// Safely transmutes a value of one type to a value of another type of the same
/// size.
///
/// The expression `$e` must have a concrete type, `T`, which implements
/// `AsBytes`. The `transmute!` expression must also have a concrete type, `U`
/// (`U` is inferred from the calling context), and `U` must implement
/// `FromBytes`.
///
/// Note that the `T` produced by the expression `$e` will *not* be dropped.
/// Semantically, its bits will be copied into a new value of type `U`, the
/// original `T` will be forgotten, and the value of type `U` will be returned.
///
/// # Examples
///
/// ```
/// # use zerocopy::transmute;
/// let one_dimensional: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
///
/// let two_dimensional: [[u8; 4]; 2] = transmute!(one_dimensional);
///
/// assert_eq!(two_dimensional, [[0, 1, 2, 3], [4, 5, 6, 7]]);
/// ```
#[macro_export]
macro_rules! transmute {
    ($e:expr) => {{
        // NOTE: This must be a macro (rather than a function with trait bounds)
        // because there's no way, in a generic context, to enforce that two
        // types have the same size. `core::mem::transmute` uses compiler magic
        // to enforce this so long as the types are concrete.

        let e = $e;
        if false {
            // This branch, though never taken, ensures that the type of `e` is
            // `AsBytes` and that the type of this macro invocation expression
            // is `FromBytes`.

            struct AssertIsAsBytes<T: $crate::AsBytes>(T);
            let _ = AssertIsAsBytes(e);

            struct AssertIsFromBytes<U: $crate::FromBytes>(U);
            #[allow(unused, unreachable_code)]
            let u = AssertIsFromBytes(loop {});
            u.0
        } else {
            // SAFETY: `core::mem::transmute` ensures that the type of `e` and
            // the type of this macro invocation expression have the same size.
            // We know this transmute is safe thanks to the `AsBytes` and
            // `FromBytes` bounds enforced by the `false` branch.
            //
            // We use this reexport of `core::mem::transmute` because we know it
            // will always be available for crates which are using the 2015
            // edition of Rust. By contrast, if we were to use
            // `std::mem::transmute`, this macro would not work for such crates
            // in `no_std` contexts, and if we were to use
            // `core::mem::transmute`, this macro would not work in `std`
            // contexts in which `core` was not manually imported. This is not a
            // problem for 2018 edition crates.
            unsafe {
                // Clippy: It's okay to transmute a type to itself.
                #[allow(clippy::useless_transmute)]
                $crate::macro_util::core_reexport::mem::transmute(e)
            }
        }
    }}
}

/// Safely transmutes a mutable or immutable reference of one type to an
/// immutable reference of another type of the same size.
///
/// The expression `$e` must have a concrete type, `&T` or `&mut T`, where `T:
/// Sized + AsBytes`. The `transmute_ref!` expression must also have a concrete
/// type, `&U` (`U` is inferred from the calling context), where `U: Sized +
/// FromBytes`. It must be the case that `align_of::<T>() >= align_of::<U>()`.
///
/// The lifetime of the input type, `&T` or `&mut T`, must be the same as or
/// outlive the lifetime of the output type, `&U`.
///
/// # Examples
///
/// ```
/// # use zerocopy::transmute_ref;
/// let one_dimensional: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
///
/// let two_dimensional: &[[u8; 4]; 2] = transmute_ref!(&one_dimensional);
///
/// assert_eq!(two_dimensional, &[[0, 1, 2, 3], [4, 5, 6, 7]]);
/// ```
///
/// # Alignment increase error message
///
/// Because of limitations on macros, the error message generated when
/// `transmute_ref!` is used to transmute from a type of lower alignment to a
/// type of higher alignment is somewhat confusing. For example, the following
/// code:
///
/// ```compile_fail
/// const INCREASE_ALIGNMENT: &u16 = zerocopy::transmute_ref!(&[0u8; 2]);
/// ```
///
/// ...generates the following error:
///
/// ```text
/// error[E0512]: cannot transmute between types of different sizes, or dependently-sized types
///  --> src/lib.rs:1524:34
///   |
/// 5 | const INCREASE_ALIGNMENT: &u16 = zerocopy::transmute_ref!(&[0u8; 2]);
///   |                                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
///   |
///   = note: source type: `AlignOf<[u8; 2]>` (8 bits)
///   = note: target type: `MaxAlignsOf<[u8; 2], u16>` (16 bits)
///   = note: this error originates in the macro `$crate::assert_align_gt_eq` which comes from the expansion of the macro `transmute_ref` (in Nightly builds, run with -Z macro-backtrace for more info)
/// ```
///
/// This is saying that `max(align_of::<T>(), align_of::<U>()) !=
/// align_of::<T>()`, which is equivalent to `align_of::<T>() <
/// align_of::<U>()`.
#[macro_export]
macro_rules! transmute_ref {
    ($e:expr) => {{
        // NOTE: This must be a macro (rather than a function with trait bounds)
        // because there's no way, in a generic context, to enforce that two
        // types have the same size or alignment.

        // Ensure that the source type is a reference or a mutable reference
        // (note that mutable references are implicitly reborrowed here).
        let e: &_ = $e;

        #[allow(unused, clippy::diverging_sub_expression)]
        if false {
            // This branch, though never taken, ensures that the type of `e` is
            // `&T` where `T: 't + Sized + AsBytes`, that the type of this macro
            // expression is `&U` where `U: 'u + Sized + FromBytes`, and that
            // `'t` outlives `'u`.

            struct AssertIsAsBytes<'a, T: ::core::marker::Sized + $crate::AsBytes>(&'a T);
            let _ = AssertIsAsBytes(e);

            struct AssertIsFromBytes<'a, U: ::core::marker::Sized + $crate::FromBytes>(&'a U);
            #[allow(unused, unreachable_code)]
            let u = AssertIsFromBytes(loop {});
            u.0
        } else if false {
            // This branch, though never taken, ensures that `size_of::<T>() ==
            // size_of::<U>()` and that that `align_of::<T>() >=
            // align_of::<U>()`.

            // `t` is inferred to have type `T` because it's assigned to `e` (of
            // type `&T`) as `&t`.
            let mut t = unreachable!();
            e = &t;

            // `u` is inferred to have type `U` because it's used as `&u` as the
            // value returned from this branch.
            let u;

            $crate::assert_size_eq!(t, u);
            $crate::assert_align_gt_eq!(t, u);

            &u
        } else {
            // SAFETY: For source type `Src` and destination type `Dst`:
            // - We know that `Src: AsBytes` and `Dst: FromBytes` thanks to the
            //   uses of `AssertIsAsBytes` and `AssertIsFromBytes` above.
            // - We know that `size_of::<Src>() == size_of::<Dst>()` thanks to
            //   the use of `assert_size_eq!` above.
            // - We know that `align_of::<Src>() >= align_of::<Dst>()` thanks to
            //   the use of `assert_align_gt_eq!` above.
            unsafe { $crate::macro_util::transmute_ref(e) }
        }
    }}
}

/// Safely transmutes a mutable reference of one type to an mutable reference of
/// another type of the same size.
///
/// The expression `$e` must have a concrete type, `&mut T`, where `T: Sized +
/// AsBytes`. The `transmute_mut!` expression must also have a concrete type,
/// `&mut U` (`U` is inferred from the calling context), where `U: Sized +
/// FromBytes`. It must be the case that `align_of::<T>() >= align_of::<U>()`.
///
/// The lifetime of the input type, `&mut T`, must be the same as or outlive the
/// lifetime of the output type, `&mut U`.
///
/// # Examples
///
/// ```
/// # use zerocopy::transmute_mut;
/// let mut one_dimensional: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
///
/// let two_dimensional: &mut [[u8; 4]; 2] = transmute_mut!(&mut one_dimensional);
///
/// assert_eq!(two_dimensional, &[[0, 1, 2, 3], [4, 5, 6, 7]]);
///
/// two_dimensional.reverse();
///
/// assert_eq!(one_dimensional, [4, 5, 6, 7, 0, 1, 2, 3]);
/// ```
///
/// # Alignment increase error message
///
/// Because of limitations on macros, the error message generated when
/// `transmute_mut!` is used to transmute from a type of lower alignment to a
/// type of higher alignment is somewhat confusing. For example, the following
/// code:
///
/// ```compile_fail
/// const INCREASE_ALIGNMENT: &mut u16 = zerocopy::transmute_mut!(&mut [0u8; 2]);
/// ```
///
/// ...generates the following error:
///
/// ```text
/// error[E0512]: cannot transmute between types of different sizes, or dependently-sized types
///  --> src/lib.rs:1524:34
///   |
/// 5 | const INCREASE_ALIGNMENT: &mut u16 = zerocopy::transmute_mut!(&mut [0u8; 2]);
///   |                                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
///   |
///   = note: source type: `AlignOf<[u8; 2]>` (8 bits)
///   = note: target type: `MaxAlignsOf<[u8; 2], u16>` (16 bits)
///   = note: this error originates in the macro `$crate::assert_align_gt_eq` which comes from the expansion of the macro `transmute_mut` (in Nightly builds, run with -Z macro-backtrace for more info)
/// ```
///
/// This is saying that `max(align_of::<T>(), align_of::<U>()) !=
/// align_of::<T>()`, which is equivalent to `align_of::<T>() <
/// align_of::<U>()`.
#[macro_export]
macro_rules! transmute_mut {
    ($e:expr) => {{
        // NOTE: This must be a macro (rather than a function with trait bounds)
        // because there's no way, in a generic context, to enforce that two
        // types have the same size or alignment.

        // Ensure that the source type is a mutable reference.
        let e: &mut _ = $e;

        #[allow(unused, clippy::diverging_sub_expression)]
        if false {
            // This branch, though never taken, ensures that the type of `e` is
            // `&mut T` where `T: 't + Sized + FromBytes + AsBytes`, that the
            // type of this macro expression is `&mut U` where `U: 'u + Sized +
            // FromBytes + AsBytes`.

            // We use immutable references here rather than mutable so that, if
            // this macro is used in a const context (in which, as of this
            // writing, mutable references are banned), the error message
            // appears to originate in the user's code rather than in the
            // internals of this macro.
            struct AssertSrcIsFromBytes<'a, T: ::core::marker::Sized + $crate::FromBytes>(&'a T);
            struct AssertSrcIsAsBytes<'a, T: ::core::marker::Sized + $crate::AsBytes>(&'a T);
            struct AssertDstIsFromBytes<'a, T: ::core::marker::Sized + $crate::FromBytes>(&'a T);
            struct AssertDstIsAsBytes<'a, T: ::core::marker::Sized + $crate::AsBytes>(&'a T);

            if true {
                let _ = AssertSrcIsFromBytes(&*e);
            } else {
                let _ = AssertSrcIsAsBytes(&*e);
            }

            if true {
                #[allow(unused, unreachable_code)]
                let u = AssertDstIsFromBytes(loop {});
                &mut *u.0
            } else {
                #[allow(unused, unreachable_code)]
                let u = AssertDstIsAsBytes(loop {});
                &mut *u.0
            }
        } else if false {
            // This branch, though never taken, ensures that `size_of::<T>() ==
            // size_of::<U>()` and that that `align_of::<T>() >=
            // align_of::<U>()`.

            // `t` is inferred to have type `T` because it's assigned to `e` (of
            // type `&mut T`) as `&mut t`.
            let mut t = unreachable!();
            e = &mut t;

            // `u` is inferred to have type `U` because it's used as `&mut u` as
            // the value returned from this branch.
            let u;

            $crate::assert_size_eq!(t, u);
            $crate::assert_align_gt_eq!(t, u);

            &mut u
        } else {
            // SAFETY: For source type `Src` and destination type `Dst`:
            // - We know that `Src: FromBytes + AsBytes` and `Dst: FromBytes +
            //   AsBytes` thanks to the uses of `AssertSrcIsFromBytes`,
            //   `AssertSrcIsAsBytes`, `AssertDstIsFromBytes`, and
            //   `AssertDstIsAsBytes` above.
            // - We know that `size_of::<Src>() == size_of::<Dst>()` thanks to
            //   the use of `assert_size_eq!` above.
            // - We know that `align_of::<Src>() >= align_of::<Dst>()` thanks to
            //   the use of `assert_align_gt_eq!` above.
            unsafe { $crate::macro_util::transmute_mut(e) }
        }
    }}
}

/// Includes a file and safely transmutes it to a value of an arbitrary type.
///
/// The file will be included as a byte array, `[u8; N]`, which will be
/// transmuted to another type, `T`. `T` is inferred from the calling context,
/// and must implement [`FromBytes`].
///
/// The file is located relative to the current file (similarly to how modules
/// are found). The provided path is interpreted in a platform-specific way at
/// compile time. So, for instance, an invocation with a Windows path containing
/// backslashes `\` would not compile correctly on Unix.
///
/// `include_value!` is ignorant of byte order. For byte order-aware types, see
/// the [`byteorder`] module.
///
/// # Examples
///
/// Assume there are two files in the same directory with the following
/// contents:
///
/// File `data` (no trailing newline):
///
/// ```text
/// abcd
/// ```
///
/// File `main.rs`:
///
/// ```rust
/// use zerocopy::include_value;
/// # macro_rules! include_value {
/// # ($file:expr) => { zerocopy::include_value!(concat!("../testdata/include_value/", $file)) };
/// # }
///
/// fn main() {
///     let as_u32: u32 = include_value!("data");
///     assert_eq!(as_u32, u32::from_ne_bytes([b'a', b'b', b'c', b'd']));
///     let as_i32: i32 = include_value!("data");
///     assert_eq!(as_i32, i32::from_ne_bytes([b'a', b'b', b'c', b'd']));
/// }
/// ```
#[doc(alias("include_bytes", "include_data", "include_type"))]
#[macro_export]
macro_rules! include_value {
    ($file:expr $(,)?) => {
        $crate::transmute!(*::core::include_bytes!($file))
    };
}

/// A typed reference derived from a byte slice.
///
/// A `Ref<B, T>` is a reference to a `T` which is stored in a byte slice, `B`.
/// Unlike a native reference (`&T` or `&mut T`), `Ref<B, T>` has the same
/// mutability as the byte slice it was constructed from (`B`).
///
/// # Examples
///
/// `Ref` can be used to treat a sequence of bytes as a structured type, and to
/// read and write the fields of that type as if the byte slice reference were
/// simply a reference to that type.
///
/// ```rust
/// # #[cfg(feature = "derive")] { // This example uses derives, and won't compile without them
/// use zerocopy::{AsBytes, ByteSlice, ByteSliceMut, FromBytes, FromZeroes, Ref, Unaligned};
///
/// #[derive(FromZeroes, FromBytes, AsBytes, Unaligned)]
/// #[repr(C)]
/// struct UdpHeader {
///     src_port: [u8; 2],
///     dst_port: [u8; 2],
///     length: [u8; 2],
///     checksum: [u8; 2],
/// }
///
/// struct UdpPacket<B> {
///     header: Ref<B, UdpHeader>,
///     body: B,
/// }
///
/// impl<B: ByteSlice> UdpPacket<B> {
///     pub fn parse(bytes: B) -> Option<UdpPacket<B>> {
///         let (header, body) = Ref::new_unaligned_from_prefix(bytes)?;
///         Some(UdpPacket { header, body })
///     }
///
///     pub fn get_src_port(&self) -> [u8; 2] {
///         self.header.src_port
///     }
/// }
///
/// impl<B: ByteSliceMut> UdpPacket<B> {
///     pub fn set_src_port(&mut self, src_port: [u8; 2]) {
///         self.header.src_port = src_port;
///     }
/// }
/// # }
/// ```
pub struct Ref<B, T: ?Sized>(B, PhantomData<T>);

/// Deprecated: prefer [`Ref`] instead.
#[deprecated(since = "0.7.0", note = "LayoutVerified has been renamed to Ref")]
#[doc(hidden)]
pub type LayoutVerified<B, T> = Ref<B, T>;

impl<B, T> Ref<B, T>
where
    B: ByteSlice,
{
    /// Constructs a new `Ref`.
    ///
    /// `new` verifies that `bytes.len() == size_of::<T>()` and that `bytes` is
    /// aligned to `align_of::<T>()`, and constructs a new `Ref`. If either of
    /// these checks fail, it returns `None`.
    #[inline]
    pub fn new(bytes: B) -> Option<Ref<B, T>> {
        if bytes.len() != mem::size_of::<T>() || !util::aligned_to::<_, T>(bytes.deref()) {
            return None;
        }
        Some(Ref(bytes, PhantomData))
    }

    /// Constructs a new `Ref` from the prefix of a byte slice.
    ///
    /// `new_from_prefix` verifies that `bytes.len() >= size_of::<T>()` and that
    /// `bytes` is aligned to `align_of::<T>()`. It consumes the first
    /// `size_of::<T>()` bytes from `bytes` to construct a `Ref`, and returns
    /// the remaining bytes to the caller. If either the length or alignment
    /// checks fail, it returns `None`.
    #[inline]
    pub fn new_from_prefix(bytes: B) -> Option<(Ref<B, T>, B)> {
        if bytes.len() < mem::size_of::<T>() || !util::aligned_to::<_, T>(bytes.deref()) {
            return None;
        }
        let (bytes, suffix) = bytes.split_at(mem::size_of::<T>());
        Some((Ref(bytes, PhantomData), suffix))
    }

    /// Constructs a new `Ref` from the suffix of a byte slice.
    ///
    /// `new_from_suffix` verifies that `bytes.len() >= size_of::<T>()` and that
    /// the last `size_of::<T>()` bytes of `bytes` are aligned to
    /// `align_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `Ref`, and returns the preceding bytes to the
    /// caller. If either the length or alignment checks fail, it returns
    /// `None`.
    #[inline]
    pub fn new_from_suffix(bytes: B) -> Option<(B, Ref<B, T>)> {
        let bytes_len = bytes.len();
        let split_at = bytes_len.checked_sub(mem::size_of::<T>())?;
        let (prefix, bytes) = bytes.split_at(split_at);
        if !util::aligned_to::<_, T>(bytes.deref()) {
            return None;
        }
        Some((prefix, Ref(bytes, PhantomData)))
    }
}

impl<B, T> Ref<B, [T]>
where
    B: ByteSlice,
{
    /// Constructs a new `Ref` of a slice type.
    ///
    /// `new_slice` verifies that `bytes.len()` is a multiple of
    /// `size_of::<T>()` and that `bytes` is aligned to `align_of::<T>()`, and
    /// constructs a new `Ref`. If either of these checks fail, it returns
    /// `None`.
    ///
    /// # Panics
    ///
    /// `new_slice` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice(bytes: B) -> Option<Ref<B, [T]>> {
        let remainder = bytes
            .len()
            .checked_rem(mem::size_of::<T>())
            .expect("Ref::new_slice called on a zero-sized type");
        if remainder != 0 || !util::aligned_to::<_, T>(bytes.deref()) {
            return None;
        }
        Some(Ref(bytes, PhantomData))
    }

    /// Constructs a new `Ref` of a slice type from the prefix of a byte slice.
    ///
    /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() *
    /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the
    /// first `size_of::<T>() * count` bytes from `bytes` to construct a `Ref`,
    /// and returns the remaining bytes to the caller. It also ensures that
    /// `sizeof::<T>() * count` does not overflow a `usize`. If any of the
    /// length, alignment, or overflow checks fail, it returns `None`.
    ///
    /// # Panics
    ///
    /// `new_slice_from_prefix` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_from_prefix(bytes: B, count: usize) -> Option<(Ref<B, [T]>, B)> {
        let expected_len = match mem::size_of::<T>().checked_mul(count) {
            Some(len) => len,
            None => return None,
        };
        if bytes.len() < expected_len {
            return None;
        }
        let (prefix, bytes) = bytes.split_at(expected_len);
        Self::new_slice(prefix).map(move |l| (l, bytes))
    }

    /// Constructs a new `Ref` of a slice type from the suffix of a byte slice.
    ///
    /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() *
    /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the
    /// last `size_of::<T>() * count` bytes from `bytes` to construct a `Ref`,
    /// and returns the preceding bytes to the caller. It also ensures that
    /// `sizeof::<T>() * count` does not overflow a `usize`. If any of the
    /// length, alignment, or overflow checks fail, it returns `None`.
    ///
    /// # Panics
    ///
    /// `new_slice_from_suffix` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_from_suffix(bytes: B, count: usize) -> Option<(B, Ref<B, [T]>)> {
        let expected_len = match mem::size_of::<T>().checked_mul(count) {
            Some(len) => len,
            None => return None,
        };
        let split_at = bytes.len().checked_sub(expected_len)?;
        let (bytes, suffix) = bytes.split_at(split_at);
        Self::new_slice(suffix).map(move |l| (bytes, l))
    }
}

fn map_zeroed<B: ByteSliceMut, T: ?Sized>(opt: Option<Ref<B, T>>) -> Option<Ref<B, T>> {
    match opt {
        Some(mut r) => {
            r.0.fill(0);
            Some(r)
        }
        None => None,
    }
}

fn map_prefix_tuple_zeroed<B: ByteSliceMut, T: ?Sized>(
    opt: Option<(Ref<B, T>, B)>,
) -> Option<(Ref<B, T>, B)> {
    match opt {
        Some((mut r, rest)) => {
            r.0.fill(0);
            Some((r, rest))
        }
        None => None,
    }
}

fn map_suffix_tuple_zeroed<B: ByteSliceMut, T: ?Sized>(
    opt: Option<(B, Ref<B, T>)>,
) -> Option<(B, Ref<B, T>)> {
    map_prefix_tuple_zeroed(opt.map(|(a, b)| (b, a))).map(|(a, b)| (b, a))
}

impl<B, T> Ref<B, T>
where
    B: ByteSliceMut,
{
    /// Constructs a new `Ref` after zeroing the bytes.
    ///
    /// `new_zeroed` verifies that `bytes.len() == size_of::<T>()` and that
    /// `bytes` is aligned to `align_of::<T>()`, and constructs a new `Ref`. If
    /// either of these checks fail, it returns `None`.
    ///
    /// If the checks succeed, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    #[inline(always)]
    pub fn new_zeroed(bytes: B) -> Option<Ref<B, T>> {
        map_zeroed(Self::new(bytes))
    }

    /// Constructs a new `Ref` from the prefix of a byte slice, zeroing the
    /// prefix.
    ///
    /// `new_from_prefix_zeroed` verifies that `bytes.len() >= size_of::<T>()`
    /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the first
    /// `size_of::<T>()` bytes from `bytes` to construct a `Ref`, and returns
    /// the remaining bytes to the caller. If either the length or alignment
    /// checks fail, it returns `None`.
    ///
    /// If the checks succeed, then the prefix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline(always)]
    pub fn new_from_prefix_zeroed(bytes: B) -> Option<(Ref<B, T>, B)> {
        map_prefix_tuple_zeroed(Self::new_from_prefix(bytes))
    }

    /// Constructs a new `Ref` from the suffix of a byte slice, zeroing the
    /// suffix.
    ///
    /// `new_from_suffix_zeroed` verifies that `bytes.len() >= size_of::<T>()`
    /// and that the last `size_of::<T>()` bytes of `bytes` are aligned to
    /// `align_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `Ref`, and returns the preceding bytes to the
    /// caller. If either the length or alignment checks fail, it returns
    /// `None`.
    ///
    /// If the checks succeed, then the suffix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline(always)]
    pub fn new_from_suffix_zeroed(bytes: B) -> Option<(B, Ref<B, T>)> {
        map_suffix_tuple_zeroed(Self::new_from_suffix(bytes))
    }
}

impl<B, T> Ref<B, [T]>
where
    B: ByteSliceMut,
{
    /// Constructs a new `Ref` of a slice type after zeroing the bytes.
    ///
    /// `new_slice_zeroed` verifies that `bytes.len()` is a multiple of
    /// `size_of::<T>()` and that `bytes` is aligned to `align_of::<T>()`, and
    /// constructs a new `Ref`. If either of these checks fail, it returns
    /// `None`.
    ///
    /// If the checks succeed, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice` panics if `T` is a zero-sized type.
    #[inline(always)]
    pub fn new_slice_zeroed(bytes: B) -> Option<Ref<B, [T]>> {
        map_zeroed(Self::new_slice(bytes))
    }

    /// Constructs a new `Ref` of a slice type from the prefix of a byte slice,
    /// after zeroing the bytes.
    ///
    /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() *
    /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the
    /// first `size_of::<T>() * count` bytes from `bytes` to construct a `Ref`,
    /// and returns the remaining bytes to the caller. It also ensures that
    /// `sizeof::<T>() * count` does not overflow a `usize`. If any of the
    /// length, alignment, or overflow checks fail, it returns `None`.
    ///
    /// If the checks succeed, then the suffix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice_from_prefix_zeroed` panics if `T` is a zero-sized type.
    #[inline(always)]
    pub fn new_slice_from_prefix_zeroed(bytes: B, count: usize) -> Option<(Ref<B, [T]>, B)> {
        map_prefix_tuple_zeroed(Self::new_slice_from_prefix(bytes, count))
    }

    /// Constructs a new `Ref` of a slice type from the prefix of a byte slice,
    /// after zeroing the bytes.
    ///
    /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() *
    /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the
    /// last `size_of::<T>() * count` bytes from `bytes` to construct a `Ref`,
    /// and returns the preceding bytes to the caller. It also ensures that
    /// `sizeof::<T>() * count` does not overflow a `usize`. If any of the
    /// length, alignment, or overflow checks fail, it returns `None`.
    ///
    /// If the checks succeed, then the consumed suffix will be initialized to
    /// zero. This can be useful when re-using buffers to ensure that sensitive
    /// data previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice_from_suffix_zeroed` panics if `T` is a zero-sized type.
    #[inline(always)]
    pub fn new_slice_from_suffix_zeroed(bytes: B, count: usize) -> Option<(B, Ref<B, [T]>)> {
        map_suffix_tuple_zeroed(Self::new_slice_from_suffix(bytes, count))
    }
}

impl<B, T> Ref<B, T>
where
    B: ByteSlice,
    T: Unaligned,
{
    /// Constructs a new `Ref` for a type with no alignment requirement.
    ///
    /// `new_unaligned` verifies that `bytes.len() == size_of::<T>()` and
    /// constructs a new `Ref`. If the check fails, it returns `None`.
    #[inline(always)]
    pub fn new_unaligned(bytes: B) -> Option<Ref<B, T>> {
        Ref::new(bytes)
    }

    /// Constructs a new `Ref` from the prefix of a byte slice for a type with
    /// no alignment requirement.
    ///
    /// `new_unaligned_from_prefix` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the first `size_of::<T>()` bytes from
    /// `bytes` to construct a `Ref`, and returns the remaining bytes to the
    /// caller. If the length check fails, it returns `None`.
    #[inline(always)]
    pub fn new_unaligned_from_prefix(bytes: B) -> Option<(Ref<B, T>, B)> {
        Ref::new_from_prefix(bytes)
    }

    /// Constructs a new `Ref` from the suffix of a byte slice for a type with
    /// no alignment requirement.
    ///
    /// `new_unaligned_from_suffix` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `Ref`, and returns the preceding bytes to the
    /// caller. If the length check fails, it returns `None`.
    #[inline(always)]
    pub fn new_unaligned_from_suffix(bytes: B) -> Option<(B, Ref<B, T>)> {
        Ref::new_from_suffix(bytes)
    }
}

impl<B, T> Ref<B, [T]>
where
    B: ByteSlice,
    T: Unaligned,
{
    /// Constructs a new `Ref` of a slice type with no alignment requirement.
    ///
    /// `new_slice_unaligned` verifies that `bytes.len()` is a multiple of
    /// `size_of::<T>()` and constructs a new `Ref`. If the check fails, it
    /// returns `None`.
    ///
    /// # Panics
    ///
    /// `new_slice` panics if `T` is a zero-sized type.
    #[inline(always)]
    pub fn new_slice_unaligned(bytes: B) -> Option<Ref<B, [T]>> {
        Ref::new_slice(bytes)
    }

    /// Constructs a new `Ref` of a slice type with no alignment requirement
    /// from the prefix of a byte slice.
    ///
    /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() *
    /// count`. It consumes the first `size_of::<T>() * count` bytes from
    /// `bytes` to construct a `Ref`, and returns the remaining bytes to the
    /// caller. It also ensures that `sizeof::<T>() * count` does not overflow a
    /// `usize`. If either the length, or overflow checks fail, it returns
    /// `None`.
    ///
    /// # Panics
    ///
    /// `new_slice_unaligned_from_prefix` panics if `T` is a zero-sized type.
    #[inline(always)]
    pub fn new_slice_unaligned_from_prefix(bytes: B, count: usize) -> Option<(Ref<B, [T]>, B)> {
        Ref::new_slice_from_prefix(bytes, count)
    }

    /// Constructs a new `Ref` of a slice type with no alignment requirement
    /// from the suffix of a byte slice.
    ///
    /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() *
    /// count`. It consumes the last `size_of::<T>() * count` bytes from `bytes`
    /// to construct a `Ref`, and returns the remaining bytes to the caller. It
    /// also ensures that `sizeof::<T>() * count` does not overflow a `usize`.
    /// If either the length, or overflow checks fail, it returns `None`.
    ///
    /// # Panics
    ///
    /// `new_slice_unaligned_from_suffix` panics if `T` is a zero-sized type.
    #[inline(always)]
    pub fn new_slice_unaligned_from_suffix(bytes: B, count: usize) -> Option<(B, Ref<B, [T]>)> {
        Ref::new_slice_from_suffix(bytes, count)
    }
}

impl<B, T> Ref<B, T>
where
    B: ByteSliceMut,
    T: Unaligned,
{
    /// Constructs a new `Ref` for a type with no alignment requirement, zeroing
    /// the bytes.
    ///
    /// `new_unaligned_zeroed` verifies that `bytes.len() == size_of::<T>()` and
    /// constructs a new `Ref`. If the check fails, it returns `None`.
    ///
    /// If the check succeeds, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    #[inline(always)]
    pub fn new_unaligned_zeroed(bytes: B) -> Option<Ref<B, T>> {
        map_zeroed(Self::new_unaligned(bytes))
    }

    /// Constructs a new `Ref` from the prefix of a byte slice for a type with
    /// no alignment requirement, zeroing the prefix.
    ///
    /// `new_unaligned_from_prefix_zeroed` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the first `size_of::<T>()` bytes from
    /// `bytes` to construct a `Ref`, and returns the remaining bytes to the
    /// caller. If the length check fails, it returns `None`.
    ///
    /// If the check succeeds, then the prefix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline(always)]
    pub fn new_unaligned_from_prefix_zeroed(bytes: B) -> Option<(Ref<B, T>, B)> {
        map_prefix_tuple_zeroed(Self::new_unaligned_from_prefix(bytes))
    }

    /// Constructs a new `Ref` from the suffix of a byte slice for a type with
    /// no alignment requirement, zeroing the suffix.
    ///
    /// `new_unaligned_from_suffix_zeroed` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `Ref`, and returns the preceding bytes to the
    /// caller. If the length check fails, it returns `None`.
    ///
    /// If the check succeeds, then the suffix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline(always)]
    pub fn new_unaligned_from_suffix_zeroed(bytes: B) -> Option<(B, Ref<B, T>)> {
        map_suffix_tuple_zeroed(Self::new_unaligned_from_suffix(bytes))
    }
}

impl<B, T> Ref<B, [T]>
where
    B: ByteSliceMut,
    T: Unaligned,
{
    /// Constructs a new `Ref` for a slice type with no alignment requirement,
    /// zeroing the bytes.
    ///
    /// `new_slice_unaligned_zeroed` verifies that `bytes.len()` is a multiple
    /// of `size_of::<T>()` and constructs a new `Ref`. If the check fails, it
    /// returns `None`.
    ///
    /// If the check succeeds, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice` panics if `T` is a zero-sized type.
    #[inline(always)]
    pub fn new_slice_unaligned_zeroed(bytes: B) -> Option<Ref<B, [T]>> {
        map_zeroed(Self::new_slice_unaligned(bytes))
    }

    /// Constructs a new `Ref` of a slice type with no alignment requirement
    /// from the prefix of a byte slice, after zeroing the bytes.
    ///
    /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() *
    /// count`. It consumes the first `size_of::<T>() * count` bytes from
    /// `bytes` to construct a `Ref`, and returns the remaining bytes to the
    /// caller. It also ensures that `sizeof::<T>() * count` does not overflow a
    /// `usize`. If either the length, or overflow checks fail, it returns
    /// `None`.
    ///
    /// If the checks succeed, then the prefix will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice_unaligned_from_prefix_zeroed` panics if `T` is a zero-sized
    /// type.
    #[inline(always)]
    pub fn new_slice_unaligned_from_prefix_zeroed(
        bytes: B,
        count: usize,
    ) -> Option<(Ref<B, [T]>, B)> {
        map_prefix_tuple_zeroed(Self::new_slice_unaligned_from_prefix(bytes, count))
    }

    /// Constructs a new `Ref` of a slice type with no alignment requirement
    /// from the suffix of a byte slice, after zeroing the bytes.
    ///
    /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() *
    /// count`. It consumes the last `size_of::<T>() * count` bytes from `bytes`
    /// to construct a `Ref`, and returns the remaining bytes to the caller. It
    /// also ensures that `sizeof::<T>() * count` does not overflow a `usize`.
    /// If either the length, or overflow checks fail, it returns `None`.
    ///
    /// If the checks succeed, then the suffix will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice_unaligned_from_suffix_zeroed` panics if `T` is a zero-sized
    /// type.
    #[inline(always)]
    pub fn new_slice_unaligned_from_suffix_zeroed(
        bytes: B,
        count: usize,
    ) -> Option<(B, Ref<B, [T]>)> {
        map_suffix_tuple_zeroed(Self::new_slice_unaligned_from_suffix(bytes, count))
    }
}

impl<'a, B, T> Ref<B, T>
where
    B: 'a + ByteSlice,
    T: FromBytes,
{
    /// Converts this `Ref` into a reference.
    ///
    /// `into_ref` consumes the `Ref`, and returns a reference to `T`.
    #[inline(always)]
    pub fn into_ref(self) -> &'a T {
        assert!(B::INTO_REF_INTO_MUT_ARE_SOUND);

        // SAFETY: According to the safety preconditions on
        // `ByteSlice::INTO_REF_INTO_MUT_ARE_SOUND`, the preceding assert
        // ensures that, given `B: 'a`, it is sound to drop `self` and still
        // access the underlying memory using reads for `'a`.
        unsafe { self.deref_helper() }
    }
}

impl<'a, B, T> Ref<B, T>
where
    B: 'a + ByteSliceMut,
    T: FromBytes + AsBytes,
{
    /// Converts this `Ref` into a mutable reference.
    ///
    /// `into_mut` consumes the `Ref`, and returns a mutable reference to `T`.
    #[inline(always)]
    pub fn into_mut(mut self) -> &'a mut T {
        assert!(B::INTO_REF_INTO_MUT_ARE_SOUND);

        // SAFETY: According to the safety preconditions on
        // `ByteSlice::INTO_REF_INTO_MUT_ARE_SOUND`, the preceding assert
        // ensures that, given `B: 'a + ByteSliceMut`, it is sound to drop
        // `self` and still access the underlying memory using both reads and
        // writes for `'a`.
        unsafe { self.deref_mut_helper() }
    }
}

impl<'a, B, T> Ref<B, [T]>
where
    B: 'a + ByteSlice,
    T: FromBytes,
{
    /// Converts this `Ref` into a slice reference.
    ///
    /// `into_slice` consumes the `Ref`, and returns a reference to `[T]`.
    #[inline(always)]
    pub fn into_slice(self) -> &'a [T] {
        assert!(B::INTO_REF_INTO_MUT_ARE_SOUND);

        // SAFETY: According to the safety preconditions on
        // `ByteSlice::INTO_REF_INTO_MUT_ARE_SOUND`, the preceding assert
        // ensures that, given `B: 'a`, it is sound to drop `self` and still
        // access the underlying memory using reads for `'a`.
        unsafe { self.deref_slice_helper() }
    }
}

impl<'a, B, T> Ref<B, [T]>
where
    B: 'a + ByteSliceMut,
    T: FromBytes + AsBytes,
{
    /// Converts this `Ref` into a mutable slice reference.
    ///
    /// `into_mut_slice` consumes the `Ref`, and returns a mutable reference to
    /// `[T]`.
    #[inline(always)]
    pub fn into_mut_slice(mut self) -> &'a mut [T] {
        assert!(B::INTO_REF_INTO_MUT_ARE_SOUND);

        // SAFETY: According to the safety preconditions on
        // `ByteSlice::INTO_REF_INTO_MUT_ARE_SOUND`, the preceding assert
        // ensures that, given `B: 'a + ByteSliceMut`, it is sound to drop
        // `self` and still access the underlying memory using both reads and
        // writes for `'a`.
        unsafe { self.deref_mut_slice_helper() }
    }
}

impl<B, T> Ref<B, T>
where
    B: ByteSlice,
    T: FromBytes,
{
    /// Creates an immutable reference to `T` with a specific lifetime.
    ///
    /// # Safety
    ///
    /// The type bounds on this method guarantee that it is safe to create an
    /// immutable reference to `T` from `self`. However, since the lifetime `'a`
    /// is not required to be shorter than the lifetime of the reference to
    /// `self`, the caller must guarantee that the lifetime `'a` is valid for
    /// this reference. In particular, the referent must exist for all of `'a`,
    /// and no mutable references to the same memory may be constructed during
    /// `'a`.
    unsafe fn deref_helper<'a>(&self) -> &'a T {
        // TODO(#429): Add a "SAFETY" comment and remove this `allow`.
        #[allow(clippy::undocumented_unsafe_blocks)]
        unsafe {
            &*self.0.as_ptr().cast::<T>()
        }
    }
}

impl<B, T> Ref<B, T>
where
    B: ByteSliceMut,
    T: FromBytes + AsBytes,
{
    /// Creates a mutable reference to `T` with a specific lifetime.
    ///
    /// # Safety
    ///
    /// The type bounds on this method guarantee that it is safe to create a
    /// mutable reference to `T` from `self`. However, since the lifetime `'a`
    /// is not required to be shorter than the lifetime of the reference to
    /// `self`, the caller must guarantee that the lifetime `'a` is valid for
    /// this reference. In particular, the referent must exist for all of `'a`,
    /// and no other references - mutable or immutable - to the same memory may
    /// be constructed during `'a`.
    unsafe fn deref_mut_helper<'a>(&mut self) -> &'a mut T {
        // TODO(#429): Add a "SAFETY" comment and remove this `allow`.
        #[allow(clippy::undocumented_unsafe_blocks)]
        unsafe {
            &mut *self.0.as_mut_ptr().cast::<T>()
        }
    }
}

impl<B, T> Ref<B, [T]>
where
    B: ByteSlice,
    T: FromBytes,
{
    /// Creates an immutable reference to `[T]` with a specific lifetime.
    ///
    /// # Safety
    ///
    /// `deref_slice_helper` has the same safety requirements as `deref_helper`.
    unsafe fn deref_slice_helper<'a>(&self) -> &'a [T] {
        let len = self.0.len();
        let elem_size = mem::size_of::<T>();
        debug_assert_ne!(elem_size, 0);
        // `Ref<_, [T]>` maintains the invariant that `size_of::<T>() > 0`.
        // Thus, neither the mod nor division operations here can panic.
        #[allow(clippy::arithmetic_side_effects)]
        let elems = {
            debug_assert_eq!(len % elem_size, 0);
            len / elem_size
        };
        // TODO(#429): Add a "SAFETY" comment and remove this `allow`.
        #[allow(clippy::undocumented_unsafe_blocks)]
        unsafe {
            slice::from_raw_parts(self.0.as_ptr().cast::<T>(), elems)
        }
    }
}

impl<B, T> Ref<B, [T]>
where
    B: ByteSliceMut,
    T: FromBytes + AsBytes,
{
    /// Creates a mutable reference to `[T]` with a specific lifetime.
    ///
    /// # Safety
    ///
    /// `deref_mut_slice_helper` has the same safety requirements as
    /// `deref_mut_helper`.
    unsafe fn deref_mut_slice_helper<'a>(&mut self) -> &'a mut [T] {
        let len = self.0.len();
        let elem_size = mem::size_of::<T>();
        debug_assert_ne!(elem_size, 0);
        // `Ref<_, [T]>` maintains the invariant that `size_of::<T>() > 0`.
        // Thus, neither the mod nor division operations here can panic.
        #[allow(clippy::arithmetic_side_effects)]
        let elems = {
            debug_assert_eq!(len % elem_size, 0);
            len / elem_size
        };
        // TODO(#429): Add a "SAFETY" comment and remove this `allow`.
        #[allow(clippy::undocumented_unsafe_blocks)]
        unsafe {
            slice::from_raw_parts_mut(self.0.as_mut_ptr().cast::<T>(), elems)
        }
    }
}

impl<B, T> Ref<B, T>
where
    B: ByteSlice,
    T: ?Sized,
{
    /// Gets the underlying bytes.
    #[inline]
    pub fn bytes(&self) -> &[u8] {
        &self.0
    }
}

impl<B, T> Ref<B, T>
where
    B: ByteSliceMut,
    T: ?Sized,
{
    /// Gets the underlying bytes mutably.
    #[inline]
    pub fn bytes_mut(&mut self) -> &mut [u8] {
        &mut self.0
    }
}

impl<B, T> Ref<B, T>
where
    B: ByteSlice,
    T: FromBytes,
{
    /// Reads a copy of `T`.
    #[inline]
    pub fn read(&self) -> T {
        // SAFETY: Because of the invariants on `Ref`, we know that `self.0` is
        // at least `size_of::<T>()` bytes long, and that it is at least as
        // aligned as `align_of::<T>()`. Because `T: FromBytes`, it is sound to
        // interpret these bytes as a `T`.
        unsafe { ptr::read(self.0.as_ptr().cast::<T>()) }
    }
}

impl<B, T> Ref<B, T>
where
    B: ByteSliceMut,
    T: AsBytes,
{
    /// Writes the bytes of `t` and then forgets `t`.
    #[inline]
    pub fn write(&mut self, t: T) {
        // SAFETY: Because of the invariants on `Ref`, we know that `self.0` is
        // at least `size_of::<T>()` bytes long, and that it is at least as
        // aligned as `align_of::<T>()`. Writing `t` to the buffer will allow
        // all of the bytes of `t` to be accessed as a `[u8]`, but because `T:
        // AsBytes`, we know this is sound.
        unsafe { ptr::write(self.0.as_mut_ptr().cast::<T>(), t) }
    }
}

impl<B, T> Deref for Ref<B, T>
where
    B: ByteSlice,
    T: FromBytes,
{
    type Target = T;
    #[inline]
    fn deref(&self) -> &T {
        // SAFETY: This is sound because the lifetime of `self` is the same as
        // the lifetime of the return value, meaning that a) the returned
        // reference cannot outlive `self` and, b) no mutable methods on `self`
        // can be called during the lifetime of the returned reference. See the
        // documentation on `deref_helper` for what invariants we are required
        // to uphold.
        unsafe { self.deref_helper() }
    }
}

impl<B, T> DerefMut for Ref<B, T>
where
    B: ByteSliceMut,
    T: FromBytes + AsBytes,
{
    #[inline]
    fn deref_mut(&mut self) -> &mut T {
        // SAFETY: This is sound because the lifetime of `self` is the same as
        // the lifetime of the return value, meaning that a) the returned
        // reference cannot outlive `self` and, b) no other methods on `self`
        // can be called during the lifetime of the returned reference. See the
        // documentation on `deref_mut_helper` for what invariants we are
        // required to uphold.
        unsafe { self.deref_mut_helper() }
    }
}

impl<B, T> Deref for Ref<B, [T]>
where
    B: ByteSlice,
    T: FromBytes,
{
    type Target = [T];
    #[inline]
    fn deref(&self) -> &[T] {
        // SAFETY: This is sound because the lifetime of `self` is the same as
        // the lifetime of the return value, meaning that a) the returned
        // reference cannot outlive `self` and, b) no mutable methods on `self`
        // can be called during the lifetime of the returned reference. See the
        // documentation on `deref_slice_helper` for what invariants we are
        // required to uphold.
        unsafe { self.deref_slice_helper() }
    }
}

impl<B, T> DerefMut for Ref<B, [T]>
where
    B: ByteSliceMut,
    T: FromBytes + AsBytes,
{
    #[inline]
    fn deref_mut(&mut self) -> &mut [T] {
        // SAFETY: This is sound because the lifetime of `self` is the same as
        // the lifetime of the return value, meaning that a) the returned
        // reference cannot outlive `self` and, b) no other methods on `self`
        // can be called during the lifetime of the returned reference. See the
        // documentation on `deref_mut_slice_helper` for what invariants we are
        // required to uphold.
        unsafe { self.deref_mut_slice_helper() }
    }
}

impl<T, B> Display for Ref<B, T>
where
    B: ByteSlice,
    T: FromBytes + Display,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        let inner: &T = self;
        inner.fmt(fmt)
    }
}

impl<T, B> Display for Ref<B, [T]>
where
    B: ByteSlice,
    T: FromBytes,
    [T]: Display,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        let inner: &[T] = self;
        inner.fmt(fmt)
    }
}

impl<T, B> Debug for Ref<B, T>
where
    B: ByteSlice,
    T: FromBytes + Debug,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        let inner: &T = self;
        fmt.debug_tuple("Ref").field(&inner).finish()
    }
}

impl<T, B> Debug for Ref<B, [T]>
where
    B: ByteSlice,
    T: FromBytes + Debug,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        let inner: &[T] = self;
        fmt.debug_tuple("Ref").field(&inner).finish()
    }
}

impl<T, B> Eq for Ref<B, T>
where
    B: ByteSlice,
    T: FromBytes + Eq,
{
}

impl<T, B> Eq for Ref<B, [T]>
where
    B: ByteSlice,
    T: FromBytes + Eq,
{
}

impl<T, B> PartialEq for Ref<B, T>
where
    B: ByteSlice,
    T: FromBytes + PartialEq,
{
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        self.deref().eq(other.deref())
    }
}

impl<T, B> PartialEq for Ref<B, [T]>
where
    B: ByteSlice,
    T: FromBytes + PartialEq,
{
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        self.deref().eq(other.deref())
    }
}

impl<T, B> Ord for Ref<B, T>
where
    B: ByteSlice,
    T: FromBytes + Ord,
{
    #[inline]
    fn cmp(&self, other: &Self) -> Ordering {
        let inner: &T = self;
        let other_inner: &T = other;
        inner.cmp(other_inner)
    }
}

impl<T, B> Ord for Ref<B, [T]>
where
    B: ByteSlice,
    T: FromBytes + Ord,
{
    #[inline]
    fn cmp(&self, other: &Self) -> Ordering {
        let inner: &[T] = self;
        let other_inner: &[T] = other;
        inner.cmp(other_inner)
    }
}

impl<T, B> PartialOrd for Ref<B, T>
where
    B: ByteSlice,
    T: FromBytes + PartialOrd,
{
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        let inner: &T = self;
        let other_inner: &T = other;
        inner.partial_cmp(other_inner)
    }
}

impl<T, B> PartialOrd for Ref<B, [T]>
where
    B: ByteSlice,
    T: FromBytes + PartialOrd,
{
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        let inner: &[T] = self;
        let other_inner: &[T] = other;
        inner.partial_cmp(other_inner)
    }
}

mod sealed {
    pub trait ByteSliceSealed {}
}

// ByteSlice and ByteSliceMut abstract over [u8] references (&[u8], &mut [u8],
// Ref<[u8]>, RefMut<[u8]>, etc). We rely on various behaviors of these
// references such as that a given reference will never changes its length
// between calls to deref() or deref_mut(), and that split_at() works as
// expected. If ByteSlice or ByteSliceMut were not sealed, consumers could
// implement them in a way that violated these behaviors, and would break our
// unsafe code. Thus, we seal them and implement it only for known-good
// reference types. For the same reason, they're unsafe traits.

#[allow(clippy::missing_safety_doc)] // TODO(fxbug.dev/99068)
/// A mutable or immutable reference to a byte slice.
///
/// `ByteSlice` abstracts over the mutability of a byte slice reference, and is
/// implemented for various special reference types such as `Ref<[u8]>` and
/// `RefMut<[u8]>`.
///
/// Note that, while it would be technically possible, `ByteSlice` is not
/// implemented for [`Vec<u8>`], as the only way to implement the [`split_at`]
/// method would involve reallocation, and `split_at` must be a very cheap
/// operation in order for the utilities in this crate to perform as designed.
///
/// [`split_at`]: crate::ByteSlice::split_at
// It may seem overkill to go to this length to ensure that this doc link never
// breaks. We do this because it simplifies CI - it means that generating docs
// always succeeds, so we don't need special logic to only generate docs under
// certain features.
#[cfg_attr(feature = "alloc", doc = "[`Vec<u8>`]: alloc::vec::Vec")]
#[cfg_attr(
    not(feature = "alloc"),
    doc = "[`Vec<u8>`]: https://doc.rust-lang.org/std/vec/struct.Vec.html"
)]
pub unsafe trait ByteSlice:
    Deref<Target = [u8]> + Sized + self::sealed::ByteSliceSealed
{
    /// Are the [`Ref::into_ref`] and [`Ref::into_mut`] methods sound when used
    /// with `Self`? If not, evaluating this constant must panic at compile
    /// time.
    ///
    /// This exists to work around #716 on versions of zerocopy prior to 0.8.
    ///
    /// # Safety
    ///
    /// This may only be set to true if the following holds: Given the
    /// following:
    /// - `Self: 'a`
    /// - `bytes: Self`
    /// - `let ptr = bytes.as_ptr()`
    ///
    /// ...then:
    /// - Using `ptr` to read the memory previously addressed by `bytes` is
    ///   sound for `'a` even after `bytes` has been dropped.
    /// - If `Self: ByteSliceMut`, using `ptr` to write the memory previously
    ///   addressed by `bytes` is sound for `'a` even after `bytes` has been
    ///   dropped.
    #[doc(hidden)]
    const INTO_REF_INTO_MUT_ARE_SOUND: bool;

    /// Gets a raw pointer to the first byte in the slice.
    #[inline]
    fn as_ptr(&self) -> *const u8 {
        <[u8]>::as_ptr(self)
    }

    /// Splits the slice at the midpoint.
    ///
    /// `x.split_at(mid)` returns `x[..mid]` and `x[mid..]`.
    ///
    /// # Panics
    ///
    /// `x.split_at(mid)` panics if `mid > x.len()`.
    fn split_at(self, mid: usize) -> (Self, Self);
}

#[allow(clippy::missing_safety_doc)] // TODO(fxbug.dev/99068)
/// A mutable reference to a byte slice.
///
/// `ByteSliceMut` abstracts over various ways of storing a mutable reference to
/// a byte slice, and is implemented for various special reference types such as
/// `RefMut<[u8]>`.
pub unsafe trait ByteSliceMut: ByteSlice + DerefMut {
    /// Gets a mutable raw pointer to the first byte in the slice.
    #[inline]
    fn as_mut_ptr(&mut self) -> *mut u8 {
        <[u8]>::as_mut_ptr(self)
    }
}

impl<'a> sealed::ByteSliceSealed for &'a [u8] {}
// TODO(#429): Add a "SAFETY" comment and remove this `allow`.
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe impl<'a> ByteSlice for &'a [u8] {
    // SAFETY: If `&'b [u8]: 'a`, then the underlying memory is treated as
    // borrowed immutably for `'a` even if the slice itself is dropped.
    const INTO_REF_INTO_MUT_ARE_SOUND: bool = true;

    #[inline]
    fn split_at(self, mid: usize) -> (Self, Self) {
        <[u8]>::split_at(self, mid)
    }
}

impl<'a> sealed::ByteSliceSealed for &'a mut [u8] {}
// TODO(#429): Add a "SAFETY" comment and remove this `allow`.
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe impl<'a> ByteSlice for &'a mut [u8] {
    // SAFETY: If `&'b mut [u8]: 'a`, then the underlying memory is treated as
    // borrowed mutably for `'a` even if the slice itself is dropped.
    const INTO_REF_INTO_MUT_ARE_SOUND: bool = true;

    #[inline]
    fn split_at(self, mid: usize) -> (Self, Self) {
        <[u8]>::split_at_mut(self, mid)
    }
}

impl<'a> sealed::ByteSliceSealed for cell::Ref<'a, [u8]> {}
// TODO(#429): Add a "SAFETY" comment and remove this `allow`.
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe impl<'a> ByteSlice for cell::Ref<'a, [u8]> {
    const INTO_REF_INTO_MUT_ARE_SOUND: bool = if !cfg!(doc) {
        panic!("Ref::into_ref and Ref::into_mut are unsound when used with core::cell::Ref; see https://github.com/google/zerocopy/issues/716")
    } else {
        // When compiling documentation, allow the evaluation of this constant
        // to succeed. This doesn't represent a soundness hole - it just delays
        // any error to runtime. The reason we need this is that, otherwise,
        // `rustdoc` will fail when trying to document this item.
        false
    };

    #[inline]
    fn split_at(self, mid: usize) -> (Self, Self) {
        cell::Ref::map_split(self, |slice| <[u8]>::split_at(slice, mid))
    }
}

impl<'a> sealed::ByteSliceSealed for RefMut<'a, [u8]> {}
// TODO(#429): Add a "SAFETY" comment and remove this `allow`.
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe impl<'a> ByteSlice for RefMut<'a, [u8]> {
    const INTO_REF_INTO_MUT_ARE_SOUND: bool = if !cfg!(doc) {
        panic!("Ref::into_ref and Ref::into_mut are unsound when used with core::cell::RefMut; see https://github.com/google/zerocopy/issues/716")
    } else {
        // When compiling documentation, allow the evaluation of this constant
        // to succeed. This doesn't represent a soundness hole - it just delays
        // any error to runtime. The reason we need this is that, otherwise,
        // `rustdoc` will fail when trying to document this item.
        false
    };

    #[inline]
    fn split_at(self, mid: usize) -> (Self, Self) {
        RefMut::map_split(self, |slice| <[u8]>::split_at_mut(slice, mid))
    }
}

// TODO(#429): Add a "SAFETY" comment and remove this `allow`.
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe impl<'a> ByteSliceMut for &'a mut [u8] {}

// TODO(#429): Add a "SAFETY" comment and remove this `allow`.
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe impl<'a> ByteSliceMut for RefMut<'a, [u8]> {}

#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
mod alloc_support {
    use alloc::vec::Vec;

    use super::*;

    /// Extends a `Vec<T>` by pushing `additional` new items onto the end of the
    /// vector. The new items are initialized with zeroes.
    ///
    /// # Panics
    ///
    /// Panics if `Vec::reserve(additional)` fails to reserve enough memory.
    #[inline(always)]
    pub fn extend_vec_zeroed<T: FromZeroes>(v: &mut Vec<T>, additional: usize) {
        insert_vec_zeroed(v, v.len(), additional);
    }

    /// Inserts `additional` new items into `Vec<T>` at `position`.
    /// The new items are initialized with zeroes.
    ///
    /// # Panics
    ///
    /// * Panics if `position > v.len()`.
    /// * Panics if `Vec::reserve(additional)` fails to reserve enough memory.
    #[inline]
    pub fn insert_vec_zeroed<T: FromZeroes>(v: &mut Vec<T>, position: usize, additional: usize) {
        assert!(position <= v.len());
        v.reserve(additional);
        // SAFETY: The `reserve` call guarantees that these cannot overflow:
        // * `ptr.add(position)`
        // * `position + additional`
        // * `v.len() + additional`
        //
        // `v.len() - position` cannot overflow because we asserted that
        // `position <= v.len()`.
        unsafe {
            // This is a potentially overlapping copy.
            let ptr = v.as_mut_ptr();
            #[allow(clippy::arithmetic_side_effects)]
            ptr.add(position).copy_to(ptr.add(position + additional), v.len() - position);
            ptr.add(position).write_bytes(0, additional);
            #[allow(clippy::arithmetic_side_effects)]
            v.set_len(v.len() + additional);
        }
    }

    #[cfg(test)]
    mod tests {
        use core::convert::TryFrom as _;

        use super::*;

        #[test]
        fn test_extend_vec_zeroed() {
            // Test extending when there is an existing allocation.
            let mut v = vec![100u64, 200, 300];
            extend_vec_zeroed(&mut v, 3);
            assert_eq!(v.len(), 6);
            assert_eq!(&*v, &[100, 200, 300, 0, 0, 0]);
            drop(v);

            // Test extending when there is no existing allocation.
            let mut v: Vec<u64> = Vec::new();
            extend_vec_zeroed(&mut v, 3);
            assert_eq!(v.len(), 3);
            assert_eq!(&*v, &[0, 0, 0]);
            drop(v);
        }

        #[test]
        fn test_extend_vec_zeroed_zst() {
            // Test extending when there is an existing (fake) allocation.
            let mut v = vec![(), (), ()];
            extend_vec_zeroed(&mut v, 3);
            assert_eq!(v.len(), 6);
            assert_eq!(&*v, &[(), (), (), (), (), ()]);
            drop(v);

            // Test extending when there is no existing (fake) allocation.
            let mut v: Vec<()> = Vec::new();
            extend_vec_zeroed(&mut v, 3);
            assert_eq!(&*v, &[(), (), ()]);
            drop(v);
        }

        #[test]
        fn test_insert_vec_zeroed() {
            // Insert at start (no existing allocation).
            let mut v: Vec<u64> = Vec::new();
            insert_vec_zeroed(&mut v, 0, 2);
            assert_eq!(v.len(), 2);
            assert_eq!(&*v, &[0, 0]);
            drop(v);

            // Insert at start.
            let mut v = vec![100u64, 200, 300];
            insert_vec_zeroed(&mut v, 0, 2);
            assert_eq!(v.len(), 5);
            assert_eq!(&*v, &[0, 0, 100, 200, 300]);
            drop(v);

            // Insert at middle.
            let mut v = vec![100u64, 200, 300];
            insert_vec_zeroed(&mut v, 1, 1);
            assert_eq!(v.len(), 4);
            assert_eq!(&*v, &[100, 0, 200, 300]);
            drop(v);

            // Insert at end.
            let mut v = vec![100u64, 200, 300];
            insert_vec_zeroed(&mut v, 3, 1);
            assert_eq!(v.len(), 4);
            assert_eq!(&*v, &[100, 200, 300, 0]);
            drop(v);
        }

        #[test]
        fn test_insert_vec_zeroed_zst() {
            // Insert at start (no existing fake allocation).
            let mut v: Vec<()> = Vec::new();
            insert_vec_zeroed(&mut v, 0, 2);
            assert_eq!(v.len(), 2);
            assert_eq!(&*v, &[(), ()]);
            drop(v);

            // Insert at start.
            let mut v = vec![(), (), ()];
            insert_vec_zeroed(&mut v, 0, 2);
            assert_eq!(v.len(), 5);
            assert_eq!(&*v, &[(), (), (), (), ()]);
            drop(v);

            // Insert at middle.
            let mut v = vec![(), (), ()];
            insert_vec_zeroed(&mut v, 1, 1);
            assert_eq!(v.len(), 4);
            assert_eq!(&*v, &[(), (), (), ()]);
            drop(v);

            // Insert at end.
            let mut v = vec![(), (), ()];
            insert_vec_zeroed(&mut v, 3, 1);
            assert_eq!(v.len(), 4);
            assert_eq!(&*v, &[(), (), (), ()]);
            drop(v);
        }

        #[test]
        fn test_new_box_zeroed() {
            assert_eq!(*u64::new_box_zeroed(), 0);
        }

        #[test]
        fn test_new_box_zeroed_array() {
            drop(<[u32; 0x1000]>::new_box_zeroed());
        }

        #[test]
        fn test_new_box_zeroed_zst() {
            // This test exists in order to exercise unsafe code, especially
            // when running under Miri.
            #[allow(clippy::unit_cmp)]
            {
                assert_eq!(*<()>::new_box_zeroed(), ());
            }
        }

        #[test]
        fn test_new_box_slice_zeroed() {
            let mut s: Box<[u64]> = u64::new_box_slice_zeroed(3);
            assert_eq!(s.len(), 3);
            assert_eq!(&*s, &[0, 0, 0]);
            s[1] = 3;
            assert_eq!(&*s, &[0, 3, 0]);
        }

        #[test]
        fn test_new_box_slice_zeroed_empty() {
            let s: Box<[u64]> = u64::new_box_slice_zeroed(0);
            assert_eq!(s.len(), 0);
        }

        #[test]
        fn test_new_box_slice_zeroed_zst() {
            let mut s: Box<[()]> = <()>::new_box_slice_zeroed(3);
            assert_eq!(s.len(), 3);
            assert!(s.get(10).is_none());
            // This test exists in order to exercise unsafe code, especially
            // when running under Miri.
            #[allow(clippy::unit_cmp)]
            {
                assert_eq!(s[1], ());
            }
            s[2] = ();
        }

        #[test]
        fn test_new_box_slice_zeroed_zst_empty() {
            let s: Box<[()]> = <()>::new_box_slice_zeroed(0);
            assert_eq!(s.len(), 0);
        }

        #[test]
        #[should_panic(expected = "mem::size_of::<Self>() * len overflows `usize`")]
        fn test_new_box_slice_zeroed_panics_mul_overflow() {
            let _ = u16::new_box_slice_zeroed(usize::MAX);
        }

        #[test]
        #[should_panic(expected = "assertion failed: size <= max_alloc")]
        fn test_new_box_slice_zeroed_panics_isize_overflow() {
            let max = usize::try_from(isize::MAX).unwrap();
            let _ = u16::new_box_slice_zeroed((max / mem::size_of::<u16>()) + 1);
        }
    }
}

#[cfg(feature = "alloc")]
#[doc(inline)]
pub use alloc_support::*;

#[cfg(test)]
mod tests {
    #![allow(clippy::unreadable_literal)]

    use core::{cell::UnsafeCell, convert::TryInto as _, ops::Deref};

    use static_assertions::assert_impl_all;

    use super::*;
    use crate::util::testutil::*;

    // An unsized type.
    //
    // This is used to test the custom derives of our traits. The `[u8]` type
    // gets a hand-rolled impl, so it doesn't exercise our custom derives.
    #[derive(Debug, Eq, PartialEq, FromZeroes, FromBytes, AsBytes, Unaligned)]
    #[repr(transparent)]
    struct Unsized([u8]);

    impl Unsized {
        fn from_mut_slice(slc: &mut [u8]) -> &mut Unsized {
            // SAFETY: This *probably* sound - since the layouts of `[u8]` and
            // `Unsized` are the same, so are the layouts of `&mut [u8]` and
            // `&mut Unsized`. [1] Even if it turns out that this isn't actually
            // guaranteed by the language spec, we can just change this since
            // it's in test code.
            //
            // [1] https://github.com/rust-lang/unsafe-code-guidelines/issues/375
            unsafe { mem::transmute(slc) }
        }
    }

    /// Tests of when a sized `DstLayout` is extended with a sized field.
    #[allow(clippy::decimal_literal_representation)]
    #[test]
    fn test_dst_layout_extend_sized_with_sized() {
        // This macro constructs a layout corresponding to a `u8` and extends it
        // with a zero-sized trailing field of given alignment `n`. The macro
        // tests that the resulting layout has both size and alignment `min(n,
        // P)` for all valid values of `repr(packed(P))`.
        macro_rules! test_align_is_size {
            ($n:expr) => {
                let base = DstLayout::for_type::<u8>();
                let trailing_field = DstLayout::for_type::<elain::Align<$n>>();

                let packs =
                    core::iter::once(None).chain((0..29).map(|p| NonZeroUsize::new(2usize.pow(p))));

                for pack in packs {
                    let composite = base.extend(trailing_field, pack);
                    let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN);
                    let align = $n.min(max_align.get());
                    assert_eq!(
                        composite,
                        DstLayout {
                            align: NonZeroUsize::new(align).unwrap(),
                            size_info: SizeInfo::Sized { _size: align }
                        }
                    )
                }
            };
        }

        test_align_is_size!(1);
        test_align_is_size!(2);
        test_align_is_size!(4);
        test_align_is_size!(8);
        test_align_is_size!(16);
        test_align_is_size!(32);
        test_align_is_size!(64);
        test_align_is_size!(128);
        test_align_is_size!(256);
        test_align_is_size!(512);
        test_align_is_size!(1024);
        test_align_is_size!(2048);
        test_align_is_size!(4096);
        test_align_is_size!(8192);
        test_align_is_size!(16384);
        test_align_is_size!(32768);
        test_align_is_size!(65536);
        test_align_is_size!(131072);
        test_align_is_size!(262144);
        test_align_is_size!(524288);
        test_align_is_size!(1048576);
        test_align_is_size!(2097152);
        test_align_is_size!(4194304);
        test_align_is_size!(8388608);
        test_align_is_size!(16777216);
        test_align_is_size!(33554432);
        test_align_is_size!(67108864);
        test_align_is_size!(33554432);
        test_align_is_size!(134217728);
        test_align_is_size!(268435456);
    }

    /// Tests of when a sized `DstLayout` is extended with a DST field.
    #[test]
    fn test_dst_layout_extend_sized_with_dst() {
        // Test that for all combinations of real-world alignments and
        // `repr_packed` values, that the extension of a sized `DstLayout`` with
        // a DST field correctly computes the trailing offset in the composite
        // layout.

        let aligns = (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap());
        let packs = core::iter::once(None).chain(aligns.clone().map(Some));

        for align in aligns {
            for pack in packs.clone() {
                let base = DstLayout::for_type::<u8>();
                let elem_size = 42;
                let trailing_field_offset = 11;

                let trailing_field = DstLayout {
                    align,
                    size_info: SizeInfo::SliceDst(TrailingSliceLayout {
                        _elem_size: elem_size,
                        _offset: 11,
                    }),
                };

                let composite = base.extend(trailing_field, pack);

                let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN).get();

                let align = align.get().min(max_align);

                assert_eq!(
                    composite,
                    DstLayout {
                        align: NonZeroUsize::new(align).unwrap(),
                        size_info: SizeInfo::SliceDst(TrailingSliceLayout {
                            _elem_size: elem_size,
                            _offset: align + trailing_field_offset,
                        }),
                    }
                )
            }
        }
    }

    /// Tests that calling `pad_to_align` on a sized `DstLayout` adds the
    /// expected amount of trailing padding.
    #[test]
    fn test_dst_layout_pad_to_align_with_sized() {
        // For all valid alignments `align`, construct a one-byte layout aligned
        // to `align`, call `pad_to_align`, and assert that the size of the
        // resulting layout is equal to `align`.
        for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) {
            let layout = DstLayout { align, size_info: SizeInfo::Sized { _size: 1 } };

            assert_eq!(
                layout.pad_to_align(),
                DstLayout { align, size_info: SizeInfo::Sized { _size: align.get() } }
            );
        }

        // Test explicitly-provided combinations of unpadded and padded
        // counterparts.

        macro_rules! test {
            (unpadded { size: $unpadded_size:expr, align: $unpadded_align:expr }
                => padded { size: $padded_size:expr, align: $padded_align:expr }) => {
                let unpadded = DstLayout {
                    align: NonZeroUsize::new($unpadded_align).unwrap(),
                    size_info: SizeInfo::Sized { _size: $unpadded_size },
                };
                let padded = unpadded.pad_to_align();

                assert_eq!(
                    padded,
                    DstLayout {
                        align: NonZeroUsize::new($padded_align).unwrap(),
                        size_info: SizeInfo::Sized { _size: $padded_size },
                    }
                );
            };
        }

        test!(unpadded { size: 0, align: 4 } => padded { size: 0, align: 4 });
        test!(unpadded { size: 1, align: 4 } => padded { size: 4, align: 4 });
        test!(unpadded { size: 2, align: 4 } => padded { size: 4, align: 4 });
        test!(unpadded { size: 3, align: 4 } => padded { size: 4, align: 4 });
        test!(unpadded { size: 4, align: 4 } => padded { size: 4, align: 4 });
        test!(unpadded { size: 5, align: 4 } => padded { size: 8, align: 4 });
        test!(unpadded { size: 6, align: 4 } => padded { size: 8, align: 4 });
        test!(unpadded { size: 7, align: 4 } => padded { size: 8, align: 4 });
        test!(unpadded { size: 8, align: 4 } => padded { size: 8, align: 4 });

        let current_max_align = DstLayout::CURRENT_MAX_ALIGN.get();

        test!(unpadded { size: 1, align: current_max_align }
            => padded { size: current_max_align, align: current_max_align });

        test!(unpadded { size: current_max_align + 1, align: current_max_align }
            => padded { size: current_max_align * 2, align: current_max_align });
    }

    /// Tests that calling `pad_to_align` on a DST `DstLayout` is a no-op.
    #[test]
    fn test_dst_layout_pad_to_align_with_dst() {
        for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) {
            for offset in 0..10 {
                for elem_size in 0..10 {
                    let layout = DstLayout {
                        align,
                        size_info: SizeInfo::SliceDst(TrailingSliceLayout {
                            _offset: offset,
                            _elem_size: elem_size,
                        }),
                    };
                    assert_eq!(layout.pad_to_align(), layout);
                }
            }
        }
    }

    // This test takes a long time when running under Miri, so we skip it in
    // that case. This is acceptable because this is a logic test that doesn't
    // attempt to expose UB.
    #[test]
    #[cfg_attr(miri, ignore)]
    fn testvalidate_cast_and_convert_metadata() {
        impl From<usize> for SizeInfo {
            fn from(_size: usize) -> SizeInfo {
                SizeInfo::Sized { _size }
            }
        }

        impl From<(usize, usize)> for SizeInfo {
            fn from((_offset, _elem_size): (usize, usize)) -> SizeInfo {
                SizeInfo::SliceDst(TrailingSliceLayout { _offset, _elem_size })
            }
        }

        fn layout<S: Into<SizeInfo>>(s: S, align: usize) -> DstLayout {
            DstLayout { size_info: s.into(), align: NonZeroUsize::new(align).unwrap() }
        }

        /// This macro accepts arguments in the form of:
        ///
        ///           layout(_, _, _).validate(_, _, _), Ok(Some((_, _)))
        ///                  |  |  |           |  |  |            |  |
        ///    base_size ----+  |  |           |  |  |            |  |
        ///    align -----------+  |           |  |  |            |  |
        ///    trailing_size ------+           |  |  |            |  |
        ///    addr ---------------------------+  |  |            |  |
        ///    bytes_len -------------------------+  |            |  |
        ///    cast_type ----------------------------+            |  |
        ///    elems ---------------------------------------------+  |
        ///    split_at ---------------------------------------------+
        ///
        /// `.validate` is shorthand for `.validate_cast_and_convert_metadata`
        /// for brevity.
        ///
        /// Each argument can either be an iterator or a wildcard. Each
        /// wildcarded variable is implicitly replaced by an iterator over a
        /// representative sample of values for that variable. Each `test!`
        /// invocation iterates over every combination of values provided by
        /// each variable's iterator (ie, the cartesian product) and validates
        /// that the results are expected.
        ///
        /// The final argument uses the same syntax, but it has a different
        /// meaning:
        /// - If it is `Ok(pat)`, then the pattern `pat` is supplied to
        ///   `assert_matches!` to validate the computed result for each
        ///   combination of input values.
        /// - If it is `Err(msg)`, then `test!` validates that the call to
        ///   `validate_cast_and_convert_metadata` panics with the given panic
        ///   message.
        ///
        /// Note that the meta-variables that match these variables have the
        /// `tt` type, and some valid expressions are not valid `tt`s (such as
        /// `a..b`). In this case, wrap the expression in parentheses, and it
        /// will become valid `tt`.
        macro_rules! test {
            ($(:$sizes:expr =>)?
                layout($size:tt, $align:tt)
                .validate($addr:tt, $bytes_len:tt, $cast_type:tt), $expect:pat $(,)?
            ) => {
                itertools::iproduct!(
                    test!(@generate_size $size),
                    test!(@generate_align $align),
                    test!(@generate_usize $addr),
                    test!(@generate_usize $bytes_len),
                    test!(@generate_cast_type $cast_type)
                ).for_each(|(size_info, align, addr, bytes_len, cast_type)| {
                    // Temporarily disable the panic hook installed by the test
                    // harness. If we don't do this, all panic messages will be
                    // kept in an internal log. On its own, this isn't a
                    // problem, but if a non-caught panic ever happens (ie, in
                    // code later in this test not in this macro), all of the
                    // previously-buffered messages will be dumped, hiding the
                    // real culprit.
                    let previous_hook = std::panic::take_hook();
                    // I don't understand why, but this seems to be required in
                    // addition to the previous line.
                    std::panic::set_hook(Box::new(|_| {}));
                    let actual = std::panic::catch_unwind(|| {
                        layout(size_info, align).validate_cast_and_convert_metadata(addr, bytes_len, cast_type)
                    }).map_err(|d| {
                        *d.downcast::<&'static str>().expect("expected string panic message").as_ref()
                    });
                    std::panic::set_hook(previous_hook);

                    assert_matches::assert_matches!(
                        actual, $expect,
                        "layout({size_info:?}, {align}).validate_cast_and_convert_metadata({addr}, {bytes_len}, {cast_type:?})",
                    );
                });
            };
            (@generate_usize _) => { 0..8 };
            // Generate sizes for both Sized and !Sized types.
            (@generate_size _) => {
                test!(@generate_size (_)).chain(test!(@generate_size (_, _)))
            };
            // Generate sizes for both Sized and !Sized types by chaining
            // specified iterators for each.
            (@generate_size ($sized_sizes:tt | $unsized_sizes:tt)) => {
                test!(@generate_size ($sized_sizes)).chain(test!(@generate_size $unsized_sizes))
            };
            // Generate sizes for Sized types.
            (@generate_size (_)) => { test!(@generate_size (0..8)) };
            (@generate_size ($sizes:expr)) => { $sizes.into_iter().map(Into::<SizeInfo>::into) };
            // Generate sizes for !Sized types.
            (@generate_size ($min_sizes:tt, $elem_sizes:tt)) => {
                itertools::iproduct!(
                    test!(@generate_min_size $min_sizes),
                    test!(@generate_elem_size $elem_sizes)
                ).map(Into::<SizeInfo>::into)
            };
            (@generate_fixed_size _) => { (0..8).into_iter().map(Into::<SizeInfo>::into) };
            (@generate_min_size _) => { 0..8 };
            (@generate_elem_size _) => { 1..8 };
            (@generate_align _) => { [1, 2, 4, 8, 16] };
            (@generate_opt_usize _) => { [None].into_iter().chain((0..8).map(Some).into_iter()) };
            (@generate_cast_type _) => { [_CastType::_Prefix, _CastType::_Suffix] };
            (@generate_cast_type $variant:ident) => { [_CastType::$variant] };
            // Some expressions need to be wrapped in parentheses in order to be
            // valid `tt`s (required by the top match pattern). See the comment
            // below for more details. This arm removes these parentheses to
            // avoid generating an `unused_parens` warning.
            (@$_:ident ($vals:expr)) => { $vals };
            (@$_:ident $vals:expr) => { $vals };
        }

        const EVENS: [usize; 8] = [0, 2, 4, 6, 8, 10, 12, 14];
        const ODDS: [usize; 8] = [1, 3, 5, 7, 9, 11, 13, 15];

        // base_size is too big for the memory region.
        test!(layout(((1..8) | ((1..8), (1..8))), _).validate(_, [0], _), Ok(None));
        test!(layout(((2..8) | ((2..8), (2..8))), _).validate(_, [1], _), Ok(None));

        // addr is unaligned for prefix cast
        test!(layout(_, [2]).validate(ODDS, _, _Prefix), Ok(None));
        test!(layout(_, [2]).validate(ODDS, _, _Prefix), Ok(None));

        // addr is aligned, but end of buffer is unaligned for suffix cast
        test!(layout(_, [2]).validate(EVENS, ODDS, _Suffix), Ok(None));
        test!(layout(_, [2]).validate(EVENS, ODDS, _Suffix), Ok(None));

        // Unfortunately, these constants cannot easily be used in the
        // implementation of `validate_cast_and_convert_metadata`, since
        // `panic!` consumes a string literal, not an expression.
        //
        // It's important that these messages be in a separate module. If they
        // were at the function's top level, we'd pass them to `test!` as, e.g.,
        // `Err(TRAILING)`, which would run into a subtle Rust footgun - the
        // `TRAILING` identifier would be treated as a pattern to match rather
        // than a value to check for equality.
        mod msgs {
            pub(super) const TRAILING: &str =
                "attempted to cast to slice type with zero-sized element";
            pub(super) const OVERFLOW: &str = "`addr` + `bytes_len` > usize::MAX";
        }

        // casts with ZST trailing element types are unsupported
        test!(layout((_, [0]), _).validate(_, _, _), Err(msgs::TRAILING),);

        // addr + bytes_len must not overflow usize
        test!(layout(_, _).validate([usize::MAX], (1..100), _), Err(msgs::OVERFLOW));
        test!(layout(_, _).validate((1..100), [usize::MAX], _), Err(msgs::OVERFLOW));
        test!(
            layout(_, _).validate(
                [usize::MAX / 2 + 1, usize::MAX],
                [usize::MAX / 2 + 1, usize::MAX],
                _
            ),
            Err(msgs::OVERFLOW)
        );

        // Validates that `validate_cast_and_convert_metadata` satisfies its own
        // documented safety postconditions, and also a few other properties
        // that aren't documented but we want to guarantee anyway.
        fn validate_behavior(
            (layout, addr, bytes_len, cast_type): (DstLayout, usize, usize, _CastType),
        ) {
            if let Some((elems, split_at)) =
                layout.validate_cast_and_convert_metadata(addr, bytes_len, cast_type)
            {
                let (size_info, align) = (layout.size_info, layout.align);
                let debug_str = format!(
                    "layout({size_info:?}, {align}).validate_cast_and_convert_metadata({addr}, {bytes_len}, {cast_type:?}) => ({elems}, {split_at})",
                );

                // If this is a sized type (no trailing slice), then `elems` is
                // meaningless, but in practice we set it to 0. Callers are not
                // allowed to rely on this, but a lot of math is nicer if
                // they're able to, and some callers might accidentally do that.
                let sized = matches!(layout.size_info, SizeInfo::Sized { .. });
                assert!(!(sized && elems != 0), "{}", debug_str);

                let resulting_size = match layout.size_info {
                    SizeInfo::Sized { _size } => _size,
                    SizeInfo::SliceDst(TrailingSliceLayout {
                        _offset: offset,
                        _elem_size: elem_size,
                    }) => {
                        let padded_size = |elems| {
                            let without_padding = offset + elems * elem_size;
                            without_padding
                                + util::core_layout::padding_needed_for(without_padding, align)
                        };

                        let resulting_size = padded_size(elems);
                        // Test that `validate_cast_and_convert_metadata`
                        // computed the largest possible value that fits in the
                        // given range.
                        assert!(padded_size(elems + 1) > bytes_len, "{}", debug_str);
                        resulting_size
                    }
                };

                // Test safety postconditions guaranteed by
                // `validate_cast_and_convert_metadata`.
                assert!(resulting_size <= bytes_len, "{}", debug_str);
                match cast_type {
                    _CastType::_Prefix => {
                        assert_eq!(addr % align, 0, "{}", debug_str);
                        assert_eq!(resulting_size, split_at, "{}", debug_str);
                    }
                    _CastType::_Suffix => {
                        assert_eq!(split_at, bytes_len - resulting_size, "{}", debug_str);
                        assert_eq!((addr + split_at) % align, 0, "{}", debug_str);
                    }
                }
            } else {
                let min_size = match layout.size_info {
                    SizeInfo::Sized { _size } => _size,
                    SizeInfo::SliceDst(TrailingSliceLayout { _offset, .. }) => {
                        _offset + util::core_layout::padding_needed_for(_offset, layout.align)
                    }
                };

                // If a cast is invalid, it is either because...
                // 1. there are insufficent bytes at the given region for type:
                let insufficient_bytes = bytes_len < min_size;
                // 2. performing the cast would misalign type:
                let base = match cast_type {
                    _CastType::_Prefix => 0,
                    _CastType::_Suffix => bytes_len,
                };
                let misaligned = (base + addr) % layout.align != 0;

                assert!(insufficient_bytes || misaligned);
            }
        }

        let sizes = 0..8;
        let elem_sizes = 1..8;
        let size_infos = sizes
            .clone()
            .map(Into::<SizeInfo>::into)
            .chain(itertools::iproduct!(sizes, elem_sizes).map(Into::<SizeInfo>::into));
        let layouts = itertools::iproduct!(size_infos, [1, 2, 4, 8, 16, 32])
            .filter(|(size_info, align)| !matches!(size_info, SizeInfo::Sized { _size } if _size % align != 0))
            .map(|(size_info, align)| layout(size_info, align));
        itertools::iproduct!(layouts, 0..8, 0..8, [_CastType::_Prefix, _CastType::_Suffix])
            .for_each(validate_behavior);
    }

    #[test]
    #[cfg(__INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS)]
    fn test_validate_rust_layout() {
        use core::ptr::NonNull;

        // This test synthesizes pointers with various metadata and uses Rust's
        // built-in APIs to confirm that Rust makes decisions about type layout
        // which are consistent with what we believe is guaranteed by the
        // language. If this test fails, it doesn't just mean our code is wrong
        // - it means we're misunderstanding the language's guarantees.

        #[derive(Debug)]
        struct MacroArgs {
            offset: usize,
            align: NonZeroUsize,
            elem_size: Option<usize>,
        }

        /// # Safety
        ///
        /// `test` promises to only call `addr_of_slice_field` on a `NonNull<T>`
        /// which points to a valid `T`.
        ///
        /// `with_elems` must produce a pointer which points to a valid `T`.
        fn test<T: ?Sized, W: Fn(usize) -> NonNull<T>>(
            args: MacroArgs,
            with_elems: W,
            addr_of_slice_field: Option<fn(NonNull<T>) -> NonNull<u8>>,
        ) {
            let dst = args.elem_size.is_some();
            let layout = {
                let size_info = match args.elem_size {
                    Some(elem_size) => SizeInfo::SliceDst(TrailingSliceLayout {
                        _offset: args.offset,
                        _elem_size: elem_size,
                    }),
                    None => SizeInfo::Sized {
                        // Rust only supports types whose sizes are a multiple
                        // of their alignment. If the macro created a type like
                        // this:
                        //
                        //   #[repr(C, align(2))]
                        //   struct Foo([u8; 1]);
                        //
                        // ...then Rust will automatically round the type's size
                        // up to 2.
                        _size: args.offset
                            + util::core_layout::padding_needed_for(args.offset, args.align),
                    },
                };
                DstLayout { size_info, align: args.align }
            };

            for elems in 0..128 {
                let ptr = with_elems(elems);

                if let Some(addr_of_slice_field) = addr_of_slice_field {
                    let slc_field_ptr = addr_of_slice_field(ptr).as_ptr();
                    // SAFETY: Both `slc_field_ptr` and `ptr` are pointers to
                    // the same valid Rust object.
                    let offset: usize =
                        unsafe { slc_field_ptr.byte_offset_from(ptr.as_ptr()).try_into().unwrap() };
                    assert_eq!(offset, args.offset);
                }

                // SAFETY: `ptr` points to a valid `T`.
                let (size, align) = unsafe {
                    (mem::size_of_val_raw(ptr.as_ptr()), mem::align_of_val_raw(ptr.as_ptr()))
                };

                // Avoid expensive allocation when running under Miri.
                let assert_msg = if !cfg!(miri) {
                    format!("\n{args:?}\nsize:{size}, align:{align}")
                } else {
                    String::new()
                };

                let without_padding =
                    args.offset + args.elem_size.map(|elem_size| elems * elem_size).unwrap_or(0);
                assert!(size >= without_padding, "{}", assert_msg);
                assert_eq!(align, args.align.get(), "{}", assert_msg);

                // This encodes the most important part of the test: our
                // understanding of how Rust determines the layout of repr(C)
                // types. Sized repr(C) types are trivial, but DST types have
                // some subtlety. Note that:
                // - For sized types, `without_padding` is just the size of the
                //   type that we constructed for `Foo`. Since we may have
                //   requested a larger alignment, `Foo` may actually be larger
                //   than this, hence `padding_needed_for`.
                // - For unsized types, `without_padding` is dynamically
                //   computed from the offset, the element size, and element
                //   count. We expect that the size of the object should be
                //   `offset + elem_size * elems` rounded up to the next
                //   alignment.
                let expected_size = without_padding
                    + util::core_layout::padding_needed_for(without_padding, args.align);
                assert_eq!(expected_size, size, "{}", assert_msg);

                // For zero-sized element types,
                // `validate_cast_and_convert_metadata` just panics, so we skip
                // testing those types.
                if args.elem_size.map(|elem_size| elem_size > 0).unwrap_or(true) {
                    let addr = ptr.addr().get();
                    let (got_elems, got_split_at) = layout
                        .validate_cast_and_convert_metadata(addr, size, _CastType::_Prefix)
                        .unwrap();
                    // Avoid expensive allocation when running under Miri.
                    let assert_msg = if !cfg!(miri) {
                        format!(
                            "{}\nvalidate_cast_and_convert_metadata({addr}, {size})",
                            assert_msg
                        )
                    } else {
                        String::new()
                    };
                    assert_eq!(got_split_at, size, "{}", assert_msg);
                    if dst {
                        assert!(got_elems >= elems, "{}", assert_msg);
                        if got_elems != elems {
                            // If `validate_cast_and_convert_metadata`
                            // returned more elements than `elems`, that
                            // means that `elems` is not the maximum number
                            // of elements that can fit in `size` - in other
                            // words, there is enough padding at the end of
                            // the value to fit at least one more element.
                            // If we use this metadata to synthesize a
                            // pointer, despite having a different element
                            // count, we still expect it to have the same
                            // size.
                            let got_ptr = with_elems(got_elems);
                            // SAFETY: `got_ptr` is a pointer to a valid `T`.
                            let size_of_got_ptr = unsafe { mem::size_of_val_raw(got_ptr.as_ptr()) };
                            assert_eq!(size_of_got_ptr, size, "{}", assert_msg);
                        }
                    } else {
                        // For sized casts, the returned element value is
                        // technically meaningless, and we don't guarantee any
                        // particular value. In practice, it's always zero.
                        assert_eq!(got_elems, 0, "{}", assert_msg)
                    }
                }
            }
        }

        macro_rules! validate_against_rust {
            ($offset:literal, $align:literal $(, $elem_size:literal)?) => {{
                #[repr(C, align($align))]
                struct Foo([u8; $offset]$(, [[u8; $elem_size]])?);

                let args = MacroArgs {
                    offset: $offset,
                    align: $align.try_into().unwrap(),
                    elem_size: {
                        #[allow(unused)]
                        let ret = None::<usize>;
                        $(let ret = Some($elem_size);)?
                        ret
                    }
                };

                #[repr(C, align($align))]
                struct FooAlign;
                // Create an aligned buffer to use in order to synthesize
                // pointers to `Foo`. We don't ever load values from these
                // pointers - we just do arithmetic on them - so having a "real"
                // block of memory as opposed to a validly-aligned-but-dangling
                // pointer is only necessary to make Miri happy since we run it
                // with "strict provenance" checking enabled.
                let aligned_buf = Align::<_, FooAlign>::new([0u8; 1024]);
                let with_elems = |elems| {
                    let slc = NonNull::slice_from_raw_parts(NonNull::from(&aligned_buf.t), elems);
                    #[allow(clippy::as_conversions)]
                    NonNull::new(slc.as_ptr() as *mut Foo).unwrap()
                };
                let addr_of_slice_field = {
                    #[allow(unused)]
                    let f = None::<fn(NonNull<Foo>) -> NonNull<u8>>;
                    $(
                        // SAFETY: `test` promises to only call `f` with a `ptr`
                        // to a valid `Foo`.
                        let f: Option<fn(NonNull<Foo>) -> NonNull<u8>> = Some(|ptr: NonNull<Foo>| unsafe {
                            NonNull::new(ptr::addr_of_mut!((*ptr.as_ptr()).1)).unwrap().cast::<u8>()
                        });
                        let _ = $elem_size;
                    )?
                    f
                };

                test::<Foo, _>(args, with_elems, addr_of_slice_field);
            }};
        }

        // Every permutation of:
        // - offset in [0, 4]
        // - align in [1, 16]
        // - elem_size in [0, 4] (plus no elem_size)
        validate_against_rust!(0, 1);
        validate_against_rust!(0, 1, 0);
        validate_against_rust!(0, 1, 1);
        validate_against_rust!(0, 1, 2);
        validate_against_rust!(0, 1, 3);
        validate_against_rust!(0, 1, 4);
        validate_against_rust!(0, 2);
        validate_against_rust!(0, 2, 0);
        validate_against_rust!(0, 2, 1);
        validate_against_rust!(0, 2, 2);
        validate_against_rust!(0, 2, 3);
        validate_against_rust!(0, 2, 4);
        validate_against_rust!(0, 4);
        validate_against_rust!(0, 4, 0);
        validate_against_rust!(0, 4, 1);
        validate_against_rust!(0, 4, 2);
        validate_against_rust!(0, 4, 3);
        validate_against_rust!(0, 4, 4);
        validate_against_rust!(0, 8);
        validate_against_rust!(0, 8, 0);
        validate_against_rust!(0, 8, 1);
        validate_against_rust!(0, 8, 2);
        validate_against_rust!(0, 8, 3);
        validate_against_rust!(0, 8, 4);
        validate_against_rust!(0, 16);
        validate_against_rust!(0, 16, 0);
        validate_against_rust!(0, 16, 1);
        validate_against_rust!(0, 16, 2);
        validate_against_rust!(0, 16, 3);
        validate_against_rust!(0, 16, 4);
        validate_against_rust!(1, 1);
        validate_against_rust!(1, 1, 0);
        validate_against_rust!(1, 1, 1);
        validate_against_rust!(1, 1, 2);
        validate_against_rust!(1, 1, 3);
        validate_against_rust!(1, 1, 4);
        validate_against_rust!(1, 2);
        validate_against_rust!(1, 2, 0);
        validate_against_rust!(1, 2, 1);
        validate_against_rust!(1, 2, 2);
        validate_against_rust!(1, 2, 3);
        validate_against_rust!(1, 2, 4);
        validate_against_rust!(1, 4);
        validate_against_rust!(1, 4, 0);
        validate_against_rust!(1, 4, 1);
        validate_against_rust!(1, 4, 2);
        validate_against_rust!(1, 4, 3);
        validate_against_rust!(1, 4, 4);
        validate_against_rust!(1, 8);
        validate_against_rust!(1, 8, 0);
        validate_against_rust!(1, 8, 1);
        validate_against_rust!(1, 8, 2);
        validate_against_rust!(1, 8, 3);
        validate_against_rust!(1, 8, 4);
        validate_against_rust!(1, 16);
        validate_against_rust!(1, 16, 0);
        validate_against_rust!(1, 16, 1);
        validate_against_rust!(1, 16, 2);
        validate_against_rust!(1, 16, 3);
        validate_against_rust!(1, 16, 4);
        validate_against_rust!(2, 1);
        validate_against_rust!(2, 1, 0);
        validate_against_rust!(2, 1, 1);
        validate_against_rust!(2, 1, 2);
        validate_against_rust!(2, 1, 3);
        validate_against_rust!(2, 1, 4);
        validate_against_rust!(2, 2);
        validate_against_rust!(2, 2, 0);
        validate_against_rust!(2, 2, 1);
        validate_against_rust!(2, 2, 2);
        validate_against_rust!(2, 2, 3);
        validate_against_rust!(2, 2, 4);
        validate_against_rust!(2, 4);
        validate_against_rust!(2, 4, 0);
        validate_against_rust!(2, 4, 1);
        validate_against_rust!(2, 4, 2);
        validate_against_rust!(2, 4, 3);
        validate_against_rust!(2, 4, 4);
        validate_against_rust!(2, 8);
        validate_against_rust!(2, 8, 0);
        validate_against_rust!(2, 8, 1);
        validate_against_rust!(2, 8, 2);
        validate_against_rust!(2, 8, 3);
        validate_against_rust!(2, 8, 4);
        validate_against_rust!(2, 16);
        validate_against_rust!(2, 16, 0);
        validate_against_rust!(2, 16, 1);
        validate_against_rust!(2, 16, 2);
        validate_against_rust!(2, 16, 3);
        validate_against_rust!(2, 16, 4);
        validate_against_rust!(3, 1);
        validate_against_rust!(3, 1, 0);
        validate_against_rust!(3, 1, 1);
        validate_against_rust!(3, 1, 2);
        validate_against_rust!(3, 1, 3);
        validate_against_rust!(3, 1, 4);
        validate_against_rust!(3, 2);
        validate_against_rust!(3, 2, 0);
        validate_against_rust!(3, 2, 1);
        validate_against_rust!(3, 2, 2);
        validate_against_rust!(3, 2, 3);
        validate_against_rust!(3, 2, 4);
        validate_against_rust!(3, 4);
        validate_against_rust!(3, 4, 0);
        validate_against_rust!(3, 4, 1);
        validate_against_rust!(3, 4, 2);
        validate_against_rust!(3, 4, 3);
        validate_against_rust!(3, 4, 4);
        validate_against_rust!(3, 8);
        validate_against_rust!(3, 8, 0);
        validate_against_rust!(3, 8, 1);
        validate_against_rust!(3, 8, 2);
        validate_against_rust!(3, 8, 3);
        validate_against_rust!(3, 8, 4);
        validate_against_rust!(3, 16);
        validate_against_rust!(3, 16, 0);
        validate_against_rust!(3, 16, 1);
        validate_against_rust!(3, 16, 2);
        validate_against_rust!(3, 16, 3);
        validate_against_rust!(3, 16, 4);
        validate_against_rust!(4, 1);
        validate_against_rust!(4, 1, 0);
        validate_against_rust!(4, 1, 1);
        validate_against_rust!(4, 1, 2);
        validate_against_rust!(4, 1, 3);
        validate_against_rust!(4, 1, 4);
        validate_against_rust!(4, 2);
        validate_against_rust!(4, 2, 0);
        validate_against_rust!(4, 2, 1);
        validate_against_rust!(4, 2, 2);
        validate_against_rust!(4, 2, 3);
        validate_against_rust!(4, 2, 4);
        validate_against_rust!(4, 4);
        validate_against_rust!(4, 4, 0);
        validate_against_rust!(4, 4, 1);
        validate_against_rust!(4, 4, 2);
        validate_against_rust!(4, 4, 3);
        validate_against_rust!(4, 4, 4);
        validate_against_rust!(4, 8);
        validate_against_rust!(4, 8, 0);
        validate_against_rust!(4, 8, 1);
        validate_against_rust!(4, 8, 2);
        validate_against_rust!(4, 8, 3);
        validate_against_rust!(4, 8, 4);
        validate_against_rust!(4, 16);
        validate_against_rust!(4, 16, 0);
        validate_against_rust!(4, 16, 1);
        validate_against_rust!(4, 16, 2);
        validate_against_rust!(4, 16, 3);
        validate_against_rust!(4, 16, 4);
    }

    #[test]
    fn test_known_layout() {
        // Test that `$ty` and `ManuallyDrop<$ty>` have the expected layout.
        // Test that `PhantomData<$ty>` has the same layout as `()` regardless
        // of `$ty`.
        macro_rules! test {
            ($ty:ty, $expect:expr) => {
                let expect = $expect;
                assert_eq!(<$ty as KnownLayout>::LAYOUT, expect);
                assert_eq!(<ManuallyDrop<$ty> as KnownLayout>::LAYOUT, expect);
                assert_eq!(<PhantomData<$ty> as KnownLayout>::LAYOUT, <() as KnownLayout>::LAYOUT);
            };
        }

        let layout = |offset, align, _trailing_slice_elem_size| DstLayout {
            align: NonZeroUsize::new(align).unwrap(),
            size_info: match _trailing_slice_elem_size {
                None => SizeInfo::Sized { _size: offset },
                Some(elem_size) => SizeInfo::SliceDst(TrailingSliceLayout {
                    _offset: offset,
                    _elem_size: elem_size,
                }),
            },
        };

        test!((), layout(0, 1, None));
        test!(u8, layout(1, 1, None));
        // Use `align_of` because `u64` alignment may be smaller than 8 on some
        // platforms.
        test!(u64, layout(8, mem::align_of::<u64>(), None));
        test!(AU64, layout(8, 8, None));

        test!(Option<&'static ()>, usize::LAYOUT);

        test!([()], layout(0, 1, Some(0)));
        test!([u8], layout(0, 1, Some(1)));
        test!(str, layout(0, 1, Some(1)));
    }

    #[cfg(feature = "derive")]
    #[test]
    fn test_known_layout_derive() {
        // In this and other files (`late_compile_pass.rs`,
        // `mid_compile_pass.rs`, and `struct.rs`), we test success and failure
        // modes of `derive(KnownLayout)` for the following combination of
        // properties:
        //
        // +------------+--------------------------------------+-----------+
        // |            |      trailing field properties       |           |
        // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
        // |------------+----------+----------------+----------+-----------|
        // |          N |        N |              N |        N |      KL00 |
        // |          N |        N |              N |        Y |      KL01 |
        // |          N |        N |              Y |        N |      KL02 |
        // |          N |        N |              Y |        Y |      KL03 |
        // |          N |        Y |              N |        N |      KL04 |
        // |          N |        Y |              N |        Y |      KL05 |
        // |          N |        Y |              Y |        N |      KL06 |
        // |          N |        Y |              Y |        Y |      KL07 |
        // |          Y |        N |              N |        N |      KL08 |
        // |          Y |        N |              N |        Y |      KL09 |
        // |          Y |        N |              Y |        N |      KL10 |
        // |          Y |        N |              Y |        Y |      KL11 |
        // |          Y |        Y |              N |        N |      KL12 |
        // |          Y |        Y |              N |        Y |      KL13 |
        // |          Y |        Y |              Y |        N |      KL14 |
        // |          Y |        Y |              Y |        Y |      KL15 |
        // +------------+----------+----------------+----------+-----------+

        struct NotKnownLayout<T = ()> {
            _t: T,
        }

        #[derive(KnownLayout)]
        #[repr(C)]
        struct AlignSize<const ALIGN: usize, const SIZE: usize>
        where
            elain::Align<ALIGN>: elain::Alignment,
        {
            _align: elain::Align<ALIGN>,
            _size: [u8; SIZE],
        }

        type AU16 = AlignSize<2, 2>;
        type AU32 = AlignSize<4, 4>;

        fn _assert_kl<T: ?Sized + KnownLayout>(_: &T) {}

        let sized_layout = |align, size| DstLayout {
            align: NonZeroUsize::new(align).unwrap(),
            size_info: SizeInfo::Sized { _size: size },
        };

        let unsized_layout = |align, elem_size, offset| DstLayout {
            align: NonZeroUsize::new(align).unwrap(),
            size_info: SizeInfo::SliceDst(TrailingSliceLayout {
                _offset: offset,
                _elem_size: elem_size,
            }),
        };

        // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
        // |          N |        N |              N |        Y |      KL01 |
        #[derive(KnownLayout)]
        struct KL01(NotKnownLayout<AU32>, NotKnownLayout<AU16>);

        let expected = DstLayout::for_type::<KL01>();

        assert_eq!(<KL01 as KnownLayout>::LAYOUT, expected);
        assert_eq!(<KL01 as KnownLayout>::LAYOUT, sized_layout(4, 8));

        // ...with `align(N)`:
        #[derive(KnownLayout)]
        #[repr(align(64))]
        struct KL01Align(NotKnownLayout<AU32>, NotKnownLayout<AU16>);

        let expected = DstLayout::for_type::<KL01Align>();

        assert_eq!(<KL01Align as KnownLayout>::LAYOUT, expected);
        assert_eq!(<KL01Align as KnownLayout>::LAYOUT, sized_layout(64, 64));

        // ...with `packed`:
        #[derive(KnownLayout)]
        #[repr(packed)]
        struct KL01Packed(NotKnownLayout<AU32>, NotKnownLayout<AU16>);

        let expected = DstLayout::for_type::<KL01Packed>();

        assert_eq!(<KL01Packed as KnownLayout>::LAYOUT, expected);
        assert_eq!(<KL01Packed as KnownLayout>::LAYOUT, sized_layout(1, 6));

        // ...with `packed(N)`:
        #[derive(KnownLayout)]
        #[repr(packed(2))]
        struct KL01PackedN(NotKnownLayout<AU32>, NotKnownLayout<AU16>);

        assert_impl_all!(KL01PackedN: KnownLayout);

        let expected = DstLayout::for_type::<KL01PackedN>();

        assert_eq!(<KL01PackedN as KnownLayout>::LAYOUT, expected);
        assert_eq!(<KL01PackedN as KnownLayout>::LAYOUT, sized_layout(2, 6));

        // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
        // |          N |        N |              Y |        Y |      KL03 |
        #[derive(KnownLayout)]
        struct KL03(NotKnownLayout, u8);

        let expected = DstLayout::for_type::<KL03>();

        assert_eq!(<KL03 as KnownLayout>::LAYOUT, expected);
        assert_eq!(<KL03 as KnownLayout>::LAYOUT, sized_layout(1, 1));

        // ... with `align(N)`
        #[derive(KnownLayout)]
        #[repr(align(64))]
        struct KL03Align(NotKnownLayout<AU32>, u8);

        let expected = DstLayout::for_type::<KL03Align>();

        assert_eq!(<KL03Align as KnownLayout>::LAYOUT, expected);
        assert_eq!(<KL03Align as KnownLayout>::LAYOUT, sized_layout(64, 64));

        // ... with `packed`:
        #[derive(KnownLayout)]
        #[repr(packed)]
        struct KL03Packed(NotKnownLayout<AU32>, u8);

        let expected = DstLayout::for_type::<KL03Packed>();

        assert_eq!(<KL03Packed as KnownLayout>::LAYOUT, expected);
        assert_eq!(<KL03Packed as KnownLayout>::LAYOUT, sized_layout(1, 5));

        // ... with `packed(N)`
        #[derive(KnownLayout)]
        #[repr(packed(2))]
        struct KL03PackedN(NotKnownLayout<AU32>, u8);

        assert_impl_all!(KL03PackedN: KnownLayout);

        let expected = DstLayout::for_type::<KL03PackedN>();

        assert_eq!(<KL03PackedN as KnownLayout>::LAYOUT, expected);
        assert_eq!(<KL03PackedN as KnownLayout>::LAYOUT, sized_layout(2, 6));

        // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
        // |          N |        Y |              N |        Y |      KL05 |
        #[derive(KnownLayout)]
        struct KL05<T>(u8, T);

        fn _test_kl05<T>(t: T) -> impl KnownLayout {
            KL05(0u8, t)
        }

        // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
        // |          N |        Y |              Y |        Y |      KL07 |
        #[derive(KnownLayout)]
        struct KL07<T: KnownLayout>(u8, T);

        fn _test_kl07<T: KnownLayout>(t: T) -> impl KnownLayout {
            let _ = KL07(0u8, t);
        }

        // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
        // |          Y |        N |              Y |        N |      KL10 |
        #[derive(KnownLayout)]
        #[repr(C)]
        struct KL10(NotKnownLayout<AU32>, [u8]);

        let expected = DstLayout::new_zst(None)
            .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), None)
            .extend(<[u8] as KnownLayout>::LAYOUT, None)
            .pad_to_align();

        assert_eq!(<KL10 as KnownLayout>::LAYOUT, expected);
        assert_eq!(<KL10 as KnownLayout>::LAYOUT, unsized_layout(4, 1, 4));

        // ...with `align(N)`:
        #[derive(KnownLayout)]
        #[repr(C, align(64))]
        struct KL10Align(NotKnownLayout<AU32>, [u8]);

        let repr_align = NonZeroUsize::new(64);

        let expected = DstLayout::new_zst(repr_align)
            .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), None)
            .extend(<[u8] as KnownLayout>::LAYOUT, None)
            .pad_to_align();

        assert_eq!(<KL10Align as KnownLayout>::LAYOUT, expected);
        assert_eq!(<KL10Align as KnownLayout>::LAYOUT, unsized_layout(64, 1, 4));

        // ...with `packed`:
        #[derive(KnownLayout)]
        #[repr(C, packed)]
        struct KL10Packed(NotKnownLayout<AU32>, [u8]);

        let repr_packed = NonZeroUsize::new(1);

        let expected = DstLayout::new_zst(None)
            .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), repr_packed)
            .extend(<[u8] as KnownLayout>::LAYOUT, repr_packed)
            .pad_to_align();

        assert_eq!(<KL10Packed as KnownLayout>::LAYOUT, expected);
        assert_eq!(<KL10Packed as KnownLayout>::LAYOUT, unsized_layout(1, 1, 4));

        // ...with `packed(N)`:
        #[derive(KnownLayout)]
        #[repr(C, packed(2))]
        struct KL10PackedN(NotKnownLayout<AU32>, [u8]);

        let repr_packed = NonZeroUsize::new(2);

        let expected = DstLayout::new_zst(None)
            .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), repr_packed)
            .extend(<[u8] as KnownLayout>::LAYOUT, repr_packed)
            .pad_to_align();

        assert_eq!(<KL10PackedN as KnownLayout>::LAYOUT, expected);
        assert_eq!(<KL10PackedN as KnownLayout>::LAYOUT, unsized_layout(2, 1, 4));

        // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
        // |          Y |        N |              Y |        Y |      KL11 |
        #[derive(KnownLayout)]
        #[repr(C)]
        struct KL11(NotKnownLayout<AU64>, u8);

        let expected = DstLayout::new_zst(None)
            .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), None)
            .extend(<u8 as KnownLayout>::LAYOUT, None)
            .pad_to_align();

        assert_eq!(<KL11 as KnownLayout>::LAYOUT, expected);
        assert_eq!(<KL11 as KnownLayout>::LAYOUT, sized_layout(8, 16));

        // ...with `align(N)`:
        #[derive(KnownLayout)]
        #[repr(C, align(64))]
        struct KL11Align(NotKnownLayout<AU64>, u8);

        let repr_align = NonZeroUsize::new(64);

        let expected = DstLayout::new_zst(repr_align)
            .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), None)
            .extend(<u8 as KnownLayout>::LAYOUT, None)
            .pad_to_align();

        assert_eq!(<KL11Align as KnownLayout>::LAYOUT, expected);
        assert_eq!(<KL11Align as KnownLayout>::LAYOUT, sized_layout(64, 64));

        // ...with `packed`:
        #[derive(KnownLayout)]
        #[repr(C, packed)]
        struct KL11Packed(NotKnownLayout<AU64>, u8);

        let repr_packed = NonZeroUsize::new(1);

        let expected = DstLayout::new_zst(None)
            .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), repr_packed)
            .extend(<u8 as KnownLayout>::LAYOUT, repr_packed)
            .pad_to_align();

        assert_eq!(<KL11Packed as KnownLayout>::LAYOUT, expected);
        assert_eq!(<KL11Packed as KnownLayout>::LAYOUT, sized_layout(1, 9));

        // ...with `packed(N)`:
        #[derive(KnownLayout)]
        #[repr(C, packed(2))]
        struct KL11PackedN(NotKnownLayout<AU64>, u8);

        let repr_packed = NonZeroUsize::new(2);

        let expected = DstLayout::new_zst(None)
            .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), repr_packed)
            .extend(<u8 as KnownLayout>::LAYOUT, repr_packed)
            .pad_to_align();

        assert_eq!(<KL11PackedN as KnownLayout>::LAYOUT, expected);
        assert_eq!(<KL11PackedN as KnownLayout>::LAYOUT, sized_layout(2, 10));

        // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
        // |          Y |        Y |              Y |        N |      KL14 |
        #[derive(KnownLayout)]
        #[repr(C)]
        struct KL14<T: ?Sized + KnownLayout>(u8, T);

        fn _test_kl14<T: ?Sized + KnownLayout>(kl: &KL14<T>) {
            _assert_kl(kl)
        }

        // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
        // |          Y |        Y |              Y |        Y |      KL15 |
        #[derive(KnownLayout)]
        #[repr(C)]
        struct KL15<T: KnownLayout>(u8, T);

        fn _test_kl15<T: KnownLayout>(t: T) -> impl KnownLayout {
            let _ = KL15(0u8, t);
        }

        // Test a variety of combinations of field types:
        //  - ()
        //  - u8
        //  - AU16
        //  - [()]
        //  - [u8]
        //  - [AU16]

        #[allow(clippy::upper_case_acronyms)]
        #[derive(KnownLayout)]
        #[repr(C)]
        struct KLTU<T, U: ?Sized>(T, U);

        assert_eq!(<KLTU<(), ()> as KnownLayout>::LAYOUT, sized_layout(1, 0));

        assert_eq!(<KLTU<(), u8> as KnownLayout>::LAYOUT, sized_layout(1, 1));

        assert_eq!(<KLTU<(), AU16> as KnownLayout>::LAYOUT, sized_layout(2, 2));

        assert_eq!(<KLTU<(), [()]> as KnownLayout>::LAYOUT, unsized_layout(1, 0, 0));

        assert_eq!(<KLTU<(), [u8]> as KnownLayout>::LAYOUT, unsized_layout(1, 1, 0));

        assert_eq!(<KLTU<(), [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 0));

        assert_eq!(<KLTU<u8, ()> as KnownLayout>::LAYOUT, sized_layout(1, 1));

        assert_eq!(<KLTU<u8, u8> as KnownLayout>::LAYOUT, sized_layout(1, 2));

        assert_eq!(<KLTU<u8, AU16> as KnownLayout>::LAYOUT, sized_layout(2, 4));

        assert_eq!(<KLTU<u8, [()]> as KnownLayout>::LAYOUT, unsized_layout(1, 0, 1));

        assert_eq!(<KLTU<u8, [u8]> as KnownLayout>::LAYOUT, unsized_layout(1, 1, 1));

        assert_eq!(<KLTU<u8, [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 2));

        assert_eq!(<KLTU<AU16, ()> as KnownLayout>::LAYOUT, sized_layout(2, 2));

        assert_eq!(<KLTU<AU16, u8> as KnownLayout>::LAYOUT, sized_layout(2, 4));

        assert_eq!(<KLTU<AU16, AU16> as KnownLayout>::LAYOUT, sized_layout(2, 4));

        assert_eq!(<KLTU<AU16, [()]> as KnownLayout>::LAYOUT, unsized_layout(2, 0, 2));

        assert_eq!(<KLTU<AU16, [u8]> as KnownLayout>::LAYOUT, unsized_layout(2, 1, 2));

        assert_eq!(<KLTU<AU16, [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 2));

        // Test a variety of field counts.

        #[derive(KnownLayout)]
        #[repr(C)]
        struct KLF0;

        assert_eq!(<KLF0 as KnownLayout>::LAYOUT, sized_layout(1, 0));

        #[derive(KnownLayout)]
        #[repr(C)]
        struct KLF1([u8]);

        assert_eq!(<KLF1 as KnownLayout>::LAYOUT, unsized_layout(1, 1, 0));

        #[derive(KnownLayout)]
        #[repr(C)]
        struct KLF2(NotKnownLayout<u8>, [u8]);

        assert_eq!(<KLF2 as KnownLayout>::LAYOUT, unsized_layout(1, 1, 1));

        #[derive(KnownLayout)]
        #[repr(C)]
        struct KLF3(NotKnownLayout<u8>, NotKnownLayout<AU16>, [u8]);

        assert_eq!(<KLF3 as KnownLayout>::LAYOUT, unsized_layout(2, 1, 4));

        #[derive(KnownLayout)]
        #[repr(C)]
        struct KLF4(NotKnownLayout<u8>, NotKnownLayout<AU16>, NotKnownLayout<AU32>, [u8]);

        assert_eq!(<KLF4 as KnownLayout>::LAYOUT, unsized_layout(4, 1, 8));
    }

    #[test]
    fn test_object_safety() {
        fn _takes_from_zeroes(_: &dyn FromZeroes) {}
        fn _takes_from_bytes(_: &dyn FromBytes) {}
        fn _takes_unaligned(_: &dyn Unaligned) {}
    }

    #[test]
    fn test_from_zeroes_only() {
        // Test types that implement `FromZeroes` but not `FromBytes`.

        assert!(!bool::new_zeroed());
        assert_eq!(char::new_zeroed(), '\0');

        #[cfg(feature = "alloc")]
        {
            assert_eq!(bool::new_box_zeroed(), Box::new(false));
            assert_eq!(char::new_box_zeroed(), Box::new('\0'));

            assert_eq!(bool::new_box_slice_zeroed(3).as_ref(), [false, false, false]);
            assert_eq!(char::new_box_slice_zeroed(3).as_ref(), ['\0', '\0', '\0']);

            assert_eq!(bool::new_vec_zeroed(3).as_ref(), [false, false, false]);
            assert_eq!(char::new_vec_zeroed(3).as_ref(), ['\0', '\0', '\0']);
        }

        let mut string = "hello".to_string();
        let s: &mut str = string.as_mut();
        assert_eq!(s, "hello");
        s.zero();
        assert_eq!(s, "\0\0\0\0\0");
    }

    #[test]
    fn test_read_write() {
        const VAL: u64 = 0x12345678;
        #[cfg(target_endian = "big")]
        const VAL_BYTES: [u8; 8] = VAL.to_be_bytes();
        #[cfg(target_endian = "little")]
        const VAL_BYTES: [u8; 8] = VAL.to_le_bytes();

        // Test `FromBytes::{read_from, read_from_prefix, read_from_suffix}`.

        assert_eq!(u64::read_from(&VAL_BYTES[..]), Some(VAL));
        // The first 8 bytes are from `VAL_BYTES` and the second 8 bytes are all
        // zeroes.
        let bytes_with_prefix: [u8; 16] = transmute!([VAL_BYTES, [0; 8]]);
        assert_eq!(u64::read_from_prefix(&bytes_with_prefix[..]), Some(VAL));
        assert_eq!(u64::read_from_suffix(&bytes_with_prefix[..]), Some(0));
        // The first 8 bytes are all zeroes and the second 8 bytes are from
        // `VAL_BYTES`
        let bytes_with_suffix: [u8; 16] = transmute!([[0; 8], VAL_BYTES]);
        assert_eq!(u64::read_from_prefix(&bytes_with_suffix[..]), Some(0));
        assert_eq!(u64::read_from_suffix(&bytes_with_suffix[..]), Some(VAL));

        // Test `AsBytes::{write_to, write_to_prefix, write_to_suffix}`.

        let mut bytes = [0u8; 8];
        assert_eq!(VAL.write_to(&mut bytes[..]), Some(()));
        assert_eq!(bytes, VAL_BYTES);
        let mut bytes = [0u8; 16];
        assert_eq!(VAL.write_to_prefix(&mut bytes[..]), Some(()));
        let want: [u8; 16] = transmute!([VAL_BYTES, [0; 8]]);
        assert_eq!(bytes, want);
        let mut bytes = [0u8; 16];
        assert_eq!(VAL.write_to_suffix(&mut bytes[..]), Some(()));
        let want: [u8; 16] = transmute!([[0; 8], VAL_BYTES]);
        assert_eq!(bytes, want);
    }

    #[test]
    fn test_transmute() {
        // Test that memory is transmuted as expected.
        let array_of_u8s = [0u8, 1, 2, 3, 4, 5, 6, 7];
        let array_of_arrays = [[0, 1], [2, 3], [4, 5], [6, 7]];
        let x: [[u8; 2]; 4] = transmute!(array_of_u8s);
        assert_eq!(x, array_of_arrays);
        let x: [u8; 8] = transmute!(array_of_arrays);
        assert_eq!(x, array_of_u8s);

        // Test that the source expression's value is forgotten rather than
        // dropped.
        #[derive(AsBytes)]
        #[repr(transparent)]
        struct PanicOnDrop(());
        impl Drop for PanicOnDrop {
            fn drop(&mut self) {
                panic!("PanicOnDrop::drop");
            }
        }
        #[allow(clippy::let_unit_value)]
        let _: () = transmute!(PanicOnDrop(()));

        // Test that `transmute!` is legal in a const context.
        const ARRAY_OF_U8S: [u8; 8] = [0u8, 1, 2, 3, 4, 5, 6, 7];
        const ARRAY_OF_ARRAYS: [[u8; 2]; 4] = [[0, 1], [2, 3], [4, 5], [6, 7]];
        const X: [[u8; 2]; 4] = transmute!(ARRAY_OF_U8S);
        assert_eq!(X, ARRAY_OF_ARRAYS);
    }

    #[test]
    fn test_transmute_ref() {
        // Test that memory is transmuted as expected.
        let array_of_u8s = [0u8, 1, 2, 3, 4, 5, 6, 7];
        let array_of_arrays = [[0, 1], [2, 3], [4, 5], [6, 7]];
        let x: &[[u8; 2]; 4] = transmute_ref!(&array_of_u8s);
        assert_eq!(*x, array_of_arrays);
        let x: &[u8; 8] = transmute_ref!(&array_of_arrays);
        assert_eq!(*x, array_of_u8s);

        // Test that `transmute_ref!` is legal in a const context.
        const ARRAY_OF_U8S: [u8; 8] = [0u8, 1, 2, 3, 4, 5, 6, 7];
        const ARRAY_OF_ARRAYS: [[u8; 2]; 4] = [[0, 1], [2, 3], [4, 5], [6, 7]];
        #[allow(clippy::redundant_static_lifetimes)]
        const X: &'static [[u8; 2]; 4] = transmute_ref!(&ARRAY_OF_U8S);
        assert_eq!(*X, ARRAY_OF_ARRAYS);

        // Test that it's legal to transmute a reference while shrinking the
        // lifetime (note that `X` has the lifetime `'static`).
        let x: &[u8; 8] = transmute_ref!(X);
        assert_eq!(*x, ARRAY_OF_U8S);

        // Test that `transmute_ref!` supports decreasing alignment.
        let u = AU64(0);
        let array = [0, 0, 0, 0, 0, 0, 0, 0];
        let x: &[u8; 8] = transmute_ref!(&u);
        assert_eq!(*x, array);

        // Test that a mutable reference can be turned into an immutable one.
        let mut x = 0u8;
        #[allow(clippy::useless_transmute)]
        let y: &u8 = transmute_ref!(&mut x);
        assert_eq!(*y, 0);
    }

    #[test]
    fn test_transmute_mut() {
        // Test that memory is transmuted as expected.
        let mut array_of_u8s = [0u8, 1, 2, 3, 4, 5, 6, 7];
        let mut array_of_arrays = [[0, 1], [2, 3], [4, 5], [6, 7]];
        let x: &mut [[u8; 2]; 4] = transmute_mut!(&mut array_of_u8s);
        assert_eq!(*x, array_of_arrays);
        let x: &mut [u8; 8] = transmute_mut!(&mut array_of_arrays);
        assert_eq!(*x, array_of_u8s);

        {
            // Test that it's legal to transmute a reference while shrinking the
            // lifetime.
            let x: &mut [u8; 8] = transmute_mut!(&mut array_of_arrays);
            assert_eq!(*x, array_of_u8s);
        }
        // Test that `transmute_mut!` supports decreasing alignment.
        let mut u = AU64(0);
        let array = [0, 0, 0, 0, 0, 0, 0, 0];
        let x: &[u8; 8] = transmute_mut!(&mut u);
        assert_eq!(*x, array);

        // Test that a mutable reference can be turned into an immutable one.
        let mut x = 0u8;
        #[allow(clippy::useless_transmute)]
        let y: &u8 = transmute_mut!(&mut x);
        assert_eq!(*y, 0);
    }

    #[test]
    fn test_macros_evaluate_args_once() {
        let mut ctr = 0;
        let _: usize = transmute!({
            ctr += 1;
            0usize
        });
        assert_eq!(ctr, 1);

        let mut ctr = 0;
        let _: &usize = transmute_ref!({
            ctr += 1;
            &0usize
        });
        assert_eq!(ctr, 1);
    }

    #[test]
    fn test_include_value() {
        const AS_U32: u32 = include_value!("../testdata/include_value/data");
        assert_eq!(AS_U32, u32::from_ne_bytes([b'a', b'b', b'c', b'd']));
        const AS_I32: i32 = include_value!("../testdata/include_value/data");
        assert_eq!(AS_I32, i32::from_ne_bytes([b'a', b'b', b'c', b'd']));
    }

    #[test]
    fn test_address() {
        // Test that the `Deref` and `DerefMut` implementations return a
        // reference which points to the right region of memory.

        let buf = [0];
        let r = Ref::<_, u8>::new(&buf[..]).unwrap();
        let buf_ptr = buf.as_ptr();
        let deref_ptr: *const u8 = r.deref();
        assert_eq!(buf_ptr, deref_ptr);

        let buf = [0];
        let r = Ref::<_, [u8]>::new_slice(&buf[..]).unwrap();
        let buf_ptr = buf.as_ptr();
        let deref_ptr = r.deref().as_ptr();
        assert_eq!(buf_ptr, deref_ptr);
    }

    // Verify that values written to a `Ref` are properly shared between the
    // typed and untyped representations, that reads via `deref` and `read`
    // behave the same, and that writes via `deref_mut` and `write` behave the
    // same.
    fn test_new_helper(mut r: Ref<&mut [u8], AU64>) {
        // assert that the value starts at 0
        assert_eq!(*r, AU64(0));
        assert_eq!(r.read(), AU64(0));

        // Assert that values written to the typed value are reflected in the
        // byte slice.
        const VAL1: AU64 = AU64(0xFF00FF00FF00FF00);
        *r = VAL1;
        assert_eq!(r.bytes(), &VAL1.to_bytes());
        *r = AU64(0);
        r.write(VAL1);
        assert_eq!(r.bytes(), &VAL1.to_bytes());

        // Assert that values written to the byte slice are reflected in the
        // typed value.
        const VAL2: AU64 = AU64(!VAL1.0); // different from `VAL1`
        r.bytes_mut().copy_from_slice(&VAL2.to_bytes()[..]);
        assert_eq!(*r, VAL2);
        assert_eq!(r.read(), VAL2);
    }

    // Verify that values written to a `Ref` are properly shared between the
    // typed and untyped representations; pass a value with `typed_len` `AU64`s
    // backed by an array of `typed_len * 8` bytes.
    fn test_new_helper_slice(mut r: Ref<&mut [u8], [AU64]>, typed_len: usize) {
        // Assert that the value starts out zeroed.
        assert_eq!(&*r, vec![AU64(0); typed_len].as_slice());

        // Check the backing storage is the exact same slice.
        let untyped_len = typed_len * 8;
        assert_eq!(r.bytes().len(), untyped_len);
        assert_eq!(r.bytes().as_ptr(), r.as_ptr().cast::<u8>());

        // Assert that values written to the typed value are reflected in the
        // byte slice.
        const VAL1: AU64 = AU64(0xFF00FF00FF00FF00);
        for typed in &mut *r {
            *typed = VAL1;
        }
        assert_eq!(r.bytes(), VAL1.0.to_ne_bytes().repeat(typed_len).as_slice());

        // Assert that values written to the byte slice are reflected in the
        // typed value.
        const VAL2: AU64 = AU64(!VAL1.0); // different from VAL1
        r.bytes_mut().copy_from_slice(&VAL2.0.to_ne_bytes().repeat(typed_len));
        assert!(r.iter().copied().all(|x| x == VAL2));
    }

    // Verify that values written to a `Ref` are properly shared between the
    // typed and untyped representations, that reads via `deref` and `read`
    // behave the same, and that writes via `deref_mut` and `write` behave the
    // same.
    fn test_new_helper_unaligned(mut r: Ref<&mut [u8], [u8; 8]>) {
        // assert that the value starts at 0
        assert_eq!(*r, [0; 8]);
        assert_eq!(r.read(), [0; 8]);

        // Assert that values written to the typed value are reflected in the
        // byte slice.
        const VAL1: [u8; 8] = [0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00];
        *r = VAL1;
        assert_eq!(r.bytes(), &VAL1);
        *r = [0; 8];
        r.write(VAL1);
        assert_eq!(r.bytes(), &VAL1);

        // Assert that values written to the byte slice are reflected in the
        // typed value.
        const VAL2: [u8; 8] = [0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF]; // different from VAL1
        r.bytes_mut().copy_from_slice(&VAL2[..]);
        assert_eq!(*r, VAL2);
        assert_eq!(r.read(), VAL2);
    }

    // Verify that values written to a `Ref` are properly shared between the
    // typed and untyped representations; pass a value with `len` `u8`s backed
    // by an array of `len` bytes.
    fn test_new_helper_slice_unaligned(mut r: Ref<&mut [u8], [u8]>, len: usize) {
        // Assert that the value starts out zeroed.
        assert_eq!(&*r, vec![0u8; len].as_slice());

        // Check the backing storage is the exact same slice.
        assert_eq!(r.bytes().len(), len);
        assert_eq!(r.bytes().as_ptr(), r.as_ptr());

        // Assert that values written to the typed value are reflected in the
        // byte slice.
        let mut expected_bytes = [0xFF, 0x00].iter().copied().cycle().take(len).collect::<Vec<_>>();
        r.copy_from_slice(&expected_bytes);
        assert_eq!(r.bytes(), expected_bytes.as_slice());

        // Assert that values written to the byte slice are reflected in the
        // typed value.
        for byte in &mut expected_bytes {
            *byte = !*byte; // different from `expected_len`
        }
        r.bytes_mut().copy_from_slice(&expected_bytes);
        assert_eq!(&*r, expected_bytes.as_slice());
    }

    #[test]
    fn test_new_aligned_sized() {
        // Test that a properly-aligned, properly-sized buffer works for new,
        // new_from_prefix, and new_from_suffix, and that new_from_prefix and
        // new_from_suffix return empty slices. Test that a properly-aligned
        // buffer whose length is a multiple of the element size works for
        // new_slice. Test that xxx_zeroed behaves the same, and zeroes the
        // memory.

        // A buffer with an alignment of 8.
        let mut buf = Align::<[u8; 8], AU64>::default();
        // `buf.t` should be aligned to 8, so this should always succeed.
        test_new_helper(Ref::<_, AU64>::new(&mut buf.t[..]).unwrap());
        let ascending: [u8; 8] = (0..8).collect::<Vec<_>>().try_into().unwrap();
        buf.t = ascending;
        test_new_helper(Ref::<_, AU64>::new_zeroed(&mut buf.t[..]).unwrap());
        {
            // In a block so that `r` and `suffix` don't live too long.
            buf.set_default();
            let (r, suffix) = Ref::<_, AU64>::new_from_prefix(&mut buf.t[..]).unwrap();
            assert!(suffix.is_empty());
            test_new_helper(r);
        }
        {
            buf.t = ascending;
            let (r, suffix) = Ref::<_, AU64>::new_from_prefix_zeroed(&mut buf.t[..]).unwrap();
            assert!(suffix.is_empty());
            test_new_helper(r);
        }
        {
            buf.set_default();
            let (prefix, r) = Ref::<_, AU64>::new_from_suffix(&mut buf.t[..]).unwrap();
            assert!(prefix.is_empty());
            test_new_helper(r);
        }
        {
            buf.t = ascending;
            let (prefix, r) = Ref::<_, AU64>::new_from_suffix_zeroed(&mut buf.t[..]).unwrap();
            assert!(prefix.is_empty());
            test_new_helper(r);
        }

        // A buffer with alignment 8 and length 24. We choose this length very
        // intentionally: if we instead used length 16, then the prefix and
        // suffix lengths would be identical. In the past, we used length 16,
        // which resulted in this test failing to discover the bug uncovered in
        // #506.
        let mut buf = Align::<[u8; 24], AU64>::default();
        // `buf.t` should be aligned to 8 and have a length which is a multiple
        // of `size_of::<AU64>()`, so this should always succeed.
        test_new_helper_slice(Ref::<_, [AU64]>::new_slice(&mut buf.t[..]).unwrap(), 3);
        let ascending: [u8; 24] = (0..24).collect::<Vec<_>>().try_into().unwrap();
        // 16 ascending bytes followed by 8 zeros.
        let mut ascending_prefix = ascending;
        ascending_prefix[16..].copy_from_slice(&[0, 0, 0, 0, 0, 0, 0, 0]);
        // 8 zeros followed by 16 ascending bytes.
        let mut ascending_suffix = ascending;
        ascending_suffix[..8].copy_from_slice(&[0, 0, 0, 0, 0, 0, 0, 0]);
        test_new_helper_slice(Ref::<_, [AU64]>::new_slice_zeroed(&mut buf.t[..]).unwrap(), 3);

        {
            buf.t = ascending_suffix;
            let (r, suffix) = Ref::<_, [AU64]>::new_slice_from_prefix(&mut buf.t[..], 1).unwrap();
            assert_eq!(suffix, &ascending[8..]);
            test_new_helper_slice(r, 1);
        }
        {
            buf.t = ascending_suffix;
            let (r, suffix) =
                Ref::<_, [AU64]>::new_slice_from_prefix_zeroed(&mut buf.t[..], 1).unwrap();
            assert_eq!(suffix, &ascending[8..]);
            test_new_helper_slice(r, 1);
        }
        {
            buf.t = ascending_prefix;
            let (prefix, r) = Ref::<_, [AU64]>::new_slice_from_suffix(&mut buf.t[..], 1).unwrap();
            assert_eq!(prefix, &ascending[..16]);
            test_new_helper_slice(r, 1);
        }
        {
            buf.t = ascending_prefix;
            let (prefix, r) =
                Ref::<_, [AU64]>::new_slice_from_suffix_zeroed(&mut buf.t[..], 1).unwrap();
            assert_eq!(prefix, &ascending[..16]);
            test_new_helper_slice(r, 1);
        }
    }

    #[test]
    fn test_new_unaligned_sized() {
        // Test that an unaligned, properly-sized buffer works for
        // `new_unaligned`, `new_unaligned_from_prefix`, and
        // `new_unaligned_from_suffix`, and that `new_unaligned_from_prefix`
        // `new_unaligned_from_suffix` return empty slices. Test that an
        // unaligned buffer whose length is a multiple of the element size works
        // for `new_slice`. Test that `xxx_zeroed` behaves the same, and zeroes
        // the memory.

        let mut buf = [0u8; 8];
        test_new_helper_unaligned(Ref::<_, [u8; 8]>::new_unaligned(&mut buf[..]).unwrap());
        buf = [0xFFu8; 8];
        test_new_helper_unaligned(Ref::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf[..]).unwrap());
        {
            // In a block so that `r` and `suffix` don't live too long.
            buf = [0u8; 8];
            let (r, suffix) = Ref::<_, [u8; 8]>::new_unaligned_from_prefix(&mut buf[..]).unwrap();
            assert!(suffix.is_empty());
            test_new_helper_unaligned(r);
        }
        {
            buf = [0xFFu8; 8];
            let (r, suffix) =
                Ref::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf[..]).unwrap();
            assert!(suffix.is_empty());
            test_new_helper_unaligned(r);
        }
        {
            buf = [0u8; 8];
            let (prefix, r) = Ref::<_, [u8; 8]>::new_unaligned_from_suffix(&mut buf[..]).unwrap();
            assert!(prefix.is_empty());
            test_new_helper_unaligned(r);
        }
        {
            buf = [0xFFu8; 8];
            let (prefix, r) =
                Ref::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf[..]).unwrap();
            assert!(prefix.is_empty());
            test_new_helper_unaligned(r);
        }

        let mut buf = [0u8; 16];
        // `buf.t` should be aligned to 8 and have a length which is a multiple
        // of `size_of::AU64>()`, so this should always succeed.
        test_new_helper_slice_unaligned(
            Ref::<_, [u8]>::new_slice_unaligned(&mut buf[..]).unwrap(),
            16,
        );
        buf = [0xFFu8; 16];
        test_new_helper_slice_unaligned(
            Ref::<_, [u8]>::new_slice_unaligned_zeroed(&mut buf[..]).unwrap(),
            16,
        );

        {
            buf = [0u8; 16];
            let (r, suffix) =
                Ref::<_, [u8]>::new_slice_unaligned_from_prefix(&mut buf[..], 8).unwrap();
            assert_eq!(suffix, [0; 8]);
            test_new_helper_slice_unaligned(r, 8);
        }
        {
            buf = [0xFFu8; 16];
            let (r, suffix) =
                Ref::<_, [u8]>::new_slice_unaligned_from_prefix_zeroed(&mut buf[..], 8).unwrap();
            assert_eq!(suffix, [0xFF; 8]);
            test_new_helper_slice_unaligned(r, 8);
        }
        {
            buf = [0u8; 16];
            let (prefix, r) =
                Ref::<_, [u8]>::new_slice_unaligned_from_suffix(&mut buf[..], 8).unwrap();
            assert_eq!(prefix, [0; 8]);
            test_new_helper_slice_unaligned(r, 8);
        }
        {
            buf = [0xFFu8; 16];
            let (prefix, r) =
                Ref::<_, [u8]>::new_slice_unaligned_from_suffix_zeroed(&mut buf[..], 8).unwrap();
            assert_eq!(prefix, [0xFF; 8]);
            test_new_helper_slice_unaligned(r, 8);
        }
    }

    #[test]
    fn test_new_oversized() {
        // Test that a properly-aligned, overly-sized buffer works for
        // `new_from_prefix` and `new_from_suffix`, and that they return the
        // remainder and prefix of the slice respectively. Test that
        // `xxx_zeroed` behaves the same, and zeroes the memory.

        let mut buf = Align::<[u8; 16], AU64>::default();
        {
            // In a block so that `r` and `suffix` don't live too long. `buf.t`
            // should be aligned to 8, so this should always succeed.
            let (r, suffix) = Ref::<_, AU64>::new_from_prefix(&mut buf.t[..]).unwrap();
            assert_eq!(suffix.len(), 8);
            test_new_helper(r);
        }
        {
            buf.t = [0xFFu8; 16];
            // `buf.t` should be aligned to 8, so this should always succeed.
            let (r, suffix) = Ref::<_, AU64>::new_from_prefix_zeroed(&mut buf.t[..]).unwrap();
            // Assert that the suffix wasn't zeroed.
            assert_eq!(suffix, &[0xFFu8; 8]);
            test_new_helper(r);
        }
        {
            buf.set_default();
            // `buf.t` should be aligned to 8, so this should always succeed.
            let (prefix, r) = Ref::<_, AU64>::new_from_suffix(&mut buf.t[..]).unwrap();
            assert_eq!(prefix.len(), 8);
            test_new_helper(r);
        }
        {
            buf.t = [0xFFu8; 16];
            // `buf.t` should be aligned to 8, so this should always succeed.
            let (prefix, r) = Ref::<_, AU64>::new_from_suffix_zeroed(&mut buf.t[..]).unwrap();
            // Assert that the prefix wasn't zeroed.
            assert_eq!(prefix, &[0xFFu8; 8]);
            test_new_helper(r);
        }
    }

    #[test]
    fn test_new_unaligned_oversized() {
        // Test than an unaligned, overly-sized buffer works for
        // `new_unaligned_from_prefix` and `new_unaligned_from_suffix`, and that
        // they return the remainder and prefix of the slice respectively. Test
        // that `xxx_zeroed` behaves the same, and zeroes the memory.

        let mut buf = [0u8; 16];
        {
            // In a block so that `r` and `suffix` don't live too long.
            let (r, suffix) = Ref::<_, [u8; 8]>::new_unaligned_from_prefix(&mut buf[..]).unwrap();
            assert_eq!(suffix.len(), 8);
            test_new_helper_unaligned(r);
        }
        {
            buf = [0xFFu8; 16];
            let (r, suffix) =
                Ref::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf[..]).unwrap();
            // Assert that the suffix wasn't zeroed.
            assert_eq!(suffix, &[0xFF; 8]);
            test_new_helper_unaligned(r);
        }
        {
            buf = [0u8; 16];
            let (prefix, r) = Ref::<_, [u8; 8]>::new_unaligned_from_suffix(&mut buf[..]).unwrap();
            assert_eq!(prefix.len(), 8);
            test_new_helper_unaligned(r);
        }
        {
            buf = [0xFFu8; 16];
            let (prefix, r) =
                Ref::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf[..]).unwrap();
            // Assert that the prefix wasn't zeroed.
            assert_eq!(prefix, &[0xFF; 8]);
            test_new_helper_unaligned(r);
        }
    }

    #[test]
    fn test_ref_from_mut_from() {
        // Test `FromBytes::{ref_from, mut_from}{,_prefix,_suffix}` success cases
        // Exhaustive coverage for these methods is covered by the `Ref` tests above,
        // which these helper methods defer to.

        let mut buf =
            Align::<[u8; 16], AU64>::new([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]);

        assert_eq!(
            AU64::ref_from(&buf.t[8..]).unwrap().0.to_ne_bytes(),
            [8, 9, 10, 11, 12, 13, 14, 15]
        );
        let suffix = AU64::mut_from(&mut buf.t[8..]).unwrap();
        suffix.0 = 0x0101010101010101;
        // The `[u8:9]` is a non-half size of the full buffer, which would catch
        // `from_prefix` having the same implementation as `from_suffix` (issues #506, #511).
        assert_eq!(<[u8; 9]>::ref_from_suffix(&buf.t[..]).unwrap(), &[7u8, 1, 1, 1, 1, 1, 1, 1, 1]);
        let suffix = AU64::mut_from_suffix(&mut buf.t[1..]).unwrap();
        suffix.0 = 0x0202020202020202;
        <[u8; 10]>::mut_from_suffix(&mut buf.t[..]).unwrap()[0] = 42;
        assert_eq!(<[u8; 9]>::ref_from_prefix(&buf.t[..]).unwrap(), &[0, 1, 2, 3, 4, 5, 42, 7, 2]);
        <[u8; 2]>::mut_from_prefix(&mut buf.t[..]).unwrap()[1] = 30;
        assert_eq!(buf.t, [0, 30, 2, 3, 4, 5, 42, 7, 2, 2, 2, 2, 2, 2, 2, 2]);
    }

    #[test]
    fn test_ref_from_mut_from_error() {
        // Test `FromBytes::{ref_from, mut_from}{,_prefix,_suffix}` error cases.

        // Fail because the buffer is too large.
        let mut buf = Align::<[u8; 16], AU64>::default();
        // `buf.t` should be aligned to 8, so only the length check should fail.
        assert!(AU64::ref_from(&buf.t[..]).is_none());
        assert!(AU64::mut_from(&mut buf.t[..]).is_none());
        assert!(<[u8; 8]>::ref_from(&buf.t[..]).is_none());
        assert!(<[u8; 8]>::mut_from(&mut buf.t[..]).is_none());

        // Fail because the buffer is too small.
        let mut buf = Align::<[u8; 4], AU64>::default();
        assert!(AU64::ref_from(&buf.t[..]).is_none());
        assert!(AU64::mut_from(&mut buf.t[..]).is_none());
        assert!(<[u8; 8]>::ref_from(&buf.t[..]).is_none());
        assert!(<[u8; 8]>::mut_from(&mut buf.t[..]).is_none());
        assert!(AU64::ref_from_prefix(&buf.t[..]).is_none());
        assert!(AU64::mut_from_prefix(&mut buf.t[..]).is_none());
        assert!(AU64::ref_from_suffix(&buf.t[..]).is_none());
        assert!(AU64::mut_from_suffix(&mut buf.t[..]).is_none());
        assert!(<[u8; 8]>::ref_from_prefix(&buf.t[..]).is_none());
        assert!(<[u8; 8]>::mut_from_prefix(&mut buf.t[..]).is_none());
        assert!(<[u8; 8]>::ref_from_suffix(&buf.t[..]).is_none());
        assert!(<[u8; 8]>::mut_from_suffix(&mut buf.t[..]).is_none());

        // Fail because the alignment is insufficient.
        let mut buf = Align::<[u8; 13], AU64>::default();
        assert!(AU64::ref_from(&buf.t[1..]).is_none());
        assert!(AU64::mut_from(&mut buf.t[1..]).is_none());
        assert!(AU64::ref_from(&buf.t[1..]).is_none());
        assert!(AU64::mut_from(&mut buf.t[1..]).is_none());
        assert!(AU64::ref_from_prefix(&buf.t[1..]).is_none());
        assert!(AU64::mut_from_prefix(&mut buf.t[1..]).is_none());
        assert!(AU64::ref_from_suffix(&buf.t[..]).is_none());
        assert!(AU64::mut_from_suffix(&mut buf.t[..]).is_none());
    }

    #[test]
    #[allow(clippy::cognitive_complexity)]
    fn test_new_error() {
        // Fail because the buffer is too large.

        // A buffer with an alignment of 8.
        let mut buf = Align::<[u8; 16], AU64>::default();
        // `buf.t` should be aligned to 8, so only the length check should fail.
        assert!(Ref::<_, AU64>::new(&buf.t[..]).is_none());
        assert!(Ref::<_, AU64>::new_zeroed(&mut buf.t[..]).is_none());
        assert!(Ref::<_, [u8; 8]>::new_unaligned(&buf.t[..]).is_none());
        assert!(Ref::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf.t[..]).is_none());

        // Fail because the buffer is too small.

        // A buffer with an alignment of 8.
        let mut buf = Align::<[u8; 4], AU64>::default();
        // `buf.t` should be aligned to 8, so only the length check should fail.
        assert!(Ref::<_, AU64>::new(&buf.t[..]).is_none());
        assert!(Ref::<_, AU64>::new_zeroed(&mut buf.t[..]).is_none());
        assert!(Ref::<_, [u8; 8]>::new_unaligned(&buf.t[..]).is_none());
        assert!(Ref::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf.t[..]).is_none());
        assert!(Ref::<_, AU64>::new_from_prefix(&buf.t[..]).is_none());
        assert!(Ref::<_, AU64>::new_from_prefix_zeroed(&mut buf.t[..]).is_none());
        assert!(Ref::<_, AU64>::new_from_suffix(&buf.t[..]).is_none());
        assert!(Ref::<_, AU64>::new_from_suffix_zeroed(&mut buf.t[..]).is_none());
        assert!(Ref::<_, [u8; 8]>::new_unaligned_from_prefix(&buf.t[..]).is_none());
        assert!(Ref::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf.t[..]).is_none());
        assert!(Ref::<_, [u8; 8]>::new_unaligned_from_suffix(&buf.t[..]).is_none());
        assert!(Ref::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf.t[..]).is_none());

        // Fail because the length is not a multiple of the element size.

        let mut buf = Align::<[u8; 12], AU64>::default();
        // `buf.t` has length 12, but element size is 8.
        assert!(Ref::<_, [AU64]>::new_slice(&buf.t[..]).is_none());
        assert!(Ref::<_, [AU64]>::new_slice_zeroed(&mut buf.t[..]).is_none());
        assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned(&buf.t[..]).is_none());
        assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_zeroed(&mut buf.t[..]).is_none());

        // Fail because the buffer is too short.
        let mut buf = Align::<[u8; 12], AU64>::default();
        // `buf.t` has length 12, but the element size is 8 (and we're expecting
        // two of them).
        assert!(Ref::<_, [AU64]>::new_slice_from_prefix(&buf.t[..], 2).is_none());
        assert!(Ref::<_, [AU64]>::new_slice_from_prefix_zeroed(&mut buf.t[..], 2).is_none());
        assert!(Ref::<_, [AU64]>::new_slice_from_suffix(&buf.t[..], 2).is_none());
        assert!(Ref::<_, [AU64]>::new_slice_from_suffix_zeroed(&mut buf.t[..], 2).is_none());
        assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix(&buf.t[..], 2).is_none());
        assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix_zeroed(&mut buf.t[..], 2)
            .is_none());
        assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix(&buf.t[..], 2).is_none());
        assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix_zeroed(&mut buf.t[..], 2)
            .is_none());

        // Fail because the alignment is insufficient.

        // A buffer with an alignment of 8. An odd buffer size is chosen so that
        // the last byte of the buffer has odd alignment.
        let mut buf = Align::<[u8; 13], AU64>::default();
        // Slicing from 1, we get a buffer with size 12 (so the length check
        // should succeed) but an alignment of only 1, which is insufficient.
        assert!(Ref::<_, AU64>::new(&buf.t[1..]).is_none());
        assert!(Ref::<_, AU64>::new_zeroed(&mut buf.t[1..]).is_none());
        assert!(Ref::<_, AU64>::new_from_prefix(&buf.t[1..]).is_none());
        assert!(Ref::<_, AU64>::new_from_prefix_zeroed(&mut buf.t[1..]).is_none());
        assert!(Ref::<_, [AU64]>::new_slice(&buf.t[1..]).is_none());
        assert!(Ref::<_, [AU64]>::new_slice_zeroed(&mut buf.t[1..]).is_none());
        assert!(Ref::<_, [AU64]>::new_slice_from_prefix(&buf.t[1..], 1).is_none());
        assert!(Ref::<_, [AU64]>::new_slice_from_prefix_zeroed(&mut buf.t[1..], 1).is_none());
        assert!(Ref::<_, [AU64]>::new_slice_from_suffix(&buf.t[1..], 1).is_none());
        assert!(Ref::<_, [AU64]>::new_slice_from_suffix_zeroed(&mut buf.t[1..], 1).is_none());
        // Slicing is unnecessary here because `new_from_suffix[_zeroed]` use
        // the suffix of the slice, which has odd alignment.
        assert!(Ref::<_, AU64>::new_from_suffix(&buf.t[..]).is_none());
        assert!(Ref::<_, AU64>::new_from_suffix_zeroed(&mut buf.t[..]).is_none());

        // Fail due to arithmetic overflow.

        let mut buf = Align::<[u8; 16], AU64>::default();
        let unreasonable_len = usize::MAX / mem::size_of::<AU64>() + 1;
        assert!(Ref::<_, [AU64]>::new_slice_from_prefix(&buf.t[..], unreasonable_len).is_none());
        assert!(Ref::<_, [AU64]>::new_slice_from_prefix_zeroed(&mut buf.t[..], unreasonable_len)
            .is_none());
        assert!(Ref::<_, [AU64]>::new_slice_from_suffix(&buf.t[..], unreasonable_len).is_none());
        assert!(Ref::<_, [AU64]>::new_slice_from_suffix_zeroed(&mut buf.t[..], unreasonable_len)
            .is_none());
        assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix(&buf.t[..], unreasonable_len)
            .is_none());
        assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix_zeroed(
            &mut buf.t[..],
            unreasonable_len
        )
        .is_none());
        assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix(&buf.t[..], unreasonable_len)
            .is_none());
        assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix_zeroed(
            &mut buf.t[..],
            unreasonable_len
        )
        .is_none());
    }

    // Tests for ensuring that, if a ZST is passed into a slice-like function,
    // we always panic. Since these tests need to be separate per-function, and
    // they tend to take up a lot of space, we generate them using a macro in a
    // submodule instead. The submodule ensures that we can just re-use the name
    // of the function under test for the name of the test itself.
    mod test_zst_panics {
        macro_rules! zst_test {
            ($name:ident($($tt:tt)*), $constructor_in_panic_msg:tt) => {
                #[test]
                #[should_panic = concat!("Ref::", $constructor_in_panic_msg, " called on a zero-sized type")]
                fn $name() {
                    let mut buffer = [0u8];
                    let r = $crate::Ref::<_, [()]>::$name(&mut buffer[..], $($tt)*);
                    unreachable!("should have panicked, got {:?}", r);
                }
            }
        }
        zst_test!(new_slice(), "new_slice");
        zst_test!(new_slice_zeroed(), "new_slice");
        zst_test!(new_slice_from_prefix(1), "new_slice");
        zst_test!(new_slice_from_prefix_zeroed(1), "new_slice");
        zst_test!(new_slice_from_suffix(1), "new_slice");
        zst_test!(new_slice_from_suffix_zeroed(1), "new_slice");
        zst_test!(new_slice_unaligned(), "new_slice_unaligned");
        zst_test!(new_slice_unaligned_zeroed(), "new_slice_unaligned");
        zst_test!(new_slice_unaligned_from_prefix(1), "new_slice_unaligned");
        zst_test!(new_slice_unaligned_from_prefix_zeroed(1), "new_slice_unaligned");
        zst_test!(new_slice_unaligned_from_suffix(1), "new_slice_unaligned");
        zst_test!(new_slice_unaligned_from_suffix_zeroed(1), "new_slice_unaligned");
    }

    #[test]
    fn test_as_bytes_methods() {
        /// Run a series of tests by calling `AsBytes` methods on `t`.
        ///
        /// `bytes` is the expected byte sequence returned from `t.as_bytes()`
        /// before `t` has been modified. `post_mutation` is the expected
        /// sequence returned from `t.as_bytes()` after `t.as_bytes_mut()[0]`
        /// has had its bits flipped (by applying `^= 0xFF`).
        ///
        /// `N` is the size of `t` in bytes.
        fn test<T: FromBytes + AsBytes + Debug + Eq + ?Sized, const N: usize>(
            t: &mut T,
            bytes: &[u8],
            post_mutation: &T,
        ) {
            // Test that we can access the underlying bytes, and that we get the
            // right bytes and the right number of bytes.
            assert_eq!(t.as_bytes(), bytes);

            // Test that changes to the underlying byte slices are reflected in
            // the original object.
            t.as_bytes_mut()[0] ^= 0xFF;
            assert_eq!(t, post_mutation);
            t.as_bytes_mut()[0] ^= 0xFF;

            // `write_to` rejects slices that are too small or too large.
            assert_eq!(t.write_to(&mut vec![0; N - 1][..]), None);
            assert_eq!(t.write_to(&mut vec![0; N + 1][..]), None);

            // `write_to` works as expected.
            let mut bytes = [0; N];
            assert_eq!(t.write_to(&mut bytes[..]), Some(()));
            assert_eq!(bytes, t.as_bytes());

            // `write_to_prefix` rejects slices that are too small.
            assert_eq!(t.write_to_prefix(&mut vec![0; N - 1][..]), None);

            // `write_to_prefix` works with exact-sized slices.
            let mut bytes = [0; N];
            assert_eq!(t.write_to_prefix(&mut bytes[..]), Some(()));
            assert_eq!(bytes, t.as_bytes());

            // `write_to_prefix` works with too-large slices, and any bytes past
            // the prefix aren't modified.
            let mut too_many_bytes = vec![0; N + 1];
            too_many_bytes[N] = 123;
            assert_eq!(t.write_to_prefix(&mut too_many_bytes[..]), Some(()));
            assert_eq!(&too_many_bytes[..N], t.as_bytes());
            assert_eq!(too_many_bytes[N], 123);

            // `write_to_suffix` rejects slices that are too small.
            assert_eq!(t.write_to_suffix(&mut vec![0; N - 1][..]), None);

            // `write_to_suffix` works with exact-sized slices.
            let mut bytes = [0; N];
            assert_eq!(t.write_to_suffix(&mut bytes[..]), Some(()));
            assert_eq!(bytes, t.as_bytes());

            // `write_to_suffix` works with too-large slices, and any bytes
            // before the suffix aren't modified.
            let mut too_many_bytes = vec![0; N + 1];
            too_many_bytes[0] = 123;
            assert_eq!(t.write_to_suffix(&mut too_many_bytes[..]), Some(()));
            assert_eq!(&too_many_bytes[1..], t.as_bytes());
            assert_eq!(too_many_bytes[0], 123);
        }

        #[derive(Debug, Eq, PartialEq, FromZeroes, FromBytes, AsBytes)]
        #[repr(C)]
        struct Foo {
            a: u32,
            b: Wrapping<u32>,
            c: Option<NonZeroU32>,
        }

        let expected_bytes: Vec<u8> = if cfg!(target_endian = "little") {
            vec![1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0]
        } else {
            vec![0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0]
        };
        let post_mutation_expected_a =
            if cfg!(target_endian = "little") { 0x00_00_00_FE } else { 0xFF_00_00_01 };
        test::<_, 12>(
            &mut Foo { a: 1, b: Wrapping(2), c: None },
            expected_bytes.as_bytes(),
            &Foo { a: post_mutation_expected_a, b: Wrapping(2), c: None },
        );
        test::<_, 3>(
            Unsized::from_mut_slice(&mut [1, 2, 3]),
            &[1, 2, 3],
            Unsized::from_mut_slice(&mut [0xFE, 2, 3]),
        );
    }

    #[test]
    fn test_array() {
        #[derive(FromZeroes, FromBytes, AsBytes)]
        #[repr(C)]
        struct Foo {
            a: [u16; 33],
        }

        let foo = Foo { a: [0xFFFF; 33] };
        let expected = [0xFFu8; 66];
        assert_eq!(foo.as_bytes(), &expected[..]);
    }

    #[test]
    fn test_display_debug() {
        let buf = Align::<[u8; 8], u64>::default();
        let r = Ref::<_, u64>::new(&buf.t[..]).unwrap();
        assert_eq!(format!("{}", r), "0");
        assert_eq!(format!("{:?}", r), "Ref(0)");

        let buf = Align::<[u8; 8], u64>::default();
        let r = Ref::<_, [u64]>::new_slice(&buf.t[..]).unwrap();
        assert_eq!(format!("{:?}", r), "Ref([0])");
    }

    #[test]
    fn test_eq() {
        let buf1 = 0_u64;
        let r1 = Ref::<_, u64>::new(buf1.as_bytes()).unwrap();
        let buf2 = 0_u64;
        let r2 = Ref::<_, u64>::new(buf2.as_bytes()).unwrap();
        assert_eq!(r1, r2);
    }

    #[test]
    fn test_ne() {
        let buf1 = 0_u64;
        let r1 = Ref::<_, u64>::new(buf1.as_bytes()).unwrap();
        let buf2 = 1_u64;
        let r2 = Ref::<_, u64>::new(buf2.as_bytes()).unwrap();
        assert_ne!(r1, r2);
    }

    #[test]
    fn test_ord() {
        let buf1 = 0_u64;
        let r1 = Ref::<_, u64>::new(buf1.as_bytes()).unwrap();
        let buf2 = 1_u64;
        let r2 = Ref::<_, u64>::new(buf2.as_bytes()).unwrap();
        assert!(r1 < r2);
    }

    #[test]
    fn test_new_zeroed() {
        assert!(!bool::new_zeroed());
        assert_eq!(u64::new_zeroed(), 0);
        // This test exists in order to exercise unsafe code, especially when
        // running under Miri.
        #[allow(clippy::unit_cmp)]
        {
            assert_eq!(<()>::new_zeroed(), ());
        }
    }

    #[test]
    fn test_transparent_packed_generic_struct() {
        #[derive(AsBytes, FromZeroes, FromBytes, Unaligned)]
        #[repr(transparent)]
        struct Foo<T> {
            _t: T,
            _phantom: PhantomData<()>,
        }

        assert_impl_all!(Foo<u32>: FromZeroes, FromBytes, AsBytes);
        assert_impl_all!(Foo<u8>: Unaligned);

        #[derive(AsBytes, FromZeroes, FromBytes, Unaligned)]
        #[repr(packed)]
        struct Bar<T, U> {
            _t: T,
            _u: U,
        }

        assert_impl_all!(Bar<u8, AU64>: FromZeroes, FromBytes, AsBytes, Unaligned);
    }

    #[test]
    fn test_impls() {
        use core::borrow::Borrow;

        // A type that can supply test cases for testing
        // `TryFromBytes::is_bit_valid`. All types passed to `assert_impls!`
        // must implement this trait; that macro uses it to generate runtime
        // tests for `TryFromBytes` impls.
        //
        // All `T: FromBytes` types are provided with a blanket impl. Other
        // types must implement `TryFromBytesTestable` directly (ie using
        // `impl_try_from_bytes_testable!`).
        trait TryFromBytesTestable {
            fn with_passing_test_cases<F: Fn(&Self)>(f: F);
            fn with_failing_test_cases<F: Fn(&[u8])>(f: F);
        }

        impl<T: FromBytes> TryFromBytesTestable for T {
            fn with_passing_test_cases<F: Fn(&Self)>(f: F) {
                // Test with a zeroed value.
                f(&Self::new_zeroed());

                let ffs = {
                    let mut t = Self::new_zeroed();
                    let ptr: *mut T = &mut t;
                    // SAFETY: `T: FromBytes`
                    unsafe { ptr::write_bytes(ptr.cast::<u8>(), 0xFF, mem::size_of::<T>()) };
                    t
                };

                // Test with a value initialized with 0xFF.
                f(&ffs);
            }

            fn with_failing_test_cases<F: Fn(&[u8])>(_f: F) {}
        }

        // Implements `TryFromBytesTestable`.
        macro_rules! impl_try_from_bytes_testable {
            // Base case for recursion (when the list of types has run out).
            (=> @success $($success_case:expr),* $(, @failure $($failure_case:expr),*)?) => {};
            // Implements for type(s) with no type parameters.
            ($ty:ty $(,$tys:ty)* => @success $($success_case:expr),* $(, @failure $($failure_case:expr),*)?) => {
                impl TryFromBytesTestable for $ty {
                    impl_try_from_bytes_testable!(
                        @methods     @success $($success_case),*
                                 $(, @failure $($failure_case),*)?
                    );
                }
                impl_try_from_bytes_testable!($($tys),* => @success $($success_case),* $(, @failure $($failure_case),*)?);
            };
            // Implements for multiple types with no type parameters.
            ($($($ty:ty),* => @success $($success_case:expr), * $(, @failure $($failure_case:expr),*)?;)*) => {
                $(
                    impl_try_from_bytes_testable!($($ty),* => @success $($success_case),* $(, @failure $($failure_case),*)*);
                )*
            };
            // Implements only the methods; caller must invoke this from inside
            // an impl block.
            (@methods @success $($success_case:expr),* $(, @failure $($failure_case:expr),*)?) => {
                fn with_passing_test_cases<F: Fn(&Self)>(_f: F) {
                    $(
                        _f($success_case.borrow());
                    )*
                }

                fn with_failing_test_cases<F: Fn(&[u8])>(_f: F) {
                    $($(
                        // `unused_qualifications` is spuriously triggered on
                        // `Option::<Self>::None`.
                        #[allow(unused_qualifications)]
                        let case = $failure_case.as_bytes();
                        _f(case.as_bytes());
                    )*)?
                }
            };
        }

        // Note that these impls are only for types which are not `FromBytes`.
        // `FromBytes` types are covered by a preceding blanket impl.
        impl_try_from_bytes_testable!(
            bool => @success true, false,
                    @failure 2u8, 3u8, 0xFFu8;
            char => @success '\u{0}', '\u{D7FF}', '\u{E000}', '\u{10FFFF}',
                    @failure 0xD800u32, 0xDFFFu32, 0x110000u32;
            str  => @success "", "hello", "❤️🧡💛💚💙💜",
                    @failure [0, 159, 146, 150];
            [u8] => @success [], [0, 1, 2];
            NonZeroU8, NonZeroI8, NonZeroU16, NonZeroI16, NonZeroU32,
            NonZeroI32, NonZeroU64, NonZeroI64, NonZeroU128, NonZeroI128,
            NonZeroUsize, NonZeroIsize
                 => @success Self::new(1).unwrap(),
                    // Doing this instead of `0` ensures that we always satisfy
                    // the size and alignment requirements of `Self` (whereas
                    // `0` may be any integer type with a different size or
                    // alignment than some `NonZeroXxx` types).
                    @failure Option::<Self>::None;
            [bool]
                => @success [true, false], [false, true],
                    @failure [2u8], [3u8], [0xFFu8], [0u8, 1u8, 2u8];
        );

        // Asserts that `$ty` implements any `$trait` and doesn't implement any
        // `!$trait`. Note that all `$trait`s must come before any `!$trait`s.
        //
        // For `T: TryFromBytes`, uses `TryFromBytesTestable` to test success
        // and failure cases for `TryFromBytes::is_bit_valid`.
        macro_rules! assert_impls {
            ($ty:ty: TryFromBytes) => {
                <$ty as TryFromBytesTestable>::with_passing_test_cases(|val| {
                    let c = Ptr::from(val);
                    // SAFETY:
                    // - Since `val` is a normal reference, `c` is guranteed to
                    //   be aligned, to point to a single allocation, and to
                    //   have a size which doesn't overflow `isize`.
                    // - Since `val` is a valid `$ty`, `c`'s referent satisfies
                    //   the bit validity constraints of `is_bit_valid`, which
                    //   are a superset of the bit validity constraints of
                    //   `$ty`.
                    let res = unsafe { <$ty as TryFromBytes>::is_bit_valid(c) };
                    assert!(res, "{}::is_bit_valid({:?}): got false, expected true", stringify!($ty), val);

                    // TODO(#5): In addition to testing `is_bit_valid`, test the
                    // methods built on top of it. This would both allow us to
                    // test their implementations and actually convert the bytes
                    // to `$ty`, giving Miri a chance to catch if this is
                    // unsound (ie, if our `is_bit_valid` impl is buggy).
                    //
                    // The following code was tried, but it doesn't work because
                    // a) some types are not `AsBytes` and, b) some types are
                    // not `Sized`.
                    //
                    //   let r = <$ty as TryFromBytes>::try_from_ref(val.as_bytes()).unwrap();
                    //   assert_eq!(r, &val);
                    //   let r = <$ty as TryFromBytes>::try_from_mut(val.as_bytes_mut()).unwrap();
                    //   assert_eq!(r, &mut val);
                    //   let v = <$ty as TryFromBytes>::try_read_from(val.as_bytes()).unwrap();
                    //   assert_eq!(v, val);
                });
                #[allow(clippy::as_conversions)]
                <$ty as TryFromBytesTestable>::with_failing_test_cases(|c| {
                    let res = <$ty as TryFromBytes>::try_from_ref(c);
                    assert!(res.is_none(), "{}::is_bit_valid({:?}): got true, expected false", stringify!($ty), c);
                });

                #[allow(dead_code)]
                const _: () = { static_assertions::assert_impl_all!($ty: TryFromBytes); };
            };
            ($ty:ty: $trait:ident) => {
                #[allow(dead_code)]
                const _: () = { static_assertions::assert_impl_all!($ty: $trait); };
            };
            ($ty:ty: !$trait:ident) => {
                #[allow(dead_code)]
                const _: () = { static_assertions::assert_not_impl_any!($ty: $trait); };
            };
            ($ty:ty: $($trait:ident),* $(,)? $(!$negative_trait:ident),*) => {
                $(
                    assert_impls!($ty: $trait);
                )*

                $(
                    assert_impls!($ty: !$negative_trait);
                )*
            };
        }

        // NOTE: The negative impl assertions here are not necessarily
        // prescriptive. They merely serve as change detectors to make sure
        // we're aware of what trait impls are getting added with a given
        // change. Of course, some impls would be invalid (e.g., `bool:
        // FromBytes`), and so this change detection is very important.

        assert_impls!((): KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned);
        assert_impls!(u8: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned);
        assert_impls!(i8: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned);
        assert_impls!(u16: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(i16: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(u32: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(i32: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(u64: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(i64: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(u128: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(i128: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(usize: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(isize: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(f32: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(f64: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);

        assert_impls!(bool: KnownLayout, TryFromBytes, FromZeroes, AsBytes, Unaligned, !FromBytes);
        assert_impls!(char: KnownLayout, TryFromBytes, FromZeroes, AsBytes, !FromBytes, !Unaligned);
        assert_impls!(str: KnownLayout, TryFromBytes, FromZeroes, AsBytes, Unaligned, !FromBytes);

        assert_impls!(NonZeroU8: KnownLayout, TryFromBytes, AsBytes, Unaligned, !FromZeroes, !FromBytes);
        assert_impls!(NonZeroI8: KnownLayout, TryFromBytes, AsBytes, Unaligned, !FromZeroes, !FromBytes);
        assert_impls!(NonZeroU16: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroI16: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroU32: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroI32: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroU64: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroI64: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroU128: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroI128: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroUsize: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroIsize: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned);

        assert_impls!(Option<NonZeroU8>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned);
        assert_impls!(Option<NonZeroI8>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned);
        assert_impls!(Option<NonZeroU16>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroI16>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroU32>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroI32>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroU64>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroI64>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroU128>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroI128>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroUsize>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroIsize>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned);

        // Implements none of the ZC traits.
        struct NotZerocopy;

        #[rustfmt::skip]
        type FnManyArgs = fn(
            NotZerocopy, u8, u8, u8, u8, u8, u8, u8, u8, u8, u8, u8,
        ) -> (NotZerocopy, NotZerocopy);

        // Allowed, because we're not actually using this type for FFI.
        #[allow(improper_ctypes_definitions)]
        #[rustfmt::skip]
        type ECFnManyArgs = extern "C" fn(
            NotZerocopy, u8, u8, u8, u8, u8, u8, u8, u8, u8, u8, u8,
        ) -> (NotZerocopy, NotZerocopy);

        #[cfg(feature = "alloc")]
        assert_impls!(Option<Box<UnsafeCell<NotZerocopy>>>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(Option<Box<[UnsafeCell<NotZerocopy>]>>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(Option<&'static UnsafeCell<NotZerocopy>>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(Option<&'static [UnsafeCell<NotZerocopy>]>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(Option<&'static mut UnsafeCell<NotZerocopy>>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(Option<&'static mut [UnsafeCell<NotZerocopy>]>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(Option<NonNull<UnsafeCell<NotZerocopy>>>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(Option<NonNull<[UnsafeCell<NotZerocopy>]>>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(Option<fn()>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(Option<FnManyArgs>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(Option<extern "C" fn()>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(Option<ECFnManyArgs>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned);

        assert_impls!(PhantomData<NotZerocopy>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned);
        assert_impls!(PhantomData<[u8]>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned);

        assert_impls!(ManuallyDrop<u8>: KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned, !TryFromBytes);
        assert_impls!(ManuallyDrop<[u8]>: KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned, !TryFromBytes);
        assert_impls!(ManuallyDrop<NotZerocopy>: !TryFromBytes, !KnownLayout, !FromZeroes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(ManuallyDrop<[NotZerocopy]>: !TryFromBytes, !KnownLayout, !FromZeroes, !FromBytes, !AsBytes, !Unaligned);

        assert_impls!(MaybeUninit<u8>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, Unaligned, !AsBytes);
        assert_impls!(MaybeUninit<NotZerocopy>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned);

        assert_impls!(Wrapping<u8>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned);
        assert_impls!(Wrapping<NotZerocopy>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned);

        assert_impls!(Unalign<u8>: KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned, !TryFromBytes);
        assert_impls!(Unalign<NotZerocopy>: Unaligned, !KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes);

        assert_impls!([u8]: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned);
        assert_impls!([bool]: KnownLayout, TryFromBytes, FromZeroes, AsBytes, Unaligned, !FromBytes);
        assert_impls!([NotZerocopy]: !KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!([u8; 0]: KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned, !TryFromBytes);
        assert_impls!([NotZerocopy; 0]: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!([u8; 1]: KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned, !TryFromBytes);
        assert_impls!([NotZerocopy; 1]: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned);

        assert_impls!(*const NotZerocopy: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(*mut NotZerocopy: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(*const [NotZerocopy]: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(*mut [NotZerocopy]: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(*const dyn Debug: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(*mut dyn Debug: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned);

        #[cfg(feature = "simd")]
        {
            #[allow(unused_macros)]
            macro_rules! test_simd_arch_mod {
                ($arch:ident, $($typ:ident),*) => {
                    {
                        use core::arch::$arch::{$($typ),*};
                        use crate::*;
                        $( assert_impls!($typ: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); )*
                    }
                };
            }
            #[cfg(target_arch = "x86")]
            test_simd_arch_mod!(x86, __m128, __m128d, __m128i, __m256, __m256d, __m256i);

            #[cfg(all(feature = "simd-nightly", target_arch = "x86"))]
            test_simd_arch_mod!(x86, __m512bh, __m512, __m512d, __m512i);

            #[cfg(target_arch = "x86_64")]
            test_simd_arch_mod!(x86_64, __m128, __m128d, __m128i, __m256, __m256d, __m256i);

            #[cfg(all(feature = "simd-nightly", target_arch = "x86_64"))]
            test_simd_arch_mod!(x86_64, __m512bh, __m512, __m512d, __m512i);

            #[cfg(target_arch = "wasm32")]
            test_simd_arch_mod!(wasm32, v128);

            #[cfg(all(feature = "simd-nightly", target_arch = "powerpc"))]
            test_simd_arch_mod!(
                powerpc,
                vector_bool_long,
                vector_double,
                vector_signed_long,
                vector_unsigned_long
            );

            #[cfg(all(feature = "simd-nightly", target_arch = "powerpc64"))]
            test_simd_arch_mod!(
                powerpc64,
                vector_bool_long,
                vector_double,
                vector_signed_long,
                vector_unsigned_long
            );
            #[cfg(target_arch = "aarch64")]
            #[rustfmt::skip]
            test_simd_arch_mod!(
                aarch64, float32x2_t, float32x4_t, float64x1_t, float64x2_t, int8x8_t, int8x8x2_t,
                int8x8x3_t, int8x8x4_t, int8x16_t, int8x16x2_t, int8x16x3_t, int8x16x4_t, int16x4_t,
                int16x8_t, int32x2_t, int32x4_t, int64x1_t, int64x2_t, poly8x8_t, poly8x8x2_t, poly8x8x3_t,
                poly8x8x4_t, poly8x16_t, poly8x16x2_t, poly8x16x3_t, poly8x16x4_t, poly16x4_t, poly16x8_t,
                poly64x1_t, poly64x2_t, uint8x8_t, uint8x8x2_t, uint8x8x3_t, uint8x8x4_t, uint8x16_t,
                uint8x16x2_t, uint8x16x3_t, uint8x16x4_t, uint16x4_t, uint16x8_t, uint32x2_t, uint32x4_t,
                uint64x1_t, uint64x2_t
            );
            #[cfg(all(feature = "simd-nightly", target_arch = "arm"))]
            #[rustfmt::skip]
            test_simd_arch_mod!(arm, int8x4_t, uint8x4_t);
        }
    }
}

#[cfg(kani)]
mod proofs {
    use super::*;

    impl kani::Arbitrary for DstLayout {
        fn any() -> Self {
            let align: NonZeroUsize = kani::any();
            let size_info: SizeInfo = kani::any();

            kani::assume(align.is_power_of_two());
            kani::assume(align < DstLayout::THEORETICAL_MAX_ALIGN);

            // For testing purposes, we most care about instantiations of
            // `DstLayout` that can correspond to actual Rust types. We use
            // `Layout` to verify that our `DstLayout` satisfies the validity
            // conditions of Rust layouts.
            kani::assume(
                match size_info {
                    SizeInfo::Sized { _size } => Layout::from_size_align(_size, align.get()),
                    SizeInfo::SliceDst(TrailingSliceLayout { _offset, _elem_size }) => {
                        // `SliceDst`` cannot encode an exact size, but we know
                        // it is at least `_offset` bytes.
                        Layout::from_size_align(_offset, align.get())
                    }
                }
                .is_ok(),
            );

            Self { align: align, size_info: size_info }
        }
    }

    impl kani::Arbitrary for SizeInfo {
        fn any() -> Self {
            let is_sized: bool = kani::any();

            match is_sized {
                true => {
                    let size: usize = kani::any();

                    kani::assume(size <= isize::MAX as _);

                    SizeInfo::Sized { _size: size }
                }
                false => SizeInfo::SliceDst(kani::any()),
            }
        }
    }

    impl kani::Arbitrary for TrailingSliceLayout {
        fn any() -> Self {
            let elem_size: usize = kani::any();
            let offset: usize = kani::any();

            kani::assume(elem_size < isize::MAX as _);
            kani::assume(offset < isize::MAX as _);

            TrailingSliceLayout { _elem_size: elem_size, _offset: offset }
        }
    }

    #[kani::proof]
    fn prove_dst_layout_extend() {
        use crate::util::{core_layout::padding_needed_for, max, min};

        let base: DstLayout = kani::any();
        let field: DstLayout = kani::any();
        let packed: Option<NonZeroUsize> = kani::any();

        if let Some(max_align) = packed {
            kani::assume(max_align.is_power_of_two());
            kani::assume(base.align <= max_align);
        }

        // The base can only be extended if it's sized.
        kani::assume(matches!(base.size_info, SizeInfo::Sized { .. }));
        let base_size = if let SizeInfo::Sized { _size: size } = base.size_info {
            size
        } else {
            unreachable!();
        };

        // Under the above conditions, `DstLayout::extend` will not panic.
        let composite = base.extend(field, packed);

        // The field's alignment is clamped by `max_align` (i.e., the
        // `packed` attribute, if any) [1].
        //
        // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers:
        //
        //   The alignments of each field, for the purpose of positioning
        //   fields, is the smaller of the specified alignment and the
        //   alignment of the field's type.
        let field_align = min(field.align, packed.unwrap_or(DstLayout::THEORETICAL_MAX_ALIGN));

        // The struct's alignment is the maximum of its previous alignment and
        // `field_align`.
        assert_eq!(composite.align, max(base.align, field_align));

        // Compute the minimum amount of inter-field padding needed to
        // satisfy the field's alignment, and offset of the trailing field.
        // [1]
        //
        // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers:
        //
        //   Inter-field padding is guaranteed to be the minimum required in
        //   order to satisfy each field's (possibly altered) alignment.
        let padding = padding_needed_for(base_size, field_align);
        let offset = base_size + padding;

        // For testing purposes, we'll also construct `alloc::Layout`
        // stand-ins for `DstLayout`, and show that `extend` behaves
        // comparably on both types.
        let base_analog = Layout::from_size_align(base_size, base.align.get()).unwrap();

        match field.size_info {
            SizeInfo::Sized { _size: field_size } => {
                if let SizeInfo::Sized { _size: composite_size } = composite.size_info {
                    // If the trailing field is sized, the resulting layout
                    // will be sized. Its size will be the sum of the
                    // preceeding layout, the size of the new field, and the
                    // size of inter-field padding between the two.
                    assert_eq!(composite_size, offset + field_size);

                    let field_analog =
                        Layout::from_size_align(field_size, field_align.get()).unwrap();

                    if let Ok((actual_composite, actual_offset)) = base_analog.extend(field_analog)
                    {
                        assert_eq!(actual_offset, offset);
                        assert_eq!(actual_composite.size(), composite_size);
                        assert_eq!(actual_composite.align(), composite.align.get());
                    } else {
                        // An error here reflects that composite of `base`
                        // and `field` cannot correspond to a real Rust type
                        // fragment, because such a fragment would violate
                        // the basic invariants of a valid Rust layout. At
                        // the time of writing, `DstLayout` is a little more
                        // permissive than `Layout`, so we don't assert
                        // anything in this branch (e.g., unreachability).
                    }
                } else {
                    panic!("The composite of two sized layouts must be sized.")
                }
            }
            SizeInfo::SliceDst(TrailingSliceLayout {
                _offset: field_offset,
                _elem_size: field_elem_size,
            }) => {
                if let SizeInfo::SliceDst(TrailingSliceLayout {
                    _offset: composite_offset,
                    _elem_size: composite_elem_size,
                }) = composite.size_info
                {
                    // The offset of the trailing slice component is the sum
                    // of the offset of the trailing field and the trailing
                    // slice offset within that field.
                    assert_eq!(composite_offset, offset + field_offset);
                    // The elem size is unchanged.
                    assert_eq!(composite_elem_size, field_elem_size);

                    let field_analog =
                        Layout::from_size_align(field_offset, field_align.get()).unwrap();

                    if let Ok((actual_composite, actual_offset)) = base_analog.extend(field_analog)
                    {
                        assert_eq!(actual_offset, offset);
                        assert_eq!(actual_composite.size(), composite_offset);
                        assert_eq!(actual_composite.align(), composite.align.get());
                    } else {
                        // An error here reflects that composite of `base`
                        // and `field` cannot correspond to a real Rust type
                        // fragment, because such a fragment would violate
                        // the basic invariants of a valid Rust layout. At
                        // the time of writing, `DstLayout` is a little more
                        // permissive than `Layout`, so we don't assert
                        // anything in this branch (e.g., unreachability).
                    }
                } else {
                    panic!("The extension of a layout with a DST must result in a DST.")
                }
            }
        }
    }

    #[kani::proof]
    #[kani::should_panic]
    fn prove_dst_layout_extend_dst_panics() {
        let base: DstLayout = kani::any();
        let field: DstLayout = kani::any();
        let packed: Option<NonZeroUsize> = kani::any();

        if let Some(max_align) = packed {
            kani::assume(max_align.is_power_of_two());
            kani::assume(base.align <= max_align);
        }

        kani::assume(matches!(base.size_info, SizeInfo::SliceDst(..)));

        let _ = base.extend(field, packed);
    }

    #[kani::proof]
    fn prove_dst_layout_pad_to_align() {
        use crate::util::core_layout::padding_needed_for;

        let layout: DstLayout = kani::any();

        let padded: DstLayout = layout.pad_to_align();

        // Calling `pad_to_align` does not alter the `DstLayout`'s alignment.
        assert_eq!(padded.align, layout.align);

        if let SizeInfo::Sized { _size: unpadded_size } = layout.size_info {
            if let SizeInfo::Sized { _size: padded_size } = padded.size_info {
                // If the layout is sized, it will remain sized after padding is
                // added. Its sum will be its unpadded size and the size of the
                // trailing padding needed to satisfy its alignment
                // requirements.
                let padding = padding_needed_for(unpadded_size, layout.align);
                assert_eq!(padded_size, unpadded_size + padding);

                // Prove that calling `DstLayout::pad_to_align` behaves
                // identically to `Layout::pad_to_align`.
                let layout_analog =
                    Layout::from_size_align(unpadded_size, layout.align.get()).unwrap();
                let padded_analog = layout_analog.pad_to_align();
                assert_eq!(padded_analog.align(), layout.align.get());
                assert_eq!(padded_analog.size(), padded_size);
            } else {
                panic!("The padding of a sized layout must result in a sized layout.")
            }
        } else {
            // If the layout is a DST, padding cannot be statically added.
            assert_eq!(padded.size_info, layout.size_info);
        }
    }
}